Skip to main content

Animal Models of Corticosteroid-Associated Bone Diseases

  • Chapter
  • First Online:
Osteonecrosis

Abstract

Osteonecrosis is a disease that is characterized by lesions of dead bone, most frequently detected in the subchondral bone of the convex side of the major diarthrodial joints (hips, knees, shoulders, and talus). High-dose corticosteroid therapy is one major risk factor for osteonecrosis. The pathological appearance of osteonecrosis of the femoral head, however, is fairly consistent regardless of the etiology. Depending on the stage of the disease, this includes evidence of bone marrow edema, lipocyte and bone cell necrosis, fibrosis, creeping substitution (new bone lying on dead bone), and the presence of osteoporosis [1]. Hemorrhage within the bone marrow compartment has also been observed in patient specimens from corticosteroid-associated osteonecrosis [2]. Previous investigators have suggested that corticosteroid-associated osteonecrosis has more rapid progression than other etiologies [1, 3]. The mechanisms involved in the development of osteonecrosis [ON] are difficult to explore from clinical samples as they provide a single snapshot at one time point subsequent to the onset of the disease, usually months after the onset of the disease when the symptoms first appear. While some investigators have used corticosteroid-associated animal models to evaluate different potential treatments [4–6], it is not clear whether the results can be extrapolated to the human condition. A better understanding of the pathophysiological mechanisms is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chernetsky SG, Mont MA, LaPorte DM, Jones LC, Hungerford DS, McCarthy EF. Pathologic features in steroid and nonsteroid associated osteonecrosis. Clin Orthop Relat Res. 1999;368:149–61.

    Article  PubMed  Google Scholar 

  2. Saito S, Ohzono K, Ono K. Early arteriopathy and postulated pathogenesis of osteonecrosis of the femoral head. The intracapital arterioles. Clin Orthop Relat Res. 1992;277:98–110.

    PubMed  Google Scholar 

  3. Hastings DE, Macnab I. Spontaneous avascular necrosis of the femoral head: a clinical and pathological review. Can J Surg. 1965;8:68–83.

    CAS  PubMed  Google Scholar 

  4. Li X, Cui Q, Kao C, Wang GJ, Balian G. Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARgamma2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone. 2003;33(4):652–9.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang KJ, Zhang J, Kang ZK, Xue XM, Kang JF, Li YW, et al. Ibandronate for prevention and treatment of glucocorticoid-induced osteoporosis in rabbits. Rheumatol Int. 2012;32(11):3405–11. doi:10.1007/s00296-011-2074-9.

    Article  CAS  PubMed  Google Scholar 

  6. Erken HY, Ofluoglu O, Aktas M, Topal C, Yildiz M. Effect of pentoxifylline on histopathological changes in steroid-induced osteonecrosis of femoral head: experimental study in chicken. Int Orthop. 2012;36(7):1523–8. doi:10.1007/s00264-012-1497-6.

    Article  PubMed Central  PubMed  Google Scholar 

  7. McLaughlin F, Mackintosh J, Hayes BP, McLaren A, Uings IJ, Salmon P, et al. Glucocorticoid-induced osteopenia in the mouse as assessed by histomorphometry, microcomputed tomography, and biochemical markers. Bone. 2002;30(6):924–30.

    Article  CAS  PubMed  Google Scholar 

  8. Yang L, Boyd K, Kaste SC, Kamdem Kamdem L, Rahija RJ, Relling MV. A mouse model for glucocorticoid-induced osteonecrosis: effect of a steroid holiday. J Orthop Res. 2009;27(2):169–75. doi:10.1002/jor.20733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wang D, Haile A, Jones LC, editors. A MicroCT analysis of trabecular bone structure in a mouse model of glucocorticoid-induced osteonecrosis. San Antonio: Orthopaedic Research Society; 2013.

    Google Scholar 

  10. Wang Y, Ohtsuka-Isoya M, Shao P, Sakamoto S, Shinoda H. Effects of methylprednisolone on bone formation and resorption in rats. Jpn J Pharmacol. 2002;90(3):236–46.

    Article  CAS  PubMed  Google Scholar 

  11. Noa M, Mendoza S, Mas R, Mendoza N, Leon F. Effect of D-003, a mixture of very high molecular weight aliphatic acids, on prednisolone-induced osteoporosis in Sprague–Dawley rats. Drugs R D. 2004;5(5):281–90.

    Article  CAS  PubMed  Google Scholar 

  12. Murata M, Kumagai K, Miyata N, Osaki M, Shindo H. Osteonecrosis in stroke-prone spontaneously hypertensive rats: effect of glucocorticoid. J Orthop Sci. 2007;12(3):289–95. doi:10.1007/s00776-007-1129-y.

    Article  CAS  PubMed  Google Scholar 

  13. Bekler H, Uygur AM, Gokce A, Beyzadeoglu T. The effect of steroid use on the pathogenesis of avascular necrosis of the femoral head: an animal model. Acta Orthop Traumatol Turc. 2007;41(1):58–63.

    PubMed  Google Scholar 

  14. Kerachian MA, Harvey EJ, Cournoyer D, Chow TY, Nahal A, Seguin C. A rat model of early stage osteonecrosis induced by glucocorticoids. J Orthop Surg Res. 2011;6:62. doi:10.1186/1749-799X-6-62.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Fisher DE, Bickel WH, Holley KE, Ellefson RD. Corticosteroid-induced aseptic necrosis. II. Experimental study. Clin Orthop Relat Res. 1972;84:200–6.

    Article  CAS  PubMed  Google Scholar 

  16. Jaffe WL, Epstein M, Heyman N, Mankin HJ. The effect of cortisone on femoral and humeral heads in rabbits. An experimental study. Clin Orthop Relat Res. 1972;82:221–8.

    Article  CAS  PubMed  Google Scholar 

  17. Cruess RL, Ross D, Crawshaw E. The etiology of steroid-induced avascular necrosis of bone. A laboratory and clinical study. Clin Orthop Relat Res. 1975;113:178–83.

    Article  PubMed  Google Scholar 

  18. Wang GJ, Sweet DE, Reger SI, Thompson RC. Fat-cell changes as a mechanism of avascular necrosis of the femoral head in cortisone-treated rabbits. J Bone Joint Surg Am. 1977;59(6):729–35.

    CAS  PubMed  Google Scholar 

  19. Gold EW, Fox OD, Weissfeld S, Curtiss PH. Corticosteroid-induced avascular necrosis: an experimental study in rabbits. Clin Orthop Relat Res. 1978;135:272–80.

    CAS  PubMed  Google Scholar 

  20. Warman M, Boskey AL. Effect of high levels of corticosteroids on the lipids of the long bones of the mature rabbit. Metab Bone Dis Relat Res. 1983;4(5):319–24.

    Article  CAS  PubMed  Google Scholar 

  21. Kawai K, Tamaki A, Hirohata K. Steroid-induced accumulation of lipid in the osteocytes of the rabbit femoral head. A histochemical and electron microscopic study. J Bone Joint Surg Am. 1985;67(5):755–63.

    CAS  PubMed  Google Scholar 

  22. Warner JJ, Philip JH, Brodsky GL, Thornhill TS. Studies of nontraumatic osteonecrosis. Manometric and histologic studies of the femoral head after chronic steroid treatment: an experimental study in rabbits. Clin Orthop Relat Res. 1987;225:128–40.

    PubMed  Google Scholar 

  23. Li Z, Zhang N, Yue D. Experimental steroid osteonecrosis in rabbits and pathologic findings. Zhonghua Wai Ke Za Zhi. 1995;33(8):485–7.

    CAS  PubMed  Google Scholar 

  24. Yamamoto T, Irisa T, Sugioka Y, Sueishi K. Effects of pulse methylprednisolone on bone and marrow tissues: corticosteroid-induced osteonecrosis in rabbits. Arthritis Rheum. 1997;40(11):2055–64. doi:10.1002/1529-0131(199711)40:11<2055::AID-ART19>3.0.CO;2-E.

    Article  CAS  PubMed  Google Scholar 

  25. Miyanishi K, Yamamoto T, Irisa T, Yamashita A, Jingushi S, Noguchi Y, et al. Bone marrow fat cell enlargement and a rise in intraosseous pressure in steroid-treated rabbits with osteonecrosis. Bone. 2002;30(1):185–90.

    Article  CAS  PubMed  Google Scholar 

  26. Motomura G, Yamamoto T, Miyanishi K, Jingushi S, Iwamoto Y. Combined effects of an anticoagulant and a lipid-lowering agent on the prevention of steroid-induced osteonecrosis in rabbits. Arthritis Rheum. 2004;50(10):3387–91. doi:10.1002/art.20517.

    Article  CAS  PubMed  Google Scholar 

  27. Ichiseki T, Matsumoto T, Nishino M, Kaneuji A, Katsuda S. Oxidative stress and vascular permeability in steroid-induced osteonecrosis model. J Orthop Sci. 2004;9(5):509–15. doi:10.1007/s00776-004-0816-1.

    Article  CAS  PubMed  Google Scholar 

  28. Wang KZ, Wang CS, Wu YG, Chen H. Changes of vessel in steroid-induced osteonecrosis of femoral head: experimental study of rabbits. Zhonghua Yi Xue Za Zhi. 2006;86(29):2024–7.

    CAS  PubMed  Google Scholar 

  29. Hu ZM, Wang HB, Zhou MQ, Yao XS, Ma L, Wang XN. Pathological changes of the blood vessels in rabbit femoral head with glucocorticoid-induced necrosis. Nan Fang Yi Ke Da Xue Xue Bao. 2006;26(6):785–7.

    CAS  PubMed  Google Scholar 

  30. Sheng HH, Zhang GG, Cheung WH, Chan CW, Wang YX, Lee KM, et al. Elevated adipogenesis of marrow mesenchymal stem cells during early steroid-associated osteonecrosis development. J Orthop Surg Res. 2007;2:15. doi:10.1186/1749-799X-2-15.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kuroda Y, Akiyama H, Kawanabe K, Tabata Y, Nakamura T. Treatment of experimental osteonecrosis of the hip in adult rabbits with a single local injection of recombinant human FGF-2 microspheres. J Bone Miner Metab. 2010;28(6):608–16. doi:10.1007/s00774-010-0172-5.

    Article  CAS  PubMed  Google Scholar 

  32. Cui Q, Wang GJ, Su CC, Balian G. The Otto Aufranc Award. Lovastatin prevents steroid induced adipogenesis and osteonecrosis. Clin Orthop Relat Res. 1997;344:8–19.

    Article  PubMed  Google Scholar 

  33. Xiao CS, Lin N, Lin SF, Wan R, Chen WH. Experimental study on avascular necrosis of femoral head in chickens induced by different glucocorticoides. Zhongguo Gu Shang. 2010;23(3):184–7.

    CAS  PubMed  Google Scholar 

  34. Wideman Jr RF, Pevzner I. Dexamethasone triggers lameness associated with necrosis of the proximal tibial head and proximal femoral head in broilers. Poult Sci. 2012;91(10):2464–74. doi:10.3382/ps.2012-02386.

    Article  CAS  PubMed  Google Scholar 

  35. Drescher W, Weigert KP, Bunger MH, Ingerslev J, Bunger C, Hansen ES. Femoral head blood flow reduction and hypercoagulability under 24 h megadose steroid treatment in pigs. J Orthop Res. 2004;22(3):501–8. doi:10.1016/j.orthres.2003.10.002.

    Article  CAS  PubMed  Google Scholar 

  36. Ikeda S, Morishita Y, Tsutsumi H, Ito M, Shiraishi A, Arita S, et al. Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs. Bone. 2003;33(5):779–87.

    Article  CAS  PubMed  Google Scholar 

  37. Lill CA, Fluegel AK, Schneider E. Sheep model for fracture treatment in osteoporotic bone: a pilot study about different induction regimens. J Orthop Trauma. 2000;14(8):559–65; discussion 65–6.

    Article  CAS  PubMed  Google Scholar 

  38. Lill CA, Fluegel AK, Schneider E. Effect of ovariectomy, malnutrition and glucocorticoid application on bone properties in sheep: a pilot study. Osteoporos Int. 2002;13(6):480–6. doi:10.1007/s001980200058.

    Article  CAS  PubMed  Google Scholar 

  39. Lill CA, Gerlach UV, Eckhardt C, Goldhahn J, Schneider E. Bone changes due to glucocorticoid application in an ovariectomized animal model for fracture treatment in osteoporosis. Osteoporos Int. 2002;13(5):407–14.

    Article  CAS  PubMed  Google Scholar 

  40. Augat P, Schorlemmer S, Gohl C, Iwabu S, Ignatius A, Claes L. Glucocorticoid-treated sheep as a model for osteopenic trabecular bone in biomaterials research. J Biomed Mater Res A. 2003;66(3):457–62. doi:10.1002/jbm.a.10601.

    Article  PubMed  CAS  Google Scholar 

  41. Glade MJ, Krook L. Glucocorticoid-induced inhibition of osteolysis and the development of osteopetrosis, osteonecrosis and osteoporosis. Cornell Vet. 1982;72(1):76–91.

    CAS  PubMed  Google Scholar 

  42. Nasseri D, Hungerford DS, White KK, Jones LC, editors. Equine model of ischemic necrosis of bone. New Orleans: Orthopaedic Research Society; 1982.

    Google Scholar 

  43. Goetz JE, Chung Y-Y, Zimmerman DL, Pederson DR, Conzemius MG, Brown TD. Steroid-induced versus cryoinsult-induced femoral head osteonecrosis: statistical measurement of histologic abnormality focalization. J Musculoskelet Res. 2005;9:161–72.

    Article  Google Scholar 

  44. Jones LC, Allen MR. Animal models of osteonecrosis. Clin Rev Bone Miner Metab. 2011;9(1):63–80.

    Article  CAS  Google Scholar 

  45. Steinberg D, Steinberg M. Osteonecrosis: an overview. Tech Orthop. 2008;23:2–10.

    Article  Google Scholar 

  46. Bauer T, McCarthy J, Stulberg B. Osteonecrosis of the femoral head: histologic diagnosis and findings after core biopsy. In: Urbaniak J, Jones JP, editors. Osteonecrosis: etiology, diagnosis, and treatment. Rosemont: American Academy of Orthopaedic Surgeons; 1997. p. 73–9.

    Google Scholar 

  47. Horvai A, Link T. Bone and soft tissue pathology. Philadelphia: Saunders; 2012.

    Google Scholar 

  48. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274–82. doi:10.1172/JCI2799.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zalavras C, Shah S, Birnbaum MJ, Frenkel B. Role of apoptosis in glucocorticoid-induced osteoporosis and osteonecrosis. Crit Rev Eukaryot Gene Expr. 2003;13(2–4):221–35.

    CAS  PubMed  Google Scholar 

  50. Fondi C, Franchi A. Definition of bone necrosis by the pathologist. Clin Cases Miner Bone Metab. 2007;4(1):21–6.

    PubMed Central  PubMed  Google Scholar 

  51. Launder WJ, Hungerford DS, Jones LH. Hemodynamics of the femoral head. J Bone Joint Surg Am. 1981;63(3):442–8.

    CAS  PubMed  Google Scholar 

  52. Eijer H. Towards a better understanding of the aetiology of Legg-Calve-Perthes’ disease: acetabular retroversion may cause abnormal loading of dorsal femoral head-neck junction with restricted blood supply to the femoral epiphysis. Med Hypotheses. 2007;68(5):995–7. doi:10.1016/j.mehy.2006.10.011.

    Article  PubMed  Google Scholar 

  53. Hummer Jr CD. Avascular necrosis of the capital femoral epiphysis in a child receiving corticosteroids: a case report. Clin Orthop Relat Res. 1977;125:65–7.

    PubMed  Google Scholar 

  54. Boechat MI, Winters WD, Hogg RJ, Fine RN, Watkins SL. Avascular necrosis of the femoral head in children with chronic renal disease. Radiology. 2001;218(2):411–3.

    Article  CAS  PubMed  Google Scholar 

  55. Kawedia JD, Kaste SC, Pei D, Panetta JC, Cai X, Cheng C et al. Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2011;117(8):2340–7; quiz 556. doi:10.1182/blood-2010-10-311969.

    Google Scholar 

  56. Karimova EJ, Kaste SC. MR imaging of osteonecrosis of the knee in children with acute lymphocytic leukemia. Pediatr Radiol. 2007;37(11):1140–6. doi:10.1007/s00247-007-0579-x.

    Article  PubMed  Google Scholar 

  57. Glade M. Chronic dexamethasone treatment of horse and pony foals. Ithaca: Cornell University; 1980.

    Google Scholar 

  58. Drescher W, Li H, Jensen SD, Ingerslev J, Hansen ES, Hauge EM, et al. The effect of long-term methylprednisolone treatment on the femoral head in growing pigs. J Orthop Res. 2002;20(4):662–8. doi:10.1016/S0736-0266(01)00183-8.

    Article  CAS  PubMed  Google Scholar 

  59. Drescher W, Schneider T, Becker C, Hobolth J, Ruther W, Hansen ES, et al. Selective reduction of bone blood flow by short-term treatment with high-dose methylprednisolone. An experimental study in pigs. J Bone Joint Surg. 2001;83(2):274–7.

    Article  CAS  Google Scholar 

  60. Hankenson K, Cavaliere C, Frank R. Animal models of skeletal disease. In: Hau J, Van Hoosier GJ, editors. Handbook of laboratory animal science. 2nd ed. Boca Raton: CRC Press; 2003. p. 183–223.

    Google Scholar 

  61. Turner AS. Animal models of osteoporosis–necessity and limitations. Eur Cell Mater. 2001;1:66–81.

    CAS  PubMed  Google Scholar 

  62. Turner R, Maran A, Lotinun S, Hefferan T, Evans G, Zhang M, et al. Animal models for osteoporosis. Rev Endocr Metab Disord. 2001;2:117–27.

    Article  CAS  PubMed  Google Scholar 

  63. Ochi H, Takeda S. Animal models for bone and joint disease. The genetically-modified mice as a tool for osteoporosis research. Clin Calcium. 2011;21(2):226–32. doi:CliCa1102226232.

    CAS  PubMed  Google Scholar 

  64. Miller SC, Bowman BM, Jee WS. Available animal models of osteopenia–small and large. Bone. 1995;17(4 Suppl):117S–23.

    CAS  PubMed  Google Scholar 

  65. Thompson DD, Simmons HA, Pirie CM, Ke HZ. FDA guidelines and animal models for osteoporosis. Bone. 1995;17(4 Suppl):125S–33.

    CAS  PubMed  Google Scholar 

  66. Kimmel DB. Animal models in osteoporosis research. In: Belezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology. San Diego: Academic; 2002. p. 1635–55.

    Chapter  Google Scholar 

  67. Oheim R, Amling M, Ignatius A, Pogoda P. Large animal model for osteoporosis in humans: the ewe. Eur Cell Mater. 2012;24:372–85.

    CAS  PubMed  Google Scholar 

  68. Turner AS. The sheep as a model for osteoporosis in humans. Vet J. 2002;163(3):232–9.

    Article  CAS  PubMed  Google Scholar 

  69. Benghuzzi H, Wilson G, White J, Cason Z, Mohamed A, Cameron JA, et al. The effects of sustained delivery of estrogen and demineralized bone matrix proteins on bone in ovariectomized female rats – biomed 2013. Biomed Sci Instrum. 2013;49:85–93.

    CAS  PubMed  Google Scholar 

  70. Edwards MW, Bain SD, Bailey MC, Lantry MM, Howard GA. 17 beta estradiol stimulation of endosteal bone formation in the ovariectomized mouse: an animal model for the evaluation of bone-targeted estrogens. Bone. 1992;13(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  71. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992;257(5066):88–91.

    Article  CAS  PubMed  Google Scholar 

  72. Bagi CM, Mecham M, Weiss J, Miller SC. Comparative morphometric changes in rat cortical bone following ovariectomy and/or immobilization. Bone. 1993;14(6):877–83.

    Article  CAS  PubMed  Google Scholar 

  73. Jerome CP, Power RA, Obasanjo IO, Register TC, Guidry M, Carlson CS, et al. The androgenic anabolic steroid nandrolone decanoate prevents osteopenia and inhibits bone turnover in ovariectomized cynomolgus monkeys. Bone. 1997;20(4):355–64.

    Article  CAS  PubMed  Google Scholar 

  74. Binkley N, Kimmel D, Bruner J, Haffa A, Davidowitz B, Meng C, et al. Zoledronate prevents the development of absolute osteopenia following ovariectomy in adult rhesus monkeys. J Bone Miner Res. 1998;13(11):1775–82. doi:10.1359/jbmr.1998.13.11.1775.

    Article  CAS  PubMed  Google Scholar 

  75. Schot LP, Schuurs AH. Pathophysiology of bone loss in castrated animals. J Steroid Biochem Mol Biol. 1990;37(3):461–5.

    Article  CAS  PubMed  Google Scholar 

  76. Thorndike EA, Turner AS. In search of an animal model for postmenopausal diseases. Front Biosci. 1998;3:c17–26.

    CAS  PubMed  Google Scholar 

  77. Laroche M, Costa L, Bernard J, Puget J, Constantin A, Cantagrel A, et al. Dual-energy X-ray absorptiometry in osteonecrosis of the femoral head. Rev Rhum Engl Ed. 1998;65(6):393–6.

    CAS  PubMed  Google Scholar 

  78. Baofeng L, Zhi Y, Bei C, Guolin M, Qingshui Y, Jian L. Characterization of a rabbit osteoporosis model induced by ovariectomy and glucocorticoid. Acta Orthop. 2010;81(3):396–401. doi:10.3109/17453674.2010.483986.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Eberhardt AW, Yeager-Jones A, Blair HC. Regional trabecular bone matrix degeneration and osteocyte death in femora of glucocorticoid- treated rabbits. Endocrinology. 2001;142(3):1333–40.

    CAS  PubMed  Google Scholar 

  80. Jerome CP, Kimmel DB, McAlister JA, Weaver DS. Effects of ovariectomy on iliac trabecular bone in baboons (Papio anubis). Calcif Tissue Int. 1986;39(3):206–8.

    Article  CAS  PubMed  Google Scholar 

  81. Longcope C, Hoberg L, Steuterman S, Baran D. The effect of ovariectomy on spine bone mineral density in rhesus monkeys. Bone. 1989;10(5):341–4.

    Article  CAS  PubMed  Google Scholar 

  82. Bagi CM, Miller SC. Comparison of osteopenic changes in cancellous bone induced by ovariectomy and/or immobilization in adult rats. Anat Rec. 1994;239(3):243–54. doi:10.1002/ar.1092390303.

    Article  CAS  PubMed  Google Scholar 

  83. Iwaniec UT, Magee KA, Mitova-Caneva NG, Wronski TJ. Bone anabolic effects of subcutaneous treatment with basic fibroblast growth factor alone and in combination with estrogen in osteopenic ovariectomized rats. Bone. 2003;33(3):380–6.

    Article  CAS  PubMed  Google Scholar 

  84. Iwaniec UT, Turner RT. Failure to generate bone marrow adipocytes does not protect mice from ovariectomy-induced osteopenia. Bone. 2013;53(1):145–53. doi:10.1016/j.bone.2012.11.034.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Weinstein RS, Chen JR, Powers CC, Stewart SA, Landes RD, Bellido T, et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest. 2002;109(8):1041–8. doi:10.1172/JCI14538.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Hietala EL. The effect of ovariectomy on periosteal bone formation and bone resorption in adult rats. Bone Miner. 1993;20(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  87. Sarnes E, Crofford L, Watson M, Dennis G, Kan H, Bass D. Incidence and US costs of corticosteroid-associated adverse events: a systematic literature review. Clin Ther. 2011;33(10):1413–32. doi:10.1016/j.clinthera.2011.09.009.

    Article  PubMed  Google Scholar 

  88. Gladman DD, Urowitz MB, Chaudhry-Ahluwalia V, Hallet DC, Cook RJ. Predictive factors for symptomatic osteonecrosis in patients with systemic lupus erythematosus. J Rheumatol. 2001;28(4):761–5.

    CAS  PubMed  Google Scholar 

  89. Mont MA, Glueck CJ, Pacheco IH, Wang P, Hungerford DS, Petri M. Risk factors for osteonecrosis in systemic lupus erythematosus. J Rheumatol. 1997;24(4):654–62.

    CAS  PubMed  Google Scholar 

  90. Zizic TM, Marcoux C, Hungerford DS, Dansereau JV, Stevens MB. Corticosteroid therapy associated with ischemic necrosis of bone in systemic lupus erythematosus. Am J Med. 1985;79(5):596–604.

    Article  CAS  PubMed  Google Scholar 

  91. Boss JH, Misselevich I. Osteonecrosis of the femoral head of laboratory animals: the lessons learned from a comparative study of osteonecrosis in man and experimental animals. Vet Pathol. 2003;40(4):345–54. doi:10.1354/vp.40-4-345.

    Article  CAS  PubMed  Google Scholar 

  92. Korompilias AV, Gilkeson GS, Seaber AV, Urbaniak JR. Hemorrhage and thrombus formation in early experimental osteonecrosis. Clin Orthop Relat Res. 2001;386:11–8.

    Article  PubMed  Google Scholar 

  93. Wang GJ, Hubbard SL, Reger SI, Miller ED, Stamp WG. Femoral head blood flow in long-term steroid therapy: study of rabbit model. South Med J. 1983;76(12):1530–2.

    Article  CAS  PubMed  Google Scholar 

  94. Wang GJ, Dughman SS, Reger SI, Stamp WG. The effect of core decompression on femoral head blood flow in steroid-induced avascular necrosis of the femoral head. J Bone Joint Surg Am. 1985;67(1):121–4.

    CAS  PubMed  Google Scholar 

  95. Wang GJ, Lennox DW, Reger SI, Stamp WG, Hubbard SL. Cortisone-induced intrafemoral head pressure change and its response to a drilling decompression method. Clin Orthop Relat Res. 1981;159:274–8.

    PubMed  Google Scholar 

  96. Drescher W, Li H, Qvesel D, Jensen SD, Flo C, Hansen ES, et al. Vertebral blood flow and bone mineral density during long-term corticosteroid treatment: an experimental study in immature pigs. Spine. 2000;25(23):3021–5.

    Article  CAS  PubMed  Google Scholar 

  97. Bouteiller G, Arlet J, Blasco A, Vigoni F, Elefterion A. Is osteonecrosis of the femoral head avascular? Bone blood flow measurements after long-term treatment with corticosteroids. Metab Bone Dis Relat Res. 1983;4(5):313–8.

    Article  CAS  PubMed  Google Scholar 

  98. Ficat RA, Arlet J. Ischemia and necroses of bone. Baltimore: Williams and Wilkins; 1980.

    Google Scholar 

  99. Jones LC, Hungerford DS. Models of ischemic necrosis of bone. In: Arlet J, Ficat R, Hungerford DS, editors. Bone circulation. Baltimore: William and Wilkins; 1984. p. 30–4.

    Google Scholar 

  100. Jones Jr JP. Intravascular coagulation and osteonecrosis. Clin Orthop Relat Res. 1992;277:41–53.

    PubMed  Google Scholar 

  101. Zalavras C, Dailiana Z, Elisaf M, Bairaktari E, Vlachogiannopoulos P, Katsaraki A, et al. Potential aetiological factors concerning the development of osteonecrosis of the femoral head. Eur J Clin Invest. 2000;30(3):215–21.

    Article  CAS  PubMed  Google Scholar 

  102. Abbas AK, Lichtman AH, Pober JS. Cellular and molecular immunology. Philadelphia: W.B. Saunders Company; 1991.

    Google Scholar 

  103. Okazaki S, Nishitani Y, Nagoya S, Kaya M, Yamashita T, Matsumoto H. Femoral head osteonecrosis can be caused by disruption of the systemic immune response via the toll-like receptor 4 signalling pathway. Rheumatology. 2009;48(3):227–32. doi:10.1093/rheumatology/ken462.

    Article  CAS  PubMed  Google Scholar 

  104. Yamamoto T, Hirano K, Tsutsui H, Sugioka Y, Sueishi K. Corticosteroid enhances the experimental induction of osteonecrosis in rabbits with Shwartzman reaction. Clin Orthop Relat Res. 1995;316:235–43.

    PubMed  Google Scholar 

  105. Guan XY, Han D. Role of hypercoagulability in steroid-induced femoral head necrosis in rabbits. J Orthop Sci. 2010;15(3):365–70. doi:10.1007/s00776-010-1452-6.

    Article  CAS  PubMed  Google Scholar 

  106. Lee YK, Lee YJ, Ha YC, Kim KC, Koo KH. Septic arthritis of the hip in patients with femoral head osteonecrosis. Arch Orthop Trauma Surg. 2011;131(11):1585–90. doi:10.1007/s00402-011-1334-1.

    Article  PubMed  Google Scholar 

  107. Nakata K, Masuhara K, Nakamura N, Shibuya T, Sugano N, Matsui M, et al. Inducible osteonecrosis in a rabbit serum sickness model: deposition of immune complexes in bone marrow. Bone. 1996;18(6):609–15.

    Article  CAS  PubMed  Google Scholar 

  108. Matsui M, Saito S, Ohzono K, Sugano N, Saito M, Takaoka K, et al. Experimental steroid-induced osteonecrosis in adult rabbits with hypersensitivity vasculitis. Clin Orthop Relat Res. 1992;277:61–72.

    PubMed  Google Scholar 

  109. Masuhara M. Animal models of osteonecrosis. In: An Y, Friedman R, editors. Animal models in orthopaedic research. Baco Raton: CRC Press; 1999.

    Google Scholar 

  110. Jones JPJ. Risk factors potentially activating intravascular coagulation and causing nontraumatic osteonecrosis. In: Urbaniak J, Jones JPJ, editors. Osteonecrosis: etiology, diagnosis, and treatment. Rosemont: American Academy of Orthopaedic Surgeons; 1997. p. 89–96.

    Google Scholar 

  111. Mohamed A, Wilson G, Johnson W, Tucci M, Cameron JA, Cason Z, et al. The effects of sustained delivery of corticosterone on the adrenal gland of male and female rats – biomed 2013. Biomed Sci Instrum. 2013;49:94–100.

    CAS  PubMed  Google Scholar 

  112. Li M, Shen Y, Halloran BP, Baumann BD, Miller K, Wronski TJ. Skeletal response to corticosteroid deficiency and excess in growing male rats. Bone. 1996;19(2):81–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne C. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, L.C., Tucci, M.A., Haile, A., Wang, D. (2014). Animal Models of Corticosteroid-Associated Bone Diseases. In: Koo, KH., Mont, M., Jones, L. (eds) Osteonecrosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35767-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35767-1_64

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35766-4

  • Online ISBN: 978-3-642-35767-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics