Skip to main content

Metal Transporters in Plants

  • Chapter
  • First Online:
Heavy Metal Stress in Plants

Abstract

Several transition metals are essential for plants as for most other organisms. These elements have been needed in the course of evolution because of their chemical properties such as redox activity under physiological conditions (Cu, Fe) or Lewis acid strength (Zn). The properties that make transition metal ions indispensable for life, however, are also the reason why they can easily be toxic when present in excess. The main threat lies in their ability to produce reactive oxygen species (ROS). Unfortunately, toxic metals such as cadmium, lead, mercury, etc., as well as the essential ones can also produce ROS. In the course of industrialization, emissions of metals have risen tremendously and significantly exceed those from natural sources for practically all metals. Due to this mobilization of metals into the biosphere, their circulation through soil, water, and air has greatly increased. The main aim of this chapter is to discuss the effects of metal ions on a plant cell, to summarize the current state of the art in the field of thiol-rich compounds like phytochelatins to detoxify metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:1–15

    Article  CAS  Google Scholar 

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  PubMed  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie edn. The University of Reading U.K, Glasgow

    Book  Google Scholar 

  • Amir H, Jasper DA, Abbott LK (2008) Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza 19:1–6

    Article  CAS  PubMed  Google Scholar 

  • Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 112:1–14

    Article  Google Scholar 

  • Andreazza R, Bortolon L, Pieniz S, Giacometti M, Roehrs DD, Lambais MR, Camargo FAO (2011) Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste. Biol Trace Elem Res 143:1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Chemosphere 77:273–278

    Article  CAS  PubMed  Google Scholar 

  • Asensi M, Sastre J, Pallardo FV, Lloret A, Lehner M, Garcia-de-la Asuncion J, Vina J (1999) Ratio of reduced to oxidized glutathione as indicator of oxidative stress status and DNA damage. Oxi Antioxid 299:267–276

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:1–7

    Google Scholar 

  • Banaaraghi N, Hoodaji M, Afyuni M (2010) Use of EDTA and EDDS for enhanced Zea mays’ phytoextraction of heavy metals from a contaminated soil. J Resid Sci Technol 7:139–145

    CAS  Google Scholar 

  • Bani A, Echevarria G, Mullaj A, Reeves R, Morel JL, Sulce S (2009) Nickel hyperaccumulation by Brassicaceae in serpentine soils of Albania and Northwestern Greece. Northeast Nat 16:385–404

    Article  Google Scholar 

  • Barrutia O, Garbisu C, Hernandez-Allica J, Garcia-Plazaola JI, Becerril JM (2010) Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ Pollut 158:1710–1715

    Article  CAS  PubMed  Google Scholar 

  • Bielawski W, Joy KW (1986) Reduced and oxidized glutathione and glutathione-reductase activity in tissues of Pisum sativum. Planta 169:267–272

    Article  CAS  Google Scholar 

  • Boran M, Altinok I (2010) A review of heavy metals in water, sediment and living organisms in the black sea. Turk J Fish Quat Sci 10:565–572

    Google Scholar 

  • Borhidi A (2001) Phylogenetic trends in Ni-accumulating plants. S Afr J Sci 97:544–547

    CAS  Google Scholar 

  • Boruvka L, Vacha R (2006) Litavka river alluvium as a model area heavily polluted with potentially risk elements. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of Metal-Contaminated Soils, vol 68. NATO Science Series IV Earth and Environmental Sciences. Springer, Dordrecht, pp 267–298

    Google Scholar 

  • Brokbartold M, Wischermann M, Marschner B (2011) Plant availability and uptake of lead, zinc, and cadmium in soils contaminated with anti-corrosion paint from pylons in comparison to heavy metal contaminated urban soils. Water Air Soil Pollut 223:199–213

    Article  CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F (2010) Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Ann Bot 106:751–767

    Article  CAS  PubMed  Google Scholar 

  • Cerne M, Smodis B, Strok M (2011) Uptake of radionuclides by a common reed (Phragmites australis (Cav.) Trin. ex Steud.) grown in the vicinity of the former uranium mine at Zirovski vrh. Nucl Eng Des 24:1282–1286

    Article  CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake in inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corp, Park Bridge

    Google Scholar 

  • Cheng SP (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 10:192–198

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Persoh D (2009) Multi-tasking phytochelatin synthases. Plant Sci 177:266–271

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    CAS  PubMed  Google Scholar 

  • Cobbett CS (2001) Heavy metal detoxification in plants: phytochelatin biosynthesis and function. IUBMB Life 51:183–188

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Colzi I, Doumett S, Del Bubba M, Fornaini J, Arnetoli M, Gabbrielli R, Gonnelli C (2011) On the role of the cell wall in the phenomenon of copper tolerance in Silene paradoxa L. Environ Exp Bot 72:77–83

    Article  CAS  Google Scholar 

  • Cook LL, Inouye RS, McGonigle TP (2009) Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil. Plant Soil 324:169–184

    Article  CAS  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Jimenez G, Gardea-Torresdey JL, Peralta-Videa J, De La Rosa G (2004) Larrea tridentata and Salvia roemeriana: potential selenium hyperaccumulator desert plant species. Abstr Pap Am Chem Soc 227:U1054–U1054

    Google Scholar 

  • Cunningham SD, Berti WR (2000) Phytoextraction and phytostabilization: technical, economic, and regulatory considerations of the soil-lead issue. In: Ellen LK, Todd AA, Joel RC (eds) Phytoremediation of contaminated soil and water, vol 664, pp 359–376

    Google Scholar 

  • Cunningham SD, Lee CR (1995) Phytoremediation: plant-based remediation of contaminated soils and sediments. In: Bioremediation: science and applications. Sssa Special Publications, Madison, pp 145–156

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    CAS  PubMed  Google Scholar 

  • Cunningham SD, Berti WR, Huang JWW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Darrah PR, Staunton S (2000) A mathematical model of root uptake of cations incorporating root turnover, distribution within the plant, and recycling of absorbed species. Eur J Soil Sci 51:643–653

    Article  Google Scholar 

  • Davis AK, Hildebrand M, Palenik B (2006) Gene expression induced by copper stress in the diatom Thalassiosira pseudonana. Eukaryot Cell 5:1157–1168

    Article  CAS  PubMed  Google Scholar 

  • de Araujo JDT, do Nascimento CWA (2010) Phytoextraction of lead from soil from a battery recycling site: the use of citric acid and NTA. Water Air Soil Pollut 211:113–120

    Google Scholar 

  • de Borne FD, Elmayan T, de Roton C, de Hys L, Tepfer M (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol Breeding 4:83–90

    Article  Google Scholar 

  • Deng H, Li MS, Chen YX, Luo YP, Yu FM (2010a) A new discovered manganese hyperaccumulator-Polygonum pubescens Blume. Fresenius Environ Bull 19:94–99

    CAS  Google Scholar 

  • Deng XP, Xia Y, Hu W, Zhang HX, Shen ZG (2010b) Cadmium-induced oxidative damage and protective effects of N-acetyl-l-cysteine against cadmium toxicity in Solanum nigrum L. J Hazard Mater 180:722–729

    Article  CAS  PubMed  Google Scholar 

  • di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Diopan V, Shestivska V, Adam V, Macek T, Mackova M, Havel L, Kizek R (2008) Determination of content of metallothionein and low molecular mass stress peptides in transgenic tobacco plants. Plant Cell Tissue Organ Cult 94:291–298

    Article  CAS  Google Scholar 

  • do Nascimento CWA, Xing BS (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311

    Article  Google Scholar 

  • Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76

    Article  CAS  PubMed  Google Scholar 

  • Dou CM, Fu XP, Chen XC, Shi JY, Chen YX (2009) Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana. Plant Biol 11:664–670

    Article  CAS  PubMed  Google Scholar 

  • Douchiche O, Driouich A, Morvan C (2010a) Spatial regulation of cell-wall structure in response to heavy metal stress: Cadmium-induced alteration of the methyl-esterification pattern of homogalacturonans. Ann Bot 105:481–491

    Article  CAS  PubMed  Google Scholar 

  • Douchiche O, Soret-Morvan O, Chaibi W, Morvan C, Paynel F (2010b) Characteristics of cadmium tolerance in ‘Hermes’ flax seedlings: contribution of cell walls. Chemosphere 81:1430–1436

    Article  CAS  PubMed  Google Scholar 

  • Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91:127–133

    Article  CAS  PubMed  Google Scholar 

  • Ehsan M, Santamaria-Delgado K, Vazquez-Alarcon A, Alderete-Chavez A, De la Cruz-Landero N, Jaen-Contreras D, Molumeli PA (2009) Phytostabilization of cadmium contaminated soils by Lupinus uncinatus Schldl. Span J Agric Res 7:390–397

    Google Scholar 

  • Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143

    CAS  PubMed  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil: effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 30:29–36

    Article  CAS  Google Scholar 

  • Fernando DR, Batianoff GN, Baker AJ, Woodrow IE (2006) In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow and Guymer (Myrtaceae) by cryo-SEM/EDAX. Plant Cell Environ 29:1012–1020

    Article  CAS  PubMed  Google Scholar 

  • Fernando DR, Marshall AT, Gouget B, Carriere M, Collins RN, Woodrow IE, Baker AJ (2008) Novel pattern of foliar metal distribution in a manganese hyperaccumulator. Funct Plant Biol 35:193–200

    Article  CAS  Google Scholar 

  • Freeman JL, Banuelos GS (2011) Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments. Environ Sci Technol 45:9703–9710

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Quinn CF, Lindblom SD, Klamper EM, Pilon-Smits EAH (2009) Selenium protects the hyperaccumulator Stanleya Pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. Am J Bot 96:1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Frerot H, Lefebvre C, Gruber W, Collin C, Dos Santos A, Escarre J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65

    Article  CAS  Google Scholar 

  • Fulekar MH, Singh A, Thorat V, Kaushik CP, Eapen S (2010) Phytoremediation of (137) Cs from low level nuclear waste using Catharanthus roseus. Indian J Pure Appl Phys 48:516–519

    CAS  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173:517–525

    Article  CAS  PubMed  Google Scholar 

  • Gao XP, Flaten DN, Tenuta M, Grimmett MG, Gawalko EJ, Grant CA (2011) Soil solution dynamics and plant uptake of cadmium and zinc by durum wheat following phosphate fertilization. Plant Soil 338:423–434

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  PubMed  Google Scholar 

  • Garrido T, Mendoza J, Riveros R, Saez L (2010) Acute and chronic effect of copper on levels of reduced and oxidized glutathione and nutrient uptake of tomato plants. J Plant Nutr Soil Sci 173:920–926

    Article  CAS  Google Scholar 

  • Gawronski SW, Gawronska H (2007) Plant taxonomy for phytoremediation. In: Advanced Science and Technology for Biological Decontamination of Sites Affected by Chemical and Radiological Nuclear Agents. NATO Sci Ser IV Earth Environ Sci 75:79–88

    Article  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 555:443–448

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Ghaderian SM, Movahedi M, Ghasemi R (2009) Uptake and accumulation of cobalt by Alyssum bracteatum, an endemic Iranian Ni hyperaccumulator. Northeast Nat 16:131–138

    Article  Google Scholar 

  • Gonzalez-Mendoza D, Zapata-Perez O (2008) Mechanism of plant tolerance to potentially toxic elements. Bol Soc Bot Mex 82:53–61

    Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Grill E, Gekeler W, Winnacker EL, Zenk HH (1986) Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing fabales. FEBS Lett 205:47–50

    Article  CAS  Google Scholar 

  • Grusak MA, Pearson JN, Marentes E (1999) The physiology of micronutrient homeostasis in field crops. Field Crop Res 60:41–56

    Article  Google Scholar 

  • Gupta DK, Tohoyama H, Joho M, Inouhe M (2004) Changes in the levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions. J Plant Res 117:253–256

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: toxicity and tolerance in plants. J Environ Biol 30:165–174

    CAS  PubMed  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Karenlampi SO (2011) Plant metallothioneins-Metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    Article  CAS  PubMed  Google Scholar 

  • He HZ, Zhu CM, Lu T, Zhang RQ, Zhao NM, Liu JY (2002) Modeling the cysteine rich domain of plant metallothionein-like protein. Acta Bot Sin 44:1155–1159

    CAS  Google Scholar 

  • Hegazy AK, Emam MH (2010) Accumulation and soil-to-plant transfer of radionuclides in the Nile delta coastal black sand habitats. Int J Phytorem 13:140–155

    Article  CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulfate and sulfate transport in tobacco plants. J Exp Bot 45:1069–1076

    Article  CAS  Google Scholar 

  • Hetland MD, Gallagher JR, Daly DJ, Hassett DJ, Heebink LV (2001) Processing of plants used to phytoremediate lead-contaminated sites. In: Phytoremediation, Wetlands, and Sediments. Bioremediat Ser 6:129–136

    Google Scholar 

  • Homer FA, Morrison RS, Brooks RR, Clemens J, Reeves RD (1991) Comparative-studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 138:195–205

    Article  CAS  Google Scholar 

  • Hou LY, Shi WM, Wei WH, Shen H (2011) Cadmium uptake, translocation, and tolerance in AHA1OX Arabidopsis thaliana. Biol Trace Elem Res 139:228–240

    Article  CAS  PubMed  Google Scholar 

  • Hung CY, Xie JH (2008) Development of an efficient plant regeneration system for the selenium-hyperaccumulator Astragalus racemosus and the nonaccumulator Astragalus canadensis. Hort Science 43:2138–2142

    Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907

    Article  CAS  Google Scholar 

  • Iannone MF, Rosales EP, Groppa MD, Benavides MP (2010) Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. Protoplasma 245:15–27

    Article  CAS  PubMed  Google Scholar 

  • Iram S, Ahmad I, Javed B, Yaqoob S, Akhtar K, Kazmi MR, Badar uz Z (2009) Fungal tolerance to heavy metals. Pak J Bot 41:2583–2594

    Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata-Hyperaccumulator of nickel from New-Caledonia. Science 193:579–580

    Article  CAS  PubMed  Google Scholar 

  • Janouskova M, Pavlikova D, Macek T, Vosatka M (2005a) Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant Soil 272:29–40

    Article  CAS  Google Scholar 

  • Janouskova M, Pavlikova D, Macek T, Vosatka M (2005b) Influence of arbuscular mycorrhiza on the growth and cadmium uptake of tobacco with inserted metallothionein gene. Appl Soil Ecol 29:209–214

    Article  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotech 9:215–288

    Article  CAS  Google Scholar 

  • Kafka Z, Puncocharova J (2002) Toxicity of heavy metals in nature. Chem Listy 96:611–617

    CAS  Google Scholar 

  • Karami A, Shamsuddin ZH (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotech 9:3689–3698

    CAS  Google Scholar 

  • Keeling SM, Stewart RB, Anderson CWN, Robinson BH (2003) Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: Implications for polymetallic phytomining and phytoremediation. Int J Phytorem 5:235–244

    Article  CAS  Google Scholar 

  • Khilji S, Firdaus e B (2008) Rhizofiltration of heavy metals from the tannery sludge by the anchored hydrophyte, Hydrocotyle umbellata L. Afr J Biotech 7:3714–3720

    Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy-metal poisoning. Phytochemistry 31:2663–2667

    Article  CAS  Google Scholar 

  • Komarek M, Vanek A, Mrnka L, Sudova R, Szakova J, Tejnecky V, Chrastny V (2010) Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils. Environ Pollut 158:2428–2438

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Macek T, Ruml T (1999) Heavy metal-binding peptides and proteins in plants. A review. Collect Czech Chem Commun 64:1057–1086

    Article  CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  CAS  PubMed  Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Zon J (2011) Significance of phenols in cadmium and nickel uptake. J Plant Physiol 168:576–584

    Article  CAS  PubMed  Google Scholar 

  • Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Kshirsagar S, Aery NC (2007) Phytostabilization of mine waste: growth and physiological responses of Vigna unguiculata (L.) Walp. J Environ Biol 28:651–654

    PubMed  Google Scholar 

  • Kuzovkina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation in five Willow (Salix l.) species. Int J Phytorem 6:269–287

    Article  CAS  Google Scholar 

  • Lang I, Wernitznig S (2011) Sequestration at the cell wall and plasma membrane facilitates zinc tolerance in the moss Pohlia drummondii. Environ Exp Bot 74:186–193

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Korban SS (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta 215:689–693

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mater 173:589–596

    Article  CAS  PubMed  Google Scholar 

  • Leitenmaier B, Kupper H (2011) Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 34:208–219

    Article  CAS  PubMed  Google Scholar 

  • Leitenmaier B, Witt A, Witzke A, Stemke A, Meyer-Klaucke W, Kroneck PMH, Kupper H (2011) Biochemical and biophysical characterisation yields insights into the mechanism of a Cd/Zn transporting ATPase purified from the hyperaccumulator plant Thlaspi caerulescens. Biochim Biophys Acta-Biomembr 1808:2591–2599

    Article  CAS  Google Scholar 

  • Li YM, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468

    Article  CAS  Google Scholar 

  • Liedschulte V, Wachter A, An ZG, Rausch T (2010) Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnol J 8:807–820

    Article  CAS  PubMed  Google Scholar 

  • Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, Zhu YG (2007) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Lu T, Zhao NM (2000) Classification and nomenclature of plant metallothionein-like proteins based on their cysteine arrangement patterns. Acta Bot Sin 42:649–652

    CAS  Google Scholar 

  • Liu MQ, Yanai JT, Jiang RF, Zhang F, McGrath SP, Zhao FJ (2008) Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere 71:1276–1283

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Tang XM, Gong CF, Xu GD (2010a) Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Plant Soil 335:385–395

    Article  CAS  Google Scholar 

  • Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HC, Yun DJ, Chung WS (2010b) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71:614–618

    Article  CAS  PubMed  Google Scholar 

  • Liu GY, Zhang YX, Chai TY (2011) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Rep 30:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Lomonte C, Doronila A, Gregory D, Baker AJM, Kolev SD (2011) Chelate-assisted phytoextraction of mercury in biosolids. Sci Total Environ 409:2685–2692

    Article  CAS  PubMed  Google Scholar 

  • Loscos J, Naya L, Ramos J, Clemente MR, Matamoros MA, Becana M (2006) A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals. Plant Physiol 140:1213–1221

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Liu JY, Zhang RQ, Zhao NM (2003) Modeling rice rgMT as a plant metallothionein-like protein by the distance geometry and homology methods. Acta Bot Sin 45:1297–1306

    CAS  Google Scholar 

  • Macek T, Mackova M, Truksa M, Cundy AS, Kotrba P, Yancey N, Schouten WH (1996) Preparation of transgenic tobacco with a yeast metallothionein combined with a polyhistidine tail. Chem Listy 90:690

    CAS  Google Scholar 

  • Macek T, Mackova M, Pavlikova D, Szakova J, Truksa M, Cundy S, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22:101–106

    Article  CAS  Google Scholar 

  • Madejon P, Burgos P, Cabrera F, Madejon E (2009) Phytostabilization of amended soils polluted with trace elements using the Mediterranean shrub: Rosmarinus officinalis. Int J Phytorem 11:542–557

    Article  CAS  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    CAS  PubMed  Google Scholar 

  • Manso C, Wroblewski F (1958) Glutathione reductase activity in blood and body fluids. J Clin Invest 37:214–218

    Article  CAS  PubMed  Google Scholar 

  • Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation-a plant-chemical defense. Oecologia 98:379–384

    Article  Google Scholar 

  • Martins LL, Mourato MP, Cardoso AI, Pinto AP, Mota AM, Goncalves MDS, de Varennes A (2011) Oxidative stress induced by cadmium in Nicotiana tabacum L.: effects on growth parameters, oxidative damage and antioxidant responses in different plant parts. Acta Physiol Plant 33:1375–1383

    Article  CAS  Google Scholar 

  • Masarovicova E, Kralova K, Kummerova M (2010) Principles of classification of medicinal plants as hyperaccumulators or excluders. Acta Physiol Plant 32:823–829

    Article  Google Scholar 

  • McGovern JJ, Isselbacher K, Rose PJ, Grossman MS (1958) Observations on the glutathione (GSH) stability of red blood cells. Ama J Dis Child 96:502

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  • McLeod KW, Ciravolo TG (2007) Cobalt uptake by Nyssa aquatica, N-sylvatica var. biflora, and Taxodium distichum seedlings. Wetlands 27:40–43

    Article  Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Meers E, Tack FMG, Van Slycken S, Ruttens A, Laing GD, Vangronsveld J, Verloo MG (2008) Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals. Int J Phytorem 10:390–414

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  PubMed  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Mengoni A, Schat H, Vangronsveld J (2010) Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331(1–2):5–16

    Article  CAS  Google Scholar 

  • Min Y, Tie BQ, Tang MZ, Aoyama I (2007) Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana. Miner Eng 20:188–190

    Article  CAS  Google Scholar 

  • Mizuno T, Hirano K, Kato S, Obata H (2008) Cloning of ZIP family metal transporter genes from the manganese hyperaccumulator plant Chengiopanax sciadophylloides, and its metal transport and resistance abilities in yeast. Soil Sci Plant Nutr 54:86–94

    Article  CAS  Google Scholar 

  • Mleczek M, Kozlowska M, Kaczmarek Z, Magdziak Z, Golinski P (2011) Cadmium and lead uptake by Salix viminalis under modified Ca/Mg ratio. Ecotoxicology 20:158–165

    Article  CAS  PubMed  Google Scholar 

  • Mullainathan L, Arulbalachandran D, Lakshmanan GMA, Velu S (2007) Phytoremediation: metallophytes an effective tool to remove soil toxic metal. Plant Arch 7:19–23

    Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  CAS  PubMed  Google Scholar 

  • Navari-Izzo F, Quartacci MF (2001) Phytoremediation of metals-Tolerance mechanisms against oxidative stress. Minerva Biotechnol 13:73–83

    Google Scholar 

  • Neumann D, Lichtenberger O, Gunther D, Tschiersch K, Nover L (1994) Heat-shock proteins induce heavy-metal tolerance in higher-plants. Planta 194:360–367

    Article  CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

    Article  CAS  PubMed  Google Scholar 

  • Nwoko CO (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotech 9:6010–6016

    CAS  Google Scholar 

  • Ogawa K (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Signal 7:973–981

    Article  CAS  PubMed  Google Scholar 

  • Ow DW (1996) Heavy metal tolerance genes: Prospective tools for bioremediation. Resour Conserv Recycl 18:135–149

    Article  Google Scholar 

  • Ozturk L, Karanlik S, Ozkutlu F, Cakmak I, Kochian LV (2003) Shoot biomass and zinc/cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a zincdeficient calcareous soil. Plant Sci 164:1095–1101

    Article  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963

    Article  CAS  PubMed  Google Scholar 

  • Pal M, Horvath E, Janda T, Paldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Article  CAS  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  CAS  PubMed  Google Scholar 

  • Paradiso A, Berardino R, de Pinto MC, di Toppi LS, Storelli MM, Tommasi F, De Gara L (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49:362–374

    Article  CAS  PubMed  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Pavlikova D, Macek T, Mackova M, Sura M, Szakova J, Tlustos P (2004) The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ 50:513–517

    CAS  Google Scholar 

  • Peng KJ, Luo CL, You WX, Lian CL, Li XD, Shen ZG (2008) Manganese uptake and interactions with cadmium in the hyperaccumulator-Phytolacca americana L. J Hazard Mater 154:674–681

    Article  CAS  PubMed  Google Scholar 

  • Perelo LW (2010) Review: In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    Article  CAS  PubMed  Google Scholar 

  • Petrisor IG, Dobrota S, Komnitsas K, Lazar I, Kuperberg JM, Serban M (2004) Artificial inoculation-Perspectives in tailings phytostabilization. Int J Phytorem 6:1–15

    Article  CAS  Google Scholar 

  • Pickering IJ, Wright C, Bubner B, Ellis D, Persans MW, Yu EY, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    Article  CAS  PubMed  Google Scholar 

  • Pilon M, Cohu CM, Ravet K, Abdel-Ghany SE, Gaymard F (2009) Essential transition metal homeostasis in plants. Curr Opin Plant Biol 12:347–357

    Article  CAS  PubMed  Google Scholar 

  • Pisciotta AV, Daly M (1960a) Reduced glutathione (GSH) content of leukocytes in various hematologic diseases. Blood 15:421–422

    Google Scholar 

  • Pisciotta AV, Daly M (1960b) Studies on Agranulocytosis.3. the reduced glutathione (GSH) content of leukocytes of normals and patients recovered from agranulocytosis. Blood 16:1572–1578

    CAS  PubMed  Google Scholar 

  • Plessl M, Rigola D, Hassinen VH, Tervahauta A, Karenlampi S, Schat H, Aarts MGM, Ernst D (2010) Comparison of two ecotypes of the metal hyperaccumulator Thlaspi caerulescens (J. & C. PRESL) at the transcriptional level. Protoplasma 239:81–93

    Article  PubMed  Google Scholar 

  • Plocke DJ (1991) Cadmium-binding peptide complexes from Schizosaccharomyces pombe. Methods Enzymol 205:603–610

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  • Puig S, Penarrubia L (2009) Placing metal micronutrients in context: transport and distribution in plants. Curr Opin Plant Biol 12:299–306

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rakhshaee R, Giahi M, Pourahmad A (2009) Studying effect of cell wall’s carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution. J Hazard Mater 163:165–173

    Article  CAS  PubMed  Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86

    Article  CAS  PubMed  Google Scholar 

  • Rausch T, Gromes R, Liedschulte V, Muller I, Bogs J, Galovic V, Wachter A (2007) Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biol 9:565–572

    Article  CAS  PubMed  Google Scholar 

  • Redjala T, Zelko I, Sterckeman T, Legue V, Lux A (2011) Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71:241–248

    Article  CAS  Google Scholar 

  • Reeves R (2006) Hyperaccumulation of trace elements by plants. In: Phytoremediation of metal-contaminated soils. NATO Sci Ser IV Earth Environ Sci 68:25–52

    Article  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Sparkes I, Hawes C, del Rio LA, Sandalio LM (2009) Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium. Free Radical Biol Med 47:1632–1639

    Article  CAS  Google Scholar 

  • Roosens N, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13(5):208–215

    Google Scholar 

  • Saifullah Meers E, Qadir M, de Caritat P, Tack FMG, Du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74:1279–1291

    Article  CAS  PubMed  Google Scholar 

  • Sergio C, Figueira R, Crespo AMV (2000) Observations of heavy metal accumulation in the cell walls of Fontinalis antipyretica, in a Portuguese stream affected by mine effluent. J Bryol 22:251–255

    Google Scholar 

  • Shao HB, Chu LY, Ruan CJ, Li H, Guo DG, Li WX (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30:23–30

    Article  CAS  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323

    Article  CAS  PubMed  Google Scholar 

  • Shestivska V, Adam V, Prasek J, Macek T, Mackova M, Havel L, Diopan V, Zehnalek J, Hubalek J, Kizek R (2011) Investigation of the antioxidant properties of metallothionein in transgenic tobacco plants using voltammetry at a carbon paste electrode. Int J Electrochem Sci 6:2869–2883

    CAS  Google Scholar 

  • Schmoger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Martini N, Rennenberg H (1992) Reduced glutathione (GSH) transport into cultured tobacco cells. Plant Physiol Biochem 30:29–38

    CAS  Google Scholar 

  • Sonmez O, Bukun B, Kaya C, Aydemir S (2008) The assessment of tolerance to heavy metals (Cd, Pb and Zn) and their accumulation in three weed species. Pak J Bot 40:747–754

    CAS  Google Scholar 

  • Suh MC, Choi D, Liu JR (1998) Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L. metallothionein-like gene. Mol Cells 8:678–684

    CAS  PubMed  Google Scholar 

  • Suzuki N, Koizumi N, Sano H (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ 24:1177–1188

    Article  CAS  Google Scholar 

  • Tlustos P, Szakova J, Vyslouzilova M, Pavlikova D, Weger J, Javorska H (2007) Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Cent Eur J Biol 2:254–275

    Article  CAS  Google Scholar 

  • Tolra R, Pongrac P, Poschenrieder C, Vogel-Mikus K, Regvar M, Barcelo J (2006) Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense. Plant Soil 288:333–341

    Article  CAS  Google Scholar 

  • Torres E, Cid A, Fidalgo P, Herrero C, Abalde J (1997) Long-chain class III metallothioneins as a mechanism of cadmium tolerance in the marine diatom Phaeodactylum tricornutum Bohlin. Aquat Toxicol 39:231–246

    Article  CAS  Google Scholar 

  • Tukendorf A, SkorzynskaPolit E, Baszynski T (1997) Homophytochelatin accumulation in Cd-treated runner bean plants is related to their growth stage. Plant Sci 129:21–28

    Article  CAS  Google Scholar 

  • Tuomainen M, Tervahauta A, Hassinen V, Schat H, Koistinen KM, Lehesranta S, Rantalainen K, Hayrinen J, Auriola S, Anttonen M, Karenlampi S (2010) Proteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation. J Exp Bot 61:1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Zhao FJ, Shen RF, Ma JF (2004) Cadmium and zinc accumulation by the hyperaccumulator Thlaspi caerulescens from soils enriched with insoluble metal compounds. Soil Sci Plant Nutr 50:511–515

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

    Article  PubMed  CAS  Google Scholar 

  • Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394

    Article  Google Scholar 

  • Wang MJ, Wang WX (2011) Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: recovery from cadmium exposure. Aquat Toxicol 101:387–395

    Article  CAS  PubMed  Google Scholar 

  • Wang HO, Zhong GR (2011) Effect of organic ligands on accumulation of copper in hyperaccumulator and nonaccumulator Commelina communis. Biol Trace Elem Res 143:489–499

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Shan XQ, Wen B, Zhang SZ, Wang ZJ (2004) Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commoelina communis. Arch Environ Contam Toxicol 47:185–192

    Article  CAS  PubMed  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:A182–A186

    Article  Google Scholar 

  • Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    CAS  Google Scholar 

  • Wollgiehn R, Neumann D (1999) Metal stress response and tolerance of cultured cells from Silene vulgaris and Lycopersicon peruvianum: role of heat stress proteins. J Plant Physiol 154:547–553

    Article  CAS  Google Scholar 

  • Xiao S, Gao W, Chen QF, Ramalingam S, Chye ML (2008) Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant J 54:141–151

    Article  CAS  PubMed  Google Scholar 

  • Xie QE, Yan XL, Liao XY, Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43:8488–8495

    Article  CAS  PubMed  Google Scholar 

  • Xu XG, Shi JY, Chen YX, Chen XC, Wang H, Perera A (2006) Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 285:323–331

    Article  CAS  Google Scholar 

  • Xu XH, Chen XC, Shi JY, Chen YX, Wu WX, Perera A (2007) Effects of manganese on uptake and translocation of nutrients in a hyperaccumulator. J Plant Nutr 30:1737–1751

    Article  CAS  Google Scholar 

  • Xu XH, Shi JY, Chen XC, Chen YX, Hu TD (2009) Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 318:197–204

    Article  CAS  Google Scholar 

  • Xue SG, Chen YX, Reeves RD, Baker AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399

    Article  CAS  PubMed  Google Scholar 

  • Yabe J, Ishizuka M, Umemura T (2010) Current levels of heavy metal pollution in Africa. J Vet Med Sci 72:1257–1263

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yadav BK, Siebel MA, van Bruggen JJA (2011) Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean:Soil Air Water 39:467–474

    Article  CAS  Google Scholar 

  • Yang SX, Deng H, Li MS (2008) Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ 54:441–446

    CAS  Google Scholar 

  • Zaier H, Ghnaya T, Ben Rejeb K, Lakhdar A, Rejeb S, Jemal F (2010) Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresour Technol 101:3978–3983

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Chai TY, Burkard G (1999) Research advances on the mechanisms of heavy metal tolerance in plants. Acta Bot Sin 41:453–457

    CAS  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

  • Zhao SL, Lian F, Duo LA (2011) EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk. Bioresour Technol 102:621–626

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from NANIMEL GA CR 102/08/1546, CEITEC CZ.1.05/1.1.00/02.0068 as well as support by Lead and Cadmium Initiatives, United Nation Environment Program is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtech Adam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zitka, O. et al. (2013). Metal Transporters in Plants. In: Gupta, D., Corpas, F., Palma, J. (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38469-1_2

Download citation

Publish with us

Policies and ethics