Skip to main content

4 Arbuscular Mycorrhiza: A Key Component of Sustainable Plant–Soil Ecosystems

  • Chapter
  • First Online:
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

Abstract

In sustainable agriculture arbuscular mycorrhizas play a key role in helping the plant not only to survive but to be productive under adversity. Mycorrhizal formation is an adaptive strategy which provides the plant with an increased ability for nutrient capture and cycling in soils with low nutrient availability and an increased tolerance to environmental stresses. The importance of maintaining mycorrhizal diversity and a functioning soil mycelium is vital to sustaining plant growth. Stimulation of natural mycorrhizal populations or augmentation through the use of mycorrhizal inoculants are important tools in sustainable ecosystem management. This review focuses on how AMF help plants withstand: (1) soil-borne pathogen attack, (2) aggressive agricultural weeds, (3) drought/salinity stress, (4) the presence of toxic pollutants and (5) desertification. The evidence shows that arbuscular mycorrhizas should be considered as an essential natural resource for ensuring sustainable growth and health of plants and fully deserve their title as ‘biological fertilizers’ and ‘bioprotectors’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1977) The distribution and abundance of vesicular-arbuscular endophytes in some Western Australian soils. Austral J Bot 25:515–522

    Article  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Alguacil MM, Caravaca F, Díaz G, Marín P, Roldán A (2004) Establishment of retama sphaerocarpaL. seedlings on a degraded semiarid soil as influenced by mycorrhizal inoculation and sewage-sludge amendment. J Plant Nutr Soil Sci 167:637–644

    Article  Google Scholar 

  • Alguacil MM, Caravaca E, Roldán A (2005) Changes in rhizosphere microbial activity mediated by native or allochthonous AM fungi in the reafforestation of a Mediterranean degraded environment. Biol Fert Soils 41:59–68

    Article  Google Scholar 

  • Alguacil MM, Lumini E, Roldán A, Salinas-García JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    Article  PubMed  CAS  Google Scholar 

  • Alguacil MM, Roldán A, Torres MP (2009a) Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environ Microbiol 11:2649–2659

    Article  PubMed  CAS  Google Scholar 

  • Alguacil MM, Roldán A, Torres MP (2009b) Complexity of semiarid gypsophilous shrub communities mediates the AMF biodiversity at the plant species level. Microbiol Ecol 57:718–727

    Article  CAS  Google Scholar 

  • Alguacil MM, Torres MP, Torrecillas E, Díaz G, Roldán A (2011) Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol Biochem 43:167–173

    Article  CAS  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297

    Article  Google Scholar 

  • Altieri MA (1994) Sustainable agriculture. Encylop Agric Sci 4:239–247

    Google Scholar 

  • Altieri MA (2004) Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42

    Article  Google Scholar 

  • Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2010) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514

    Article  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruíz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgarisunder drought, cold or salinity stresses? New Phytol 173:808–816

    Article  PubMed  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseaeinoculation or plant species. Environ Microbiol 7:1952–1966

    Article  PubMed  CAS  Google Scholar 

  • Asai T (1944) Die bedeutung der mikorrhiza für das pflanzenleben. Jpn J Bot 12:359–408

    Google Scholar 

  • Atkinson D (2009) Soil microbial resources and agricultural policies. In: Azcón-Aguilar C, Barea J, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas functional processes and ecological impact. Springer, Berlin, pp 33–45

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Vienna, pp 237–271

    Chapter  Google Scholar 

  • Azcón R, Medina A, Roldán A, Biró B, Vivas A (2009) Significance of treated agrowaste residue and autochthonous inoculates (arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate heavy metals contaminated soils. Chemosphere 75:327–334

    Article  PubMed  CAS  Google Scholar 

  • Azcón-Aguilar C, Jaízme-Vega MC, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkhäuser, Basel, pp 187–197

    Chapter  Google Scholar 

  • Baar J (2008) From production to application of arbuscular mycorrhizal fungi in agricultural systems: requirements and needs. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Berlin, pp 361–373

    Google Scholar 

  • Bago B, Cano C (2005) Breaking myths on arbuscular mycorrhizas in vitro biology. In: Declerck S, Strullu FG, Fortin JA (eds) In vitro culture of mycorrhizas, vol 4, Soil biology. Springer, Berlin, pp 111–138

    Chapter  Google Scholar 

  • Barea JM, Azcón-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. In: Brady N (ed) Advances in agronomy, vol 36. Academic, New York, pp 1–54

    Google Scholar 

  • Barea JM, Jeffries P (1995) Arbuscular mycorrhizas in sustainable plant–soil systems. In: Hock B, Varma A (eds) Mycorrhizae: function, molecular biology and biotechnology. Springer, Berlin, pp 521–560

    Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1997) Interactions between mycorrhizal fungi and rhizosphere micro-organisms within the context of sustainable soil–plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Cambridge, pp 65–77

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002a) Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw Int J Gen Mol Microbiol 81:343–351

    Article  CAS  Google Scholar 

  • Barea JM, Palenzuela J, Azcón R, Ferrol N, Azcón-Aguilar C (2002b) Micorrizas y restauración de la cubierta vegetal en ambientes mediterráneos. In: Barea-Azcón JM, Ballesteros E, Luzón JM, Moleón M, Tierno JM, Travesi R (eds) Biodiversidad y conservación de fauna y flora en ambientes mediterráneos. Granada, Sociedad Granatense de Historia Natural, pp 83–105

    Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002c) The application of isotopic (P32and N15) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobiumto improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    Article  CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005a) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 195–212

    Chapter  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005b) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Werner D, Azcón-Aguilar C, Azcón R (2005c) Interactions of arbuscular mycorrhiza and nitrogen fixing symbiosis in sustainable agriculture. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Kluwer, Rotterdam, pp 199–222

    Chapter  Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Sánchez I, Navarro C, Quiñones PB, Azcón R, Ferrol N, Azcón-Aguilar C (2007) Significado, diversidad e impacto de los hongos de las micorrizas arbusculares en ambientes mediterráneos. In: Barea-Azcón JM, Moleón M, Travesí R, Ballesteros E, Luzón JM, Tierno JM (eds) Biodiversidad y conservación de fauna y flora en ambientes mediterráneos. Sociedad Granatense de Historia Natural, Granada, pp 155–185

    Google Scholar 

  • Barea JM, Ferrol N, Azcón-Aguilar C, Azcón R (2008) Mycorrhizal symbioses. In: White PJ, Hammond JP (eds) The ecophysiology of plant–phosphorus interactions, vol 7, Plant ecophysiology series. Springer, Dordrecht, pp 143–163

    Chapter  Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301

    Article  Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseaeand Glomus intraradices. Soil Biol Biochem 41:1491–1496

    Article  CAS  Google Scholar 

  • Benabdellah K, Azcon-Aguilar C, Valderas A, Speziga D, Fitzpatrick TB, Ferrol N (2009) GintPDX1 Encodes a protein involved in vitamin B6 biosynthesis that is up-regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 184:682–693

    Article  PubMed  CAS  Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture. ASA, Madison

    Google Scholar 

  • Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 117–131

    Chapter  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Franson RL, Mihara KL (1989) The Glycine–Glomus–Bradyrhizobiumsymbiosis IX. Nutritional, morphological and physiological responses of nodulated soybean to geographic isolates of the mycorrhizal fungus Glomus mosseae. Physiol Plant 76:226–232

    Article  Google Scholar 

  • Bever JD, Pringle A, Schultz PA (2002) Dynamics within the plantarbuscular mycorrhizal fungal mutualism: testing the nature of community feedback. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 267–292

    Google Scholar 

  • Bhatia NP, Adholeya A, Sharma A (1998) Biomass production and changes in soil productivity during longterm cultivation of Prosopis juliflora(Swartz) DC inoculated with VA mycorrhiza and Rhizobiumspp. in a semi-arid wasteland. Biol Fert Soils 26:208–214

    Article  CAS  Google Scholar 

  • Biró B, Köves-Péchy K, Vörös I, Kádár I (1998) Toxicity of some field applied heavy metal salts to the rhizobial and fungal microsymbionts of alfalfa and red clover. Agrokem Talajtan 47:265–277

    Google Scholar 

  • Boddington CL, Dodd JC (1998) A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes. Mycorrhiza 8:149–157

    Article  CAS  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11

    Article  CAS  Google Scholar 

  • Bouwmeester HJ, Roux C, López-Ráez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  PubMed  CAS  Google Scholar 

  • Brito I, Goss MJ, de Carvalho M, van Tuinen D, Antunes PM (2008) Agronomic management of indigenous mycorrhizas. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Berlin, pp 375–402

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Bryla DR, Eissenstat DM (2005) Respiratory costs of mycorrhizal associations. In: Lambers H, Ribas Carbo M (eds) Plant respiration. Springer, Dordrecht, pp 207–224

    Chapter  Google Scholar 

  • Buscot F (2005) What are soils? In: Buscot F, Varma S (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 3–18

    Chapter  Google Scholar 

  • Caravaca F, Barea JM, Palenzuela J, Figueroa D, Alguacil MM, Roldán A (2003a) Establishment of shrubs species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Appl Soil Ecol 22:103–111

    Article  Google Scholar 

  • Caravaca F, Alguacil MM, Figueroa D, Barea JM, Roldán A (2003b) Re-establishment of Retama sphaerocarpaas a target species for reclamation of soil physical and biological properties in a semi-arid Mediterranean area. For Ecol Manage 182:49–58

    Article  Google Scholar 

  • Caravaca F, Figueroa D, Alguacil MM, Roldán A (2003c) Application of composted urban residue enhanced the performance of afforested shrub species in a degraded semiarid land. Bioresour Technol 90:65–70

    Article  PubMed  CAS  Google Scholar 

  • Caravaca F, Alguacil MM, Azcón R, Díaz G, Roldán A (2004a) Comparing the effectiveness of mycorrhizal inoculation and amendment with sugar beet, rock phosphate and Aspergillus nigerto enhance field performance of the leguminous shrub Dorycnium pentaphyllumL. Appl Soil Ecol 25:169–180

    Article  Google Scholar 

  • Caravaca F, Alguacil MM, Vassileva M, Díaz G, Roldán A (2004b) AM fungi inoculation and addition of microbially-treated dry olive cake-enhanced afforestation of a desertified Mediterranean site. Land Degrad Dev 15:153–161

    Article  Google Scholar 

  • Caravaca F, Figueroa D, Barea JM, Azcon-Aguilar C, Roldan A (2004c) Effect of mycorrhizal inoculation on nutrient acquisition, gas exchange, and nitrate reductase activity of two Mediterranean-autochthonous shrub species under drought stress. J Plant Nutr 27:57–74

    Article  CAS  Google Scholar 

  • Caravaca F, Alguacil MM, Barea JM, Roldán A (2005a) Survival of inocula and native AM fungi species associated with shrubs in a degraded Mediterranean ecosystem. Soil Biol Biochem 37:227–233

    Article  CAS  Google Scholar 

  • Caravaca F, Alguacil MM, Díaz G, Marín P, Roldán A (2005b) Nutrient acquisition and nitrate reductase activity of mycorrhizal Retama sphaerocarpaL. seedlings afforested in an amended semiarid soil under two water regimes. Soil Use Manage 21:10–16

    Article  Google Scholar 

  • Caravaca F, Alguacil MM, Azcón R, Roldán A (2006) Formation of stable aggregates in rhizosphere soil of Juniperus oxycedrus: effects of AM fungi and organic amendments. Appl Soil Ecol 33:30–38

    Article  Google Scholar 

  • Cavagnaro TR, Martin AW (2011) Arbuscular mycorrhizas in southeastern Australia processing tomato farm soils. Plant Soil 340:327–336

    Article  CAS  Google Scholar 

  • Chaudhary VB, Bowker MA, O’Dell TE, Grace JB, Redman AE, Rillig MC, Johnson NC (2009) Untangling the biological contributions to soil stability in semiarid shrublands. Ecol Appl 19:110–122

    Article  PubMed  Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular–arbuscular mycorrhizas. II uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81:43–52

    Article  CAS  Google Scholar 

  • Croll D, Wille L, Gamper HA, Mathimaran N, Lammers PJ, Corradi N, Sanders IR (2008) Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 178:672–687

    Article  PubMed  CAS  Google Scholar 

  • Cuenca G, De Andrade Z, Escalante G (1998a) Diversity of glomalean spores from natural communities and revegetated communities growing on nutrient-poor tropical soils. Soil Biol Biochem 30:711–719

    Article  CAS  Google Scholar 

  • Cuenca G, De Andrade Z, Escalante G (1998b) Arbuscular mycorrhizas in the rehabilitation of fragile degraded tropical lands. Biol Fertil Soils 26:107–111

    Article  Google Scholar 

  • Cuenca G, Cáceres A, González MG (2008) AM inoculation in tropical agriculture: field results. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Berlin, pp 403–417

    Google Scholar 

  • Curaqueo G, Barea JM, Acevedo E, Rubio R, Cornejo P, Borie F (2011) Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central Chile. Soil Till Res 113:11–18

    Article  Google Scholar 

  • del Val C, Barea JM, Azcón-Aguilar C (1999) Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge contaminated soils. Appl Soil Ecol 11:261–269

    Article  Google Scholar 

  • Dessaux Y, Hinsinger P, Lemanceau P (2010) Rhizosphere: achievements and challenges. Springer, Berlin

    Google Scholar 

  • Díaz G, Azcón-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartiumand Anthyllis cytisoides. Plant Soil 180:241–249

    Article  Google Scholar 

  • Dodd JC, Jeffries P (1986) Early development of vesicular–arbuscular mycorrhizas in autumn-sown cereals. Soil Biol Biochem 18:149–154

    Article  Google Scholar 

  • Dodd JC, Burton CC, Burns RG, Jeffries P (1987) Phosphatase activity associated with the roots and rhizosphere of plants infected with vesicular–arbuscular mycorrhizal fungi. New Phytol 107:163–172

    Article  CAS  Google Scholar 

  • Dong Y, Zhu YG, Smith FA, Wang YS, Chen BD (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repensLinn.) and ryegrass (Lolium perenneL.) plants in an arsenic-contaminated soil. Environ Pollut 155:174–181

    Article  PubMed  CAS  Google Scholar 

  • Duan T, Facelli E, Smith SE, Smith FA, Nan Z (2011) Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biol Biochem 43:571–578

    Article  CAS  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010a) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010b) Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: is there a role for stochastic processes? J Ecol 98:419–428

    Article  Google Scholar 

  • Echeverria M, Scambato AA, Sannazzaro AI, Maiale S, Ruíz OA, Menéndez AB (2008) Phenotypic plasticity with respect to salt stress response by Lotus glaber: the role of its AM fungal and rhizobial symbionts. Mycorrhiza 18:317–329

    Article  PubMed  Google Scholar 

  • Elmer WH (2002) Influence of formononetin and NaCl on mycorrhizal colonization and fusarium crown and root rot of asparagus. Plant Dis 86:1318–1324

    Article  CAS  Google Scholar 

  • Estaún V, Camprubí A, Joner EJ (2002) Selecting arbuscular mycorrhizal fungi for field application. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture, from genes to bioproducts. Birkhauser, Basel, pp 249–259

    Chapter  Google Scholar 

  • Estaún V, Vicente S, Calvet C, Camprubí A, Busquets M (2007) Integration of arbuscular mycorrhiza inoculation in hydroseeding technology. Effects on plant growth and inter-species competition. Land Degrad Dev 18:621–630

    Article  Google Scholar 

  • Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular arbuscular mycorrhizal colonization of maize. New Phytol 114:65–71

    Article  Google Scholar 

  • Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    Article  CAS  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Rev 25:68–72

    Article  Google Scholar 

  • Francis CF, Thornes JB (1990) Matorral: erosion and reclamation. In: Albaladejo J, Stocking MA, Díaz E (eds) Soil degradation and rehabilitation in Mediterranean environmental conditions. CSIC, Murcia, pp 87–115

    Google Scholar 

  • Francis R, Finlay RD, Read DJ (1986) Vesicular–arbuscular mycorrhiza in natural vegetation systems. IV transfer of nutrients in inter- and intra-specific combinations of host plants. New Phytol 102:103–111

    Article  Google Scholar 

  • Franzini VI, Azcón R, Latanze-Mendes F, Aroca R (2010) Interaction between Glomusspecies and Rhizobiumstrains affect the nutritional physiology of drought stressed legume hosts. J Plant Physiol 167:614–619

    Article  PubMed  CAS  Google Scholar 

  • Galleguillos C, Aguirre C, Barea JM, Azcón R (2000) Growth promoting effect of two Sinorhizobium melilotistrains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63

    Article  PubMed  CAS  Google Scholar 

  • Gamper HA, Young JPW, Jones DL, Hodge A (2008) Real-time PCR and microscopy: are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance? Fung Gene Biol 45:581–596

    Article  CAS  Google Scholar 

  • Gamper HA, van der Heijden MGA, Kowalchuk GA (2010) Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology. New Phytol 185:67–82

    Article  PubMed  CAS  Google Scholar 

  • GAO/RCED (1992) GAO/RCED 92-233 Sustainable agriculture. United States Congress Food, Agriculture Conservation, and Trade Act of 1990, P. L. no 101-624, Washington

    Google Scholar 

  • Garbaye J (1994) Helper bacteria, a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gavito ME, Miller MH (1998) Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198:185–192

    Article  CAS  Google Scholar 

  • Gavito ME, Schweiger P, Jakobsen I (2003) P uptake by arbuscular mycorrhizal hyphae: effect of soil temperature and atmospheric CO2enrichment. Global Change Biol 9:106–116

    Article  Google Scholar 

  • Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271

    Article  Google Scholar 

  • Gianinazzi G, Gollotte A, Binet M-N, Van Tuinen D, ReD WD (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S, Scannerini S, Smith DC, Bonfante-Fasolo P (1988) Morphological integration and functional compatibility between symbionts in vesicular–arbuscular endomycorrhizal associations. Cell to cell signals in plant, animal and microbial symbiosis: NATO ASI, Ser H. Cell Biol 1988:73–84

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Goicoechea N, Antolín MC, Sánchez-Díaz M (2000) The role of plant size and nutrient concentrations in associations between Medicago, and Rhizobiumand/or Glomus. Biol Plant 43:221–226

    Article  Google Scholar 

  • Gómez-Roldán V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–122

    Article  PubMed  CAS  Google Scholar 

  • González-Guerrero M, Benabdellah K, Ferrol N, Azcón-Aguilar C (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas functional processes and ecological impact. Springer, Berlin, pp 107–122

    Chapter  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422

    Article  Google Scholar 

  • Hamel C, Dalpé Y, Furlan V, Parent S (1997) Indigenous populations of arbuscular mycorrhizal fungi and soil aggregate stability are major determinants of leek (Allium porrumL.) response to inoculation with Glomus intraradicesSchenck & Smith or Glomus versiforme(Karsten) Berch. Mycorrhiza 7:187–196

    Article  Google Scholar 

  • Hart M, Klironomos JN (2002) Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 225–242

    Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–1195

    Article  Google Scholar 

  • Hayman DS (1986) Mycorrhizae of nitrogen-fixing legumes. MIRCEN J 2:121–145

    Article  Google Scholar 

  • Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (phylum Glomeromycota). J Exp Bot 60:2465–2480

    Article  PubMed  CAS  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  PubMed  CAS  Google Scholar 

  • Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938

    Article  PubMed  CAS  Google Scholar 

  • Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of wooody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl Environ Microbiol 59:129–133

    PubMed  CAS  Google Scholar 

  • Herrera-Peraza RA, Hamel C, Fernández F, Ferrer RL, Furrazola E (2011) Soil-strain compatability: the key to effective use of arbuscular mycorrhizal inoculants? Mycorrhiza 21:183–193

    Article  PubMed  Google Scholar 

  • Hetrick BAD, Bloom J (1983) Vesicular–arbuscular mycorrhizal fungi associated with native tall grass prairie and cultivated winter wheat. Can J Bot 61:2140–2146

    Article  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA 107:13754–13759

    Article  PubMed  CAS  Google Scholar 

  • Honrubia M (2009) The mycorrhizae: a plant–fungus relation that has existed for more than 400 million years. An Jard Bot Madrid 66:133–144

    Article  Google Scholar 

  • Ijdo M, Cranenbrouck DS (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen I (2004) Hyphal fusion to plant species connections—giant mycelia and community nutrient flow. New Phytol 164:4–7

    Article  Google Scholar 

  • Jakobsen I, Nielsen NE (1983) Vesicular-arbuscular mycorrhiza in field grown crops I mycorrhizal infection in cereals and peas at various times and soil depths. New Phytol 93:401–413

    Article  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Jasper DA (2007) Beneficial soil microorganisms of the Jarrah forest and their recovery in bauxite. Southwest Austral Restor Ecol 15:S74–S84

    Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol 112:93–99

    Article  Google Scholar 

  • Jeffries P, Barea JM (1994) Biogeochemical cycling and arbuscular mycorrhizas in sustainability of plant–soil systems. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser, Basel, pp 101–115

    Chapter  Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza—a key component of sustainable plant–soil ecosystems. In: Hock B (ed) The mycota, vol IX, Fungal associations. Springer, Berlin, pp 95–113

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  PubMed  CAS  Google Scholar 

  • Johnson CR, Copeland PJ, Crosskston RK, Pfleger FL (1992) Mycorrhizae: a possible explanation for yield decline associated with continuous cropping of corn and soybean. Agron J 84:387–390

    Article  Google Scholar 

  • Jonasson J, Olofsson M, Monstein HJ (2002) Classification, identification and subtyping of bacteria based on pyrosequencing and signature matching of 16S rDNA fragments. APMIS 110:263–272

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 27:1153–1159

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agriculture soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Kennedy PG, Hortal S, Bergemann SE, Bruns TD (2007) Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. J Ecol 95:1338–1345

    Article  CAS  Google Scholar 

  • Kenrick P (2003) Fishing for the first plants. Nature 425:248–249

    Article  PubMed  CAS  Google Scholar 

  • Kilvin SN, Hawkes CV (2011) Differentiating between effects of invasion and diversity: impacts of aboveground plan communities on belowground fungal communities. New Phytol 189:526–535

    Article  Google Scholar 

  • Klironomos JN (2002) Another form of bias in conservation research. Science 29:749–749

    Article  Google Scholar 

  • Kloepper JW (1992) Plant growth-promoting rhizobacteria as biological control agents. In: Blaine F, Metting J Jr (eds) Soil microbial ecology. Applications in agriculture forestry and environmental management. Dekker, New York, pp 255–274

    Google Scholar 

  • Kohler J, Caravaca F, Roldan A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    Article  CAS  Google Scholar 

  • Koltai H, Meir D, Shlomo E, Resnick N, Ziv O, Wininger S, Ben-Dor B, Kapulnik Y (2008) Exploiting arbuscular mycorrhizal technology in different cropping systems under greenhouse conditions in semi-arid regions. In: Kubota C, Kacira M (eds) Acta Horticulturae proceedings of the international workshop on greenhouse environmental control and crop production in semi-arid regions. ISHS, Tucson, pp 223–228

    Google Scholar 

  • Krauss M, Berner A, Burger D, Wiemken A, Niggli U, Mäder P (2010) Reduced tillage in temperate organic framing: implications for crop management and forage production. Soil Use Manage 26:12–20

    Article  Google Scholar 

  • Krueger M, Stockinger H, Krueger C, Schüβler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  CAS  Google Scholar 

  • Ladha JK (1992) Extended versions of papers presented in the symposium role of biological nitrogen-fixation in sustainable agriculture at the 13th international-congress of soil science—Kyoto, Japan, 1990—preface. Plant Soil 141:R7–R7

    Article  Google Scholar 

  • Lal R (1989) Conservation tillage for sustainable agriculture: tropics versus temperate environments. Adv Agron 42:85–185

    Article  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    Article  PubMed  CAS  Google Scholar 

  • Lekberg Y, Hammer EC, Olsson PA (2010) Plants as resource islands and storage units—adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol Ecol 74:336–345

    Article  PubMed  CAS  Google Scholar 

  • Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 175–186

    Chapter  Google Scholar 

  • Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, Zhu YG (2007) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481

    Article  PubMed  CAS  Google Scholar 

  • Linderman RG (1992) Vesicular-arbuscular mycorrhizal and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA, Madison, pp 45–70

    Google Scholar 

  • López-Ráez JA, Bouwmeester H, Pozo MJ (2011a) Communication in the rhizosphere, a target for pest management. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 8. Springer, Dordrecht, pp 109–133

    Google Scholar 

  • López-Ráez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ (2011b) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297

    Article  PubMed  CAS  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    PubMed  CAS  Google Scholar 

  • Maiti D, Variar M, Singh RK (2011) Optimising tillage schedule for maintaining activity of the arbuscular mycorrhizal fungal population in a rainfed upland rice (Oryza sativaL.) agro-ecosystem. Mycorrhiza 21:167–171

    Article  PubMed  CAS  Google Scholar 

  • Maki T, Nomachi M, Yoshida S, Ezawa T (2008) Plant symbiotic microorganisms in acid sulfate soil: significance in the growth of pioneer plants. Plant Soil 310:55–65

    Article  CAS  Google Scholar 

  • Mallik MAB, Williams RD (2008) Plant growth promoting rhizobacteria and mycorrhizal fungi in sustainable agriculture and forestry. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer, Berlin, pp 321–345

    Chapter  Google Scholar 

  • Martínez-García LB, Pugnaire FI (2009) Interacciones entre las comunidades de hongos formadores de micorrizas arbusculares y de plantas. Algunos ejemplos en los ecosistemas semiáridos. Ecosistemas 18:44–54

    Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2006) An indigenous drought-tolerant strain of Glomus intraradicesassociated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678

    Article  PubMed  CAS  Google Scholar 

  • Mathimaran N, Falquet L, Ineichen K, Picard C, Redecker D, Boller T, Wiemken A (2008a) Microsatellites for disentangling underground networks: strain-specific identification of Glomus intraradices, an arbuscular mycorrhizal fungus. Fungal Genet Biol 45:812–817

    Article  PubMed  CAS  Google Scholar 

  • Mathimaran N, Falquet L, Ineichen K, Picard C, Redecker D, Wiemken A, Boller T (2008b) Unexpected vagaries of microsatellite loci in Glomus intraradices: length polymorphisms are rarely caused by variation in repeat number only. New Phytol 180:568–570

    Article  PubMed  CAS  Google Scholar 

  • Medina A, Vassileva M, Caravaca F, Roldán A, Azcón R (2004) Improvement of soil characteristics and growth of Dorycnium pentaphyllumby amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarrowia lipolytica. Chemosphere 56:449–450

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen BL, Rosendahl S, Jakobsen I (2008) Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol 180:890–898

    Article  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (1992) The application of VA mycorrhizae to ecosystem restoration and reclamation. In: Allen MF (ed) Mycorrhizal functioning an integrative plant fungal process. Chapman and Hall, New York, pp 438–467

    Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 3–18

    Google Scholar 

  • Morgan RPC, Rickson RJ, Wright W (1990) Regeneration of degraded soils. In: Albaladejo J, Stocking MA, Díaz E (eds) Soil degradation and rehabilitation in Mediterranean environmental conditions. CSIC, Murcia, pp 69–85

    Google Scholar 

  • Morton JB (2009) Reconciliation of conflicting phenotypic and rRNA gene phylogenies of fungi in glomeromycota based on underlying patterns and processes. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas functional processes and ecological impact. Springer, Berlin, pp 137–154

    Chapter  Google Scholar 

  • Mosse B (1986) Mycorrhiza in a sustainable agriculture. Biol Agric Hortic 3:191–209

    Article  Google Scholar 

  • O’Connor PJ, Smith SE, Smith EA (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol 154:209–218

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mader P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268

    Article  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bosch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Appl Environ Microbiol 73:913–921

    Article  PubMed  CAS  Google Scholar 

  • Öpik M, Saks Ü, Kennedy J, Daniell T (2008) Global diversity patterns of arbuscular mycorrhizal fungi-community composition and links with functionality. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Berlin, pp 89–111

    Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  CAS  Google Scholar 

  • Palenzuela J, Barea JM, Ferrol N, Azcón-Aguilar C, Oehl F (2010) Entrophospora nevadensis, a new arbuscular mycorrhizal fungus from Sierra Nevada National Park (southeastern Spain). Mycologia 102:624–632

    Article  PubMed  Google Scholar 

  • Palenzuela J, Barea JM, Ferrol N, Oehl F (2011) Ambispora granatensis, a new arbuscular mycorrhizal fungus, associated with Asparagus officinalisin Andalucia (Spain). Mycologia 103:333–340

    Article  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Pelligrino E, Bedini S, Avio L, Bonari E, Giovannetti M (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol Biochem 43:367–376

    Article  CAS  Google Scholar 

  • Peoples MB, Craswell ET (1992) Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141:13–39

    Article  Google Scholar 

  • Porcel R, Ruíz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  PubMed  CAS  Google Scholar 

  • Porcel R, Barea JM, Ruíz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcón R, Ruíz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine maxand Lactuca sativaplants in relation to drought stress tolerance. Plant Mol Biol 60:389–404

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2009) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas functional processes and ecological impact. Springer, Berlin, pp 123–135

    Chapter  Google Scholar 

  • Read D (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc R Soc Edinb 86B:89–110

    Google Scholar 

  • Read D (2002) Towards ecological relevance-progress and pitfalls in the path towards an understanding of mycorrhizal functions in nature. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 3–24

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:920–1921

    Article  Google Scholar 

  • Redon PO, Beguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago truncatulagrowth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195

    Article  PubMed  CAS  Google Scholar 

  • Remy W, Taylor TN, Haas H, Kerp H (1994) Four hundred-million-year-old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobiumspp. In the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytol 136:667–677

    Article  Google Scholar 

  • Requena N, Pérez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant–microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  PubMed  CAS  Google Scholar 

  • Reynolds HL, Vogelsang KM, Hartley AE, Bever JD, Schultz PA (2006) Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia 147:348–358

    Article  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rillig MC, Mummey DL, Ramsey PW, Klironomos JN, Gannon JE (2006) Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiol Ecol 57:389–395

    Article  PubMed  CAS  Google Scholar 

  • Rinaudo V, Barberi P, Giovannetti M, van der Heijden MGA (2010) Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333:7–20

    Article  CAS  Google Scholar 

  • Robinson-Boyer L, Grzyb I, Jeffries P (2009) Shifting the balance from qualitative to quantitative analysis of arbuscular mycorrhizal communities in field soils. Fungal Ecol 2:1–9

    Article  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  • Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporumand Glomus constrictum. Appl Environ Microbiol 71:6673–6679

    Article  PubMed  CAS  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266

    Article  PubMed  Google Scholar 

  • Ruíz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruíz-Lozano JM, Aroca R (2008) Last insights into the role of aquaporins in the alleviation of osmotic stress by arbuscular mycorrhizal symbiosis. In: Van Dijk T (ed) Microbial ecology research trends. Nova Science, New York, pp 139–154

    Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502

    Article  CAS  Google Scholar 

  • Ruíz-Lozano JM, Porcel R, Aroca R (2008) Evaluation of the possible participation of drought-induced genes in the enhanced tolerance of arbuscular mycorrhizal plants to water deficit. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, pp 185–207

    Google Scholar 

  • Sánchez-Castro I, Barea JM, Ferrol N (2008) Analyzing the community composition of arbuscular mycorrhizal fungi colonizing the roots of representative shrubland species in a Mediterranean ecosystems (Granada, Spain). Book of abstracts plant–microbial interactions, 2–6 July, Krakow, pp 38–39

    Google Scholar 

  • Sanders IR (2002) Ecology and evolution of multigenomic arbuscular mycorrhizal fungi. Am Nat 160:S128–S141

    Article  PubMed  Google Scholar 

  • Schalmuk S, Cabello M (2010) Arbuscular mycorrhizal fungal propagules from tillage and non-tillage systems: possible effects on Glomeromycota diversity. Mycologia 102:261–268

    Article  Google Scholar 

  • Schenck NC, Kinloch RA (1980) Incidence of mycorrhizal fungi on six field crops in monoculture on a newly cleared woodland site. Mycologia 72:445–456

    Article  Google Scholar 

  • Schiavo JA, Busato JG, Martins MA, Canellas LP (2009) Recovery of degraded areas revegeted with Acacia mangiumand Eucalyptus with special reference to organic matter humification. Sci Agric 66:353–360

    Article  CAS  Google Scholar 

  • Schnoor TK, Lekberg Y, Rosendahl S, Olsson PA (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21:211–220

    Article  PubMed  Google Scholar 

  • Schreiner RP, Bethlenfalvay GJ (1995) Mycorrhizal interactions in sustainable agriculture. Crit Rev Biotechnol 15:271–285

    Article  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota, phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sieverding E, Howeler RH (1985) Influence of species of VA mycorrhizal fungi on cassava yield response to phosphorus fertilization. Plant Soil 88:213–221

    Article  Google Scholar 

  • Siviero MA, Motta AM, Lima DDS, Birolli RR, Huh SY, Santinoni IA, Murate LS, de Castro CMA, Miyauchi MYH, Zangaro W, Nogueira MA, Andrade G (2008) Interaction among N-fixing bacteria and AM fungi in Amazonian legume tree (Schizolobium amazonicum) in field conditions. Appl Soil Ecol 39:144–152

    Article  Google Scholar 

  • Skujins J, Allen MF (1986) Use of mycorrhizae for land rehabilitation. Mircen J 2:161–176

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York

    Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  PubMed  CAS  Google Scholar 

  • Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH (2003) Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Global Change Biol 9:186–194

    Article  Google Scholar 

  • Stahl PD, Williams SE, Christensen M (1988) Efficacy of native vesicular-arbuscular mycorrhizal fungi after severe soil disturbance. New Phytol 110:347–354

    Article  Google Scholar 

  • Tarkalson DD, Von Jolley D, Robbins CW, Terry RE (1998) Mycorrhizal colonization and nutrition of wheat and sweet corn grown in manure-treated and untreated topsoil and subsoil. J Plant Nutr 21:1985–1999

    Article  CAS  Google Scholar 

  • Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665

    Article  CAS  Google Scholar 

  • Teng Y, Luo Y-M, Gao J, Li Z-G (2008) Combined remediation effects of arbuscular mycorrhizal fungi-legumes-Rhizobiumsymbiosis on PCBs contaminated soils. Huanjing Kexue 29:2925–2930

    PubMed  CAS  Google Scholar 

  • Tisdall JM (1991) Fungal hyphae and structural stability of soil. Aust J Soil Res 29:729–743

    Article  Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2005) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40

    Article  CAS  Google Scholar 

  • Turnau K, Jurkiewicz A, Língua G, Barea JM, Gianinazzi-Pearson V (2006) Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment biogeochemistry, biotechnology and bioremediation. CRC, Boca Raton, pp 235–252

    Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–U129

    Article  PubMed  CAS  Google Scholar 

  • van der Gast CJ, Gosling P, Tiwari B, Bending GD (2011) Spacial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ Microbiol 13:241–249

    Article  PubMed  Google Scholar 

  • van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search for underlying mechanisms and general principles. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 243–265

    Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders ER (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • Vance CP, Stone CU, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vargas R, Baldocchi DD, Querejeta JI, Curtis PS, Hasselquist NJ, Janssens IA, Allen MF, Montagnani L (2010) Ecosystem CO2fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature. New Phytol 185:226–236

    Article  PubMed  CAS  Google Scholar 

  • Vestberg A, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainio L, Devos D, Weekers F, Kevers C, Thonart P, Lemoine MC, Cordier C, Alabouvette C, Gianinazzi S (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl Soil Ecol 27:243–258

    Article  Google Scholar 

  • Vivas A, Azcón R, Biró B, Barea JM, Ruíz-Lozano JM (2003a) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratenseL. under lead toxicity. Can J Microb 49:577–588

    Article  CAS  Google Scholar 

  • Vivas A, Biró B, Campos E, Barea JM, Azcón R (2003b) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. Mosseae) and Brevibacillussp. Isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189

    Article  PubMed  CAS  Google Scholar 

  • Vivas A, Marulanda A, Gómez M, Barea JM, Azcón R (2003c) Physiological characteristics (SDH and ALP activities) of arbuscular mycorrhizal colonization as affected by Bacillus thuringiensisinoculation under two phosphorus levels. Soil Biol Biochem 35:987–996

    Article  CAS  Google Scholar 

  • Vivas A, Marulanda A, Ruíz-Lozano JM, Barea JM, Azcón R (2003d) Influence of a Bacillussp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256

    Article  PubMed  Google Scholar 

  • Vivas A, Vörös A, Biró B, Barea JM, Ruíz-Lozano JM, Azcón R (2003e) Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseaeassociated with a Cd-adapted strain of Brevibacillussp. In improving plant tolerance to Cd contamination. Appl Soil Ecol 24:177–186

    Article  Google Scholar 

  • Vivas A, Barea JM, Azcón R (2005a) Brevibacillus brevisisolated from cadmium- or zinc-contaminated soils improves in vitrospore germination and growth of Glomus mosseaeunder high Cd or Zn concentrations. Microb Ecol 49:416–424

    Article  PubMed  CAS  Google Scholar 

  • Vivas A, Barea JM, Azcón R (2005b) Interactive effect of Brevibacillus brevisand Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134:257–266

    Article  PubMed  CAS  Google Scholar 

  • Vivas A, Barea JM, Biro B, Azcon R (2006a) Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifoliumgrowth, symbiotic development and soil enzymatic activities in Zn contaminated soil. J Appl Microbiol 100:587–598

    Article  PubMed  CAS  Google Scholar 

  • Vivas A, Biro B, Nemeth T, Barea JM, Azcón R (2006b) Nickel-tolerant Brevibacillus brevisand arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704

    Article  CAS  Google Scholar 

  • Vivas A, Biró B, Ruíz-Lozano JM, Barea JM, Azcón R (2006c) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533

    Article  PubMed  CAS  Google Scholar 

  • Voets L, de la Providencia IE, Declerck S (2006) Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytol 172:185–188

    Article  PubMed  Google Scholar 

  • Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562

    Article  PubMed  Google Scholar 

  • von Alten H, Blal B, Dodd JC, Feldman F, Vosátka M (2002) Quality control of arbuscular mycorrhizal fungi inoculum in Europe. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture, from genes to bioproducts. Birkhauser, Basel, pp 281–296

    Chapter  Google Scholar 

  • Vosátka M, Albrechtová J, Patten R (2008) The international marked development for mycorrhizal technology. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Berlin, pp 419–438

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Weinbaum BS, Allen MF, Allen EB (1996) Survival of arbuscular mycorrhizal fungi following reciprocal transplanting across the Great Basin, USA. Ecol Appl 6:1365–1372

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wolfe BE, Husband BC, Klironomos JN (2005) Effects of a belowground mutualism on an aboveground mutualism. Ecol Lett 8:218–223

    Article  Google Scholar 

  • Wright SF, Green VS, Cavigelli MA (2007) Glomalin in aggregate size classes from three different farming systems. Soil Till Res 94:546–549

    Article  Google Scholar 

  • Zaidi A, Khan MS (2007) Stimulatory effects of dual inoculation with phosphate solubilising microorganisms and arbuscular mycorrhizal fungus on chickpea. Aust J Exp Agric 47:1016–1022

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinumL.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends Plant Sci 8:407–409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank our numerous colleagues over a series of EU COST actions for their collaborations and sustainable partnerships that have contributed to our current knowledge of mycorrhizal ecology. One of us (J.M.B.) is also grateful for support from the Spanish National Research Programme (R&D + i)European Union (Feder) CGL2009-08825/BOS and from the Andalucian (Spain) Government, PAIDI (R&D + i) Programme: P07-CVI-02952.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Barea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeffries, P., Barea, J.M. (2012). 4 Arbuscular Mycorrhiza: A Key Component of Sustainable Plant–Soil Ecosystems. In: Hock, B. (eds) Fungal Associations. The Mycota, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30826-0_4

Download citation

Publish with us

Policies and ethics