Skip to main content

Reconciliation of Conflicting Phenotypic and rRNA Gene Phylogenies of Fungi in Glomeromycota Based on Underlying Patterns and Processes

  • Chapter
  • First Online:
Mycorrhizas - Functional Processes and Ecological Impact

Abstract

A true species phylogeny requires congruence amongst all independent character data sets that inform on continuity of descent. A morphology-based phylogeny conflicts with rRNA phylogenies in basal nodes, but all are in greater accord at the family level and above. Incongruent patterns are attributed to population-level processes in gene evolution that create signals of homoplasy and distorted relationships widely recognized as problematic in other higher eukaryotic lineages. A species phylogeny can be misrepresented by two processes, either separately or together. Prerequisites for both are: (1) cladogenesis of a gene occurs prior to species cladogenesis, and (2) polymorphisms from gene cladogenesis are preserved in both diverging species lineages and then are sorted by selection or loss. Invoking the former process, polymorphisms arise in rRNA gene loci on different chromosomes and therefore are not homogenized by concerted evolution. Conflicts arise biologically, when extinction or sorting of these polymorphisms do not correspond with other characters indicative of speciation, or methodologically when intra-isolate clones are undersampled. With the latter process, polymorphisms arise at a single multicopy locus, after which sorting of lineages in subsequent cladogenic events can result in orthologous sequences in one lineage and paralogous sequences in another. A species phylogeny will be misleading when sequences from different fungal isolates of a species are undersampled. When either process is considered, the discord between rRNA gene and morphology-based trees can be explained. There is no definitive data to support either process, but credence is reflected in the complete lack of support for the proposed rRNA gene phylogeny from morphological, biochemical, and ecological characters correctly assessed as homologs. New gene trees can clarify species evolution at the molecular level, but they also can be in conflict. When this occurs, data from all classes of characters must be analyzed within the framework of a balanced multidisciplinary approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Clapp JP, Rodriguez A, Dodd JC (2001) Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum. spores New Phytol 149:539–554

    Article  CAS  Google Scholar 

  • Corradi N, Sanders IR (2006) Evolution of the P-type II ATPase gene family in the fungi and presence of structural genomic changes among isolates of Glomus intraradices. BMC Evol Biol 6:21

    Article  PubMed  Google Scholar 

  • Corradi N, Hijri M, Fumagalli L, Sanders IR (2004) Arbuscular mycorrhizal fungi (Glomeromycota) harbour ancient fungal tubulin genes that resemble those of the chytrids (Chytridiomycota). Fungal Genet Biol 41:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • de la Providencia IEF, de Souza D, Fernandez F, Séjalon-Delmas N, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenetic groups. New Phytol 165:261–271

    Article  PubMed  Google Scholar 

  • de Queiroz A, Donoghue MJ, Kim J (1996) Separate versus combined analysis of phylogenetic evidence. Annu Rev Ecol Syst 26:657–681

    Article  Google Scholar 

  • de Silva GA, Lumini E, Maia LC, Bonfante P, Bianciotto V (2006) Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences. Mycorrhiza 16:183–189

    Article  Google Scholar 

  • Doyle JJ (1992) Gene trees and species trees: molecular systematics as one-character taxonomy. Syst Bot 17:144–163

    Article  Google Scholar 

  • Doyle JJ (1997) Trees within trees: genes and species, molecules and morphology. Syst Biol 46:537–553

    Article  PubMed  CAS  Google Scholar 

  • Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485

    Article  PubMed  CAS  Google Scholar 

  • Gandolfi A, Sanders IR, Rossi V, Menozzi P (2003) Evidence of recombination in putative ancient asexuals. Mol Biol Evol 20:754–761

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Lemaine MC, Arnould C, Gollotte A, Morton JB (1994) Localization of β(1–3)-Glucans in spore and hyphal walls of fungi in the Glomales Mycologia 86:478–485

    Article  CAS  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    PubMed  CAS  Google Scholar 

  • Giovannetti M, Sbrana E, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae. from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis Appl Environ Microbiol 69:616–624

    Article  PubMed  CAS  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Helgason T, Watson IJ, Young PW (2003) Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol Lett 229:127–132

    Article  PubMed  CAS  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163

    Article  PubMed  CAS  Google Scholar 

  • Hosny M, Gianinazzi-Pearson V, Dulieu H (1998) Nuclear DNA content of 11 fungal species in Glomales. Genome 41:422–428

    Article  CAS  Google Scholar 

  • James TY Kauff F Schoch CL. et al. (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny Nature: 443818–822

    Article  CAS  Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    Article  PubMed  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748

    Article  PubMed  CAS  Google Scholar 

  • Lanyon SM (1988) The stochastic mode of molecular evolution: what consequences for systematic investigations. Auk 105:565–573

    Google Scholar 

  • Liao D (1999) Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet 64:24–30

    Article  PubMed  CAS  Google Scholar 

  • Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Article  PubMed  CAS  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D et al. (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • Lyons-Weiler J, Milinkovitch MC (1997) A phylogenetic approach to the problem of differential lineage sorting. Mol Biol Evol 14:968–975

    CAS  Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Article  Google Scholar 

  • Merryweather J, Fitter AH (1998) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta. I Diversity of fungal taxa. New Phytol 138:117–129

    Google Scholar 

  • Morton JB (1990a) Species and clones of arbuscular mycorrhizal fungi (Glomales, Zygomycetes): Their role in macro- and microevolutionary processes. Mycotaxon 37:493–515

    Google Scholar 

  • Morton JB (1990b) Evolutionary relationships among arbuscular mycorrhizal fungi in the Endogonaceae. Mycologia 82:192–207

    Article  Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora. and Paraglomus, based on concordant molecular and morphological characters Mycologia 93:181–195

    Article  Google Scholar 

  • Morton J, Franke M, Bentivenga S (1994) Developmental foundations for morphological diversity among endomycorrhizal fungi in Glomales (Zygomycetes). Varma A, Hock B Mycorrhiza: structure, function, molecular biology, and biotechnology. Springer Berlin 669–683

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Oehl F, Sieverding E (2005) Pacispora, a new vesicular arbuscular mycorrhizal fungal genus in the Glomeromycetes. J Appl Bot 78:72–82

    Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    PubMed  CAS  Google Scholar 

  • Patterson C (1982) Morphological characters and homology. Joysey KA, Friday AE Problems of phylogenetic reconstruction. Academic, New York 21–74

    Google Scholar 

  • Patterson C, Williams DM, Humphries CJ (1993) Congruence between molecular and morphological phylogenies. Annu Rev Ecol Syst 24:153–188

    Article  Google Scholar 

  • Pawlowska T (2005) Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiol Lett 251:185–192

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737

    Article  PubMed  CAS  Google Scholar 

  • Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): Recent developments and new gene markers. Mycologia 98:885–895

    Article  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Clapp JP, Robinson L, Dodd JC (2004) Ribosomal RNA gene sequence diversity in arbuscular mycorrhizal fungi (Glomeromycota). J Ecol 92:986–989

    Article  CAS  Google Scholar 

  • Rodriguez A, Clapp JP, Robinson L, Dodd JC (2005) Studies on the diversity of the distinct phylogenetic lineage encompassing Glomus claroideum. and Glomus etunicatum Mycorrhiza 15:33–46

    Article  PubMed  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804.

    Article  PubMed  CAS  Google Scholar 

  • Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci USA 102:5084–5089

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MJ, Donoghue MJ (1989) Patterns of variation in levels of homoplasy. Evolution 43:1781–1795

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Schüßler A, Kluge M (2001) Geosiphon pyriforme, an endosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research Hock B The Mycota IX: fungal associations. Springer, London/Berlin 151–161

    Google Scholar 

  • Schüßler A, Gehrig H, Schwartzott D, Walker C (2001a) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schüßler A, Gehrig H, Schwartzott D, Walker C (2001b) Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res 105:5–15

    Article  Google Scholar 

  • Schwartzott D, Walker C, Schüßler A (2001) Glomus. , the largest genus of the arbuscular mycorrhizal fungi (Glomales) is nonmonophyletic Mol Syst Evol 21:190–107

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edition. Academic, London UK

    Google Scholar 

  • Spain JL, Sieverding E, Oehl F (2006) Appendicispora. : a new genus in the arbuscular mycorrhiza-forming Glomeromycetes, with a discussion of the genus Archaeospora Mycotaxon 97:163–182

    Google Scholar 

  • Stukenbrock EH, Rosendahl S (2005) Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus. spp.) studied by multilocus genotyping of single spores Mol Ecol 14:743–752

    Article  PubMed  CAS  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fishe MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  PubMed  CAS  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecological aspects of mycotrophy in the angiosperms from an evolutionary standpoint Safir GR Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, FL 5–25

    Google Scholar 

  • Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hydridization. Mycorrhiza 8:203–206

    Article  CAS  Google Scholar 

  • Voegele RT, Mendgen K (2003) Rust haustoria: nutrient uptake and beyond. New Phytol 159:93–100

    Article  CAS  Google Scholar 

  • Walker C, Schüßler A (2004) Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol Res 108:981–982

    Article  Google Scholar 

  • Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I, Schüßler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica. gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111:137–153

    Article  PubMed  Google Scholar 

  • Wheeler WC, Honeycutt RL (1988) Paired sequence difference in ribosomal RNAs: Evolutionary and phylogenetic implications. Mol Biol Evol 5:90–96

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R. Amarasinghe, S. Bentivenga, J. Bever, M. Franke-Snyder, Z. Msiska and S. Stॱrmer working in my laboratory contributed data and ideas that led to this work. I also appreciate insightful thoughts from T. Pawlowska and D. van Tuinen. My laboratory and INVAM is totally dependent on the able technical assistance of W. Wheeler. Financial support comes from the WVU experiment station and NSF grants DBI-0650735 and DEB-0649341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph B. Morton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morton, J. (2009). Reconciliation of Conflicting Phenotypic and rRNA Gene Phylogenies of Fungi in Glomeromycota Based on Underlying Patterns and Processes . In: Azcón-Aguilar, C., Barea, J., Gianinazzi, S., Gianinazzi-Pearson, V. (eds) Mycorrhizas - Functional Processes and Ecological Impact. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87978-7_10

Download citation

Publish with us

Policies and ethics