Skip to main content

15 The Symbiotic Phenotype of Lichen-Forming Ascomycetes and Their Endo- and Epibionts

  • Chapter
  • First Online:
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

Abstract

This chapter summarizes the diversity of interactions in lichen symbiosis at the taxonomic, organismic and cellular levels. Peculiarities of lichen-dominated terrestrial ecosystems, their ecological roles and endangerment are discussed. Lichenicolous (parasitic) fungi, symptomless endophytic fungi and bacterial epibionts of lichen thalli and their potential biological roles are summarized. The focus is on the symbiotic phenotype of lichen-forming ascomycetes, i.e. the main types of thallus morphologies, the functional anatomy of macrolichens and their growth patterns, the fine structure and composition of cell wall types of lichen photobionts and their impact on the mycobiont–photobiont interface. Modes of vegetative symbiotic propagation are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GC, Kropp BR (1996) Athelia arachnoidea, the sexual state of Rhizoctonia carotae, a pathogen of carrot in cold storage. Mycologia 88:459–472

    Article  CAS  Google Scholar 

  • Ahmadjian V (1966) Artificial reestablishment of lichen Cladonia cristatella. Science 151:199–201

    Article  PubMed  CAS  Google Scholar 

  • Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology, and identification. Phycologia 6:127–160

    Article  CAS  Google Scholar 

  • Ahmadjian V (2001) Trebouxia: reflections on a perplexing and controversial lichen photobiont. In: Seckbach J (ed) Symbiosis. Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 373–383

    Google Scholar 

  • Anglesea D, Veltkamp C, Greenhalgh GH (1982) The upper cortex of Parmelia saxatilis and other lichen thalli. Lichenologist 14:29–38

    Article  Google Scholar 

  • Antoine ME (2004) An ecophysiological approach to quantifying nitrogen fixation by Lobaria oregana. Bryologist 107:82–87

    Article  Google Scholar 

  • Aptroot A, van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ Pollut 146:293–298

    Article  PubMed  CAS  Google Scholar 

  • Armaleo D (1993) Why do lichens make secondary products? In: 15th International Botanical Congress, Yokohama. Abstracts, p 11

    Google Scholar 

  • Armaleo D, Zhang Y, Cheung S (2008) Light might regulate divergently depside and depsidone accumulation in the lichen Parmotrema hypotropum by affecting thallus temperature and water potential. Mycologia 100:565–576

    Article  PubMed  CAS  Google Scholar 

  • Armaleo D, Sun X, Culberson C (2011) Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia 103:741–754

    Article  PubMed  CAS  Google Scholar 

  • Armstrong R (1994) Dispersal of soredia from individual soralia of the lichen Hypogymnia physodes (L.) Nyl. in a simple wind tunnel. Environ Exp Bot 34:39–45

    Article  Google Scholar 

  • Armstrong R (2004) Lichens, lichenometry and global warming. Microbiologist 2004:32–35. http://www.blackwellpublishing.com/Microbiology/pdfs/lichens.pdf

  • Armstrong RA, Bradwell T (2010a) Growth of crustose lichens: a review. Geogr Ann A 92:3–17

    Article  Google Scholar 

  • Armstrong RA, Bradwell T (2010b) The use of lichen growth rings in lichenometry: some preliminary findings. Geogr Ann A 92:141–147

    Article  Google Scholar 

  • Armstrong RA, Smith SN (1993) Radial growth and carbohydrate levels in the lichen Parmelia conspersa on north and south facing rock surfaces. Symbiosis 15:27–49

    Google Scholar 

  • Armstrong RA, Smith SN (1994) The levels of ribitol, arabitol and mannitol in individual lobes of the lichen Parmelia conspersa (Ehrh ex Ach.) Ach. Environ Exp Bot 34:253–260

    Article  CAS  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Schnitzer S, Carson W (eds) Tropical forest community ecology. Wiley-Blackwell, Oxford, pp 254–271

    Google Scholar 

  • Arnold AE, Miadlikowska J, Higgins KL et al (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297

    Article  PubMed  Google Scholar 

  • Ascaso C, Gonzales C, Vicente C (1980) Epiphytic Evernia prunastri (L.) Ach.: ultrastructural facts. Cryptog Bryol Lichenol 1:45–51

    Google Scholar 

  • Asplund J, Solhaug KA, Gauslaa Y (2010) Optimal defense: snails avoid reproductive parts of the lichen Lobaria scrobiculata due to internal defense allocation. Ecology 91:3100–3105

    Article  PubMed  Google Scholar 

  • Avalos A, Legaz M, Vicente C (1986) The occurrence of lichen phenolics in the xylem sap of Quercus pyrenaica, their translocation to leaves and biological significance. Biochem Syst Ecol 14:381–384

    Article  CAS  Google Scholar 

  • Bačkor M, Klemová K, Bačkorová M, Ivanova V (2010) Comparison of the phytotoxic effects of usnic acid on cultures of free-living alga Scenedesmus quadricauda and aposymbiotically grown lichen photobiont. J Chem Ecol 36:405–411

    Article  PubMed  CAS  Google Scholar 

  • Baloch E, Lücking R, Lumbsch HT, Wedin M (2010) Major clades and phylogenetic relationships between lichenized and non-lichenized lineages in Ostropales (Ascomycota: Lecanoromycetes). Taxon 59:1483–1494

    Google Scholar 

  • Bates JW, Bell JNB, Massara AC (2001) Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in S.E. England over 21 years with declining SO2 concentrations. Atmos Environ 35:2557–2568

    Article  CAS  Google Scholar 

  • Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314

    Article  PubMed  CAS  Google Scholar 

  • Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720

    Article  CAS  Google Scholar 

  • Beierkuhnlein C, Drewello R, Snethlage R, Töpfer LH (2011) Zwischen Denkmalschutz und Naturschutz. Leitfaden zur naturverträglichen Instandhaltung von Mauerwerk in der Denkmalpflege. Initiativen zum Umweltschutz 83. Erich Schmidt/Deutsche Bundsstiftung Umwelt, Berlin

    Google Scholar 

  • Belnap J, Lange OL (eds) (2003) Biological soil crusts: structure, function and management, 2nd edn. Springer, Berlin Heidelberg New York, pp 1–503

    Google Scholar 

  • Belnap J, Rosentreter R, Leonard S, Kaltenecker JH, Williams J, Eldridge D (eds) (2001) Biological soil crusts: ecology and management. Technical reference 1730-2. US Department of the Interior, Bureau of Land Management, US Geological Survey, Denver, pp 1–118. http://www.soilcrust.org/crust.pdf

  • Biazrov LG (1994) The radionuclides in lichen thalli in Chernobyl and East Urals areas after nuclear accidents. Phyton 34:85–94

    CAS  Google Scholar 

  • Bjelland T, Thorset IH (2002) Comparative studies of the lichen–rock interface of four lichens in Vingen, western Norway. Chem Geol 192:81–98

    Article  CAS  Google Scholar 

  • Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1:678–685

    Article  PubMed  CAS  Google Scholar 

  • Bjerke JW, Elvebakk A, Domínguez E, Dahlback A (2005) Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry 66:337–344

    Article  PubMed  CAS  Google Scholar 

  • Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88:283–293

    Article  Google Scholar 

  • Boch S, Prati D, Werth S, Rüetschi J, Fischer M (2011) Lichen endozoochory by snails. PLoS One 6:e18770

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Balestrini R, Genre A, Lanfranco L (2009) Establishment and functioning of arbuscular mycorrhizas. In: Deising HB (ed) The Mycota V, part 2 (plant relationships). Springer, Berlin Heidelberg New York, pp 259–274

    Google Scholar 

  • Bonnier G (1889) Recherches sur la synthèse des lichens. Ann Sci Nat (Ser 7) 9:1–34

    Google Scholar 

  • Bourgeois G, Suire C, Vivas N, Benoist F, Vitry C (1999) Atraric acid, a marker for epiphytic lichens in the wood used in cooperage: identification and quantification by GC/MS/(MS). Analusis 27:281–283

    Article  Google Scholar 

  • Brierley WB (1913) The structure and life history of Leptosphaeria lemaneae (Cohn). Mem Manch Lit Philos Soc 57:1–21

    Google Scholar 

  • Brodo IM, Sharnoff SD, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven

    Google Scholar 

  • Brunner U, Honegger R (1985) Chemical and ultrastructural studies on the distribution of sporopollenin-like biopolymers in 6 genera of lichen phycobionts. Can J Bot 63:2221–2230

    Article  CAS  Google Scholar 

  • Bubrick P, Galun M (1980) Proteins from the lichen Xanthoria parietina which bind to phycobiont cell walls: correlation between binding patterns and cell wall cytochemistry. Protoplasma 104:167–173

    Article  CAS  Google Scholar 

  • Bubrick P, Galun M, Frensdorff A (1984) Observations on free-living Trebouxia de Puymaly and Pseudotrebouxia Archibald, and evidence that both symbionts from Xanthoria parietina (L.) Th.Fr. can be found free-living in nature. New Phytol 97:455–462

    Article  Google Scholar 

  • Büdel B (1987) Zur Biologie und Systematik der Flechtengattungen Heppia und Peltula im südlichen Afrika. Bibl Lichenol 23:1–105

    Google Scholar 

  • Büdel B (2002) Diversity and ecology of biological soil crusts. Prog Bot 63:386–404

    Article  Google Scholar 

  • Büdel B, Henssen A (1988) Trebouxia aggregata und Gloeocapsa sanguinea, Phycobionten in Euopsis granatina (Lichinaceae). Plant Syst Evol 158:235–241

    Article  Google Scholar 

  • Büdel B, Lange OL (2001) Synopsis: comparative biogeography and ecology of soil–crust biota and communities. In: Belnap J, Lange O (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 141–152

    Google Scholar 

  • Büdel B, Karsten U, Garcia-Pichel F (1997) Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens. Oecologia 112:165–172

    Article  Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K et al (2009) South African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Buffoni Hall RS, Bornman JF, Björn LO (2002) UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. J Photochem Photobiol B 66:13–20

    Article  PubMed  CAS  Google Scholar 

  • Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495

    Article  PubMed  CAS  Google Scholar 

  • Cardinale M, Castro JVD, Müller H, Berg G, Grube M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 66:63–71

    Article  PubMed  CAS  Google Scholar 

  • Casano LM, del Campo EM, García-Breijo FJ et al (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818

    Article  PubMed  CAS  Google Scholar 

  • Chapman R, Waters D (2004) Lichenization of the Trentepohliales. Complex algae and odd relationships. In: Seckbach J (ed) Symbiosis. Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 359–371

    Google Scholar 

  • Chen J, Blume HP, Beyer L (2000) Weathering of rocks induced by lichen colonization – a review. Catena 39:121–146

    Article  CAS  Google Scholar 

  • Chen J, Zhang MY, Wang L, Shimazaki H, Tamura M (2005) A new index for mapping lichen-dominated biological soil crusts in desert areas. Remote Sens Environ 96:165–175

    Article  Google Scholar 

  • St Clair LL, Seaward MRD (eds) (2004) Biodeterioration of stone surfaces: lichens and biofilms as weathering agents of rocks and cultural heritage. Springer, Berlin Heidelberg New York

    Google Scholar 

  • St Clair LL, Webb BL, Johansen JR, Nebeker GT (1984) Cryptogamic soil crusts: enhancement of seedling establishment in disturbed and undisturbed areas. Reclam Reveg Res 3:129–136

    Google Scholar 

  • Cocchietto M, Skert N, Nimis PL, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89:137–146

    Article  PubMed  CAS  Google Scholar 

  • Cornejo C, Chabanenko S, Scheidegger C (2009) Phylogenetic analysis indicates transitions from vegetative to sexual reproduction in the Lobaria retigera group (Lecanoromycetidae, Ascomycota). Lichenologist 41:275–284

    Article  Google Scholar 

  • Coxson DS, Stevenson SK (2007) Growth rate responses of Lobaria pulmonaria to canopy structure in even-aged and old-growth cedar–hemlock forests of central-interior British Columbia, Canada. For Ecol Manage 242:5–16

    Article  Google Scholar 

  • Crespo A, Lumbsch HT (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1:167–170

    Article  PubMed  Google Scholar 

  • Crespo A, Pérez-Ortega S (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. An Jardín Bot Madrid 66:71–81

    Article  Google Scholar 

  • Crespo A, Lumbsch HT, Mattsson JE et al (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Mol Phylogenet Evol 44:812–824

    Article  PubMed  CAS  Google Scholar 

  • Crespo A, Kauff F, Divakar PK et al (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59:1735–1753

    Google Scholar 

  • Dahlkild A, Kallersjo M, Lohtander K, Tehler A (2001) Photobiont diversity in the Physciaceae (Lecanorales). Bryologist 104:527–536

    Article  Google Scholar 

  • De los Rios A, Grube M (2000) Host–parasite interfaces of some lichenicolous fungi in the Dacampiaceae (Dothideales, Ascomycota). Mycol Res 104:1348–1353

    Article  Google Scholar 

  • De los Rios A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–189

    Google Scholar 

  • Deckert RJ, Garbary DJ (2005) Ascophyllum and its symbionts. VI. Microscopic characterization of the Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) symbiotum. Algae 20:225–232

    Article  Google Scholar 

  • Dietz S, Büdel B, Lange OL, Bilger W (2000) Transmittance of light through the cortex of lichens from contrasting habitats. Bibl Lichenol 75:171–182

    Google Scholar 

  • Drewello R, Drewello UG (2009) Flechten auf Denkmälern: Indikatoren und Vermittler zwischen Denkmal- und Naturschutz. In: Bayerische Akademie der Wissenschaften (ed) Ökologische Rolle der Flechten. Rundgespräche der Kommission für Ökologie 36. Verlag Dr. Friederich Pfeil, München, pp 161–180

    Google Scholar 

  • Eichenberger C (2007) Molecular phylogenies of representatives of Xanthoria and Xanthomendoza (lichen-forming Ascomycetes) Inauguraldissertation. Mathematisch Naturwissenschaftliche Fakultät der Universität Zürich, Zürich, pp 1–143

    Google Scholar 

  • Ekman S, Tønsberg T (2002) Most species of Lepraria and Leproloma form a monophyletic group closely related to Stereocaulon. Mycol Res 106:1262–1276

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ (2007) Reproductive strategy and the compositional dynamics of crustose lichen communities on aspen (Populus tremula L.) in Scotland. Lichenologist 39:377–391

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ, Dawson TP, Seaward MRD (2007) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv 140:217–235

    Article  Google Scholar 

  • Elo H, Matikainen J, Pelttar E (2007) Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Naturwissenschaften 94:465–468

    Article  PubMed  CAS  Google Scholar 

  • Elvebakk A, Papaefthimiou D, Robertsen EH, Liaimer A (2008) Phylogenetic patterns among Nostoc cyanobionts within bi- and tripartite lichens of the genus Pannaria. J Phycol 44:1049–1059

    Article  CAS  Google Scholar 

  • Englund B (1977) The physiology of the lichen Peltigera aphthosa, with special reference to the blue-green phycobiont (Nostoc sp.). Physiol Plant 41:298–304

    Article  CAS  Google Scholar 

  • Espoz C, Guzmáan G, Castilla JC (1995) The lichen Thelidium litorale on shells of intertidal limpets: a case of lichen-mediated cryptic mimicry. Mar Ecol Prog Ser 119:191–197

    Article  Google Scholar 

  • Ettl H, Gärtner G (1995) Syllabus der Boden-Luft- und Flechtenalgen. Fischer, Stuttgart

    Google Scholar 

  • Evans RD, Lange OL (2001) Biological soil crusts and ecosystem nitrogen and carbon dynamics. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin Heidelberg New York, pp 263–279

    Google Scholar 

  • Farrar JF (1988) Physiological buffering. In: Galun M (ed) Handbook of Lichenology, vol 2. CRC, Boca Raton, pp 101–105

    Google Scholar 

  • Favero-Longo SE, Turci F, Tomatis M et al (2005) Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. J Environ Monit 7:764–766

    Article  PubMed  CAS  Google Scholar 

  • Favero-Longo SE, Girlanda M, Honegger R, Fubini B, Piervittori R (2007) Interactions of sterile-cultured lichen-forming ascomycetes with asbestos fibres. Mycol Res 111:473–481

    Article  PubMed  Google Scholar 

  • Fedrowitz K, Kaasalainen U, Rikkinen J (2011) Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape. Bryologist 114:220–230

    Article  Google Scholar 

  • Feige GB, Niemann L, Jahnke S (1990) Lichens and mosses – silent chronists of the Chernobyl accident. Bibl Lichenol 38:63–77

    Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  PubMed  CAS  Google Scholar 

  • Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191

    Article  Google Scholar 

  • Friedl T (1995) Inferring taxonomic positions and testing genus level assignments in coccoid green lichen algae: a phylogenetic analysis of 18 s ribosomal RNA sequences from Dictyochloropsis reticulata and from members of the genus Myrmecia (Chlorophyta, Trebouxiophyceae cl. nov.). J Phycol 31:632–639

    Article  CAS  Google Scholar 

  • Friedl T, Büdel B (2008) Photobionts. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 9–26

    Chapter  Google Scholar 

  • Fröberg L, Berg CO, Baur A, Baur B (2001) Viability of lichen photobionts after passing through the digestive tract of a land snail. Lichenologist 33:543–545

    Article  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  PubMed  CAS  Google Scholar 

  • Garbary DJ, London JF (1995) The Ascophyllum/Polysiphonial/Mycosphaerella symbiosis V. Fungal infection protects A. nosodum from desiccation. Bot Mar 38:529–533

    Google Scholar 

  • Garbary DJ, Macdonald KA (1995) The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis 4. Mutualism in the Ascophyllum/Mycosphaerella interaction. Bot Mar 38:221–225

    Google Scholar 

  • Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143:94–105

    Article  PubMed  Google Scholar 

  • Gaya E, Navarro-Rosinés P, Llimona X, Hladun N, Lutzoni F (2008) Phylogenetic reassessment of the Teloschistaceae (lichen-forming Ascomycota, Lecanoromycetes). Mycol Res 112:528–546

    Article  PubMed  Google Scholar 

  • Geiser DM, Gueidan C, Miadlikowska J et al (2006) Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98:1053–1064

    Article  PubMed  Google Scholar 

  • Geml J, Kauff F, Brochmann C, Taylor DL (2010) Surviving climate changes: high genetic diversity and transoceanic gene flow in two arctic-alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota). J Biogeogr 37:1529–1542

    Google Scholar 

  • Girlanda M, Isocrono D, Bianco C, Luppi-Mosca AM (1997) Two foliose lichens as microfungal ecological niches. Mycologia 89:531–536

    Article  Google Scholar 

  • Goebel K (1926a) Die Wasseraufnahme der Flechten. Ber Deutsch Bot Ges 44:158–161

    Google Scholar 

  • Goebel K (1926b) Morphologische und biologische studien. Ein Beitrag zur Biologie der Flechten. Ann Jard Bot Buitenzorg 36:1–83

    Google Scholar 

  • Goffinet B, Bayer RJ (1997) Characterization of mycobionts of photomorph pairs in the Peltigerineae (lichenized ascomycetes) based on internal transcribed spacer sequences of the nuclear ribosomal DNA. Fungal Genet Biol 21:228–237

    Article  PubMed  CAS  Google Scholar 

  • Golledge N, Everest J, Bradwell T, Johnson J (2010) Lichenometry on Adelaide Island, Antarctic Peninsula: size-frequency studies, growth rates and snowpatches. Geogr Ann A 92:111–124

    Article  Google Scholar 

  • Gougeon RD, Lucio M, Frommberger M et al (2009) The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proc Natl Acad Sci USA 106:9174–9179

    Article  PubMed  CAS  Google Scholar 

  • Grangeon S, Guédron S, Asta J, Sarret G, Charlet L (2012) Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecol Indic 13:178–183

    Article  CAS  Google Scholar 

  • Grube M, Berg G (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85

    Article  Google Scholar 

  • Grube M, De los Rios A (2001) Observations on Biatoropsis usnearum, a lichenicolous heterobasidiomycete, and other gall-forming fungi, using different microscopical techniques. Mycol Res 105:1116–1122

    Article  Google Scholar 

  • Grube M, Hawksworth DL (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol Res 111:1116–1132

    Article  PubMed  Google Scholar 

  • Grube M, Kantvilas G (2006) Siphula represents a remarkable case of morphological convergence in sterile lichens. Lichenologist 38:241–249

    Article  Google Scholar 

  • Grube M, Muggia L (2010) Identifying algal symbionts in lichen symbioses. In: Nimis PL, Vignes Lebbe R (eds) Tools for identifying biodiversity: progress and problems. Proceedings of the international congress, Paris, September 20–22, 2010. http://hdl.handle.net/10077/3793. EUT Edizioni Università di Trieste, Trieste

  • Grube M, Cardinale M, de Castro JV, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:105–115

    Article  Google Scholar 

  • Gueidan C, Roux C, Lutzoni F (2007) Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycol Res 111:1145–1168

    Article  PubMed  CAS  Google Scholar 

  • Gueidan C, Ruibal Villaseñor C, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119

    Article  PubMed  CAS  Google Scholar 

  • Gueidan C, Savic S, Thüs H et al (2009) Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon 58:184–208

    Google Scholar 

  • Guzow-Krzeminska B (2006) Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. Lichenologist 38:469–476

    Article  Google Scholar 

  • Haas JR, Purvis OW (2006) Lichen biogeochemistry. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 343–376

    Google Scholar 

  • Hager A, Brunauer G, Türk R, Stocker-Wörgötter E (2009) Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. J Chem Ecol 34:113–120

    Article  CAS  Google Scholar 

  • Hauck M, Huneck S (2007a) Lichen substances affect metal adsorption in Hypogymnia physodes. J Chem Ecol 33:219–223

    Article  PubMed  CAS  Google Scholar 

  • Hauck M, Huneck S (2007b) The putative role of fumarprotocetraric acid in the manganese tolerance of the lichen Lecanora conizaeoides. Lichenologist 39:301–304

    Article  Google Scholar 

  • Hauck M, Jürgens SR, Brinkmann M, Herminghaus S (2008) Surface hydrophobicity causes SO2 tolerance in lichens. Ann Bot 101:531–539

    Article  PubMed  Google Scholar 

  • Hauck M, Jürgens SR, Willenbruch K, Huneck S, Leuschner C (2009) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Ann Bot 103:13–22

    Article  PubMed  CAS  Google Scholar 

  • Hauck M, Otto PI, Dittrich S et al (2011) Small increase in sub-stratum pH causes the dieback of one of Europe’s most common lichens, Lecanora conizaeoides. Ann Bot 108:59–366

    Google Scholar 

  • Hawksworth DL (1988a) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20

    Article  Google Scholar 

  • Hawksworth DL (1988b) Effects of algae and lichen-forming fungi on tropical crops. In: Agnihotri VP, Sarbhoy KA, Kumar D (eds) Perspectives of mycopathology. Malhorta, New Delhi, pp 76–83

    Google Scholar 

  • Hawksworth DL (2000) Freshwater and marine lichen-forming fungi In: Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium, vol 5. Fungal Diversity Press, Hong Kong, pp 1–7

    Google Scholar 

  • Hawksworth DL, Honegger R (1994) The lichen thallus: symbiotic phenotype and its responses to gall producers. In: Williams MC (ed) Plant galls: organisms, interactions. Clarendon, Oxford, pp 77–98

    Google Scholar 

  • Hedenås H, Blomberg P, Ericson L (2007) Significance of old aspen (Populus tremula) trees for the occurrence of lichen photobionts. Biol Conserv 135:380–387

    Article  Google Scholar 

  • Helms G (2003) Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Inauguraldissertation am Albrecht-von-Haller Institut für Pflanzenwissenschaften, Experimentelle Phykologie und Sammlung von Algenkulturen der Georg-August-Universität Göttingen, Göttingen, pp 1–156

    Google Scholar 

  • Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73–86

    Article  Google Scholar 

  • Henssen A (1995) Psoroglaena costaricensis, a new lichen species from Costa Rica, and remarks on other taxa of the genus Psoroglaena (Verrucariaceae). Bibl Lichenol 57:199–210

    Google Scholar 

  • Hestmark G (1992) Sex, size competition and escape – strategies of reproduction and dispersal in Lasallia pustulata (Umbilicariaceae, Ascomycetes). Oecologia 92:305–312

    Article  Google Scholar 

  • Hestmark G, Schroeter B, Kappen L (1997) Intrathalline and size-dependent patterns of activity in Lasallia pustulata and their possible consequences for competitive interactions. Funct Ecol 11:318–322

    Article  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hill DJ (1976) The physiology of lichen symbiosis. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 457–496

    Google Scholar 

  • Hill DJ (1985) Changes in photobiont dimensions and numbers during co-development of lichen symbionts. In: Brown DH (ed) Lichen physiology and cell biology. Plenum, New York, pp 303–317

    Chapter  Google Scholar 

  • Hill DJ (1989) The control of the cell cycle in microbial symbionts. New Phytol 112:175–184

    Article  Google Scholar 

  • Hill DJ (1992) An overlooked symbiosis. Photosynth Res 34:339–340

    Article  Google Scholar 

  • Hill DJ (2009) Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaptation in the photobiont. Bot Rev 75:326–338

    Article  Google Scholar 

  • Hill DR, Peat A, Potts M (1994) Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (cyanobacteria). Protoplasma 182:126–148

    Article  CAS  Google Scholar 

  • Hodkinson BP (2011) A phylogenetic, ecological, and functional characterization of non-photoautotrophic bacteria in the lichen microbiome. PhD thesis, Duke University, Durham

    Google Scholar 

  • Hodkinson BP, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180

    Article  CAS  Google Scholar 

  • Hodkinson BP, Lutzoni FM, Loveless TM, Bishop E (2006) Non-photosynthetic bacteria and the lichen symbiosis. In: Bright M, Horn M, Zook D, Lücker S, Kolar I (eds) Fifth international symbiosis society congress: program, abstracts, participants. Promare, Gdynia, p 95

    Google Scholar 

  • Hoffman Y, Aflalo C, Zarka A, Gutman J, James TY, Boussiba S (2008) Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycol Res 112:70–81

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann N, Hafellner J (2000) Eine Revision der lichenicolen Arten der Sammelgattungen Guignardia und Physalospora (Ascomycotina). Bibl Lichenol 77:1–181

    Google Scholar 

  • Honegger R (1982) Cytological aspects of the triple symbiosis in Peltigera aphthosa. J Hattori Bot Lab 52:379–391

    Google Scholar 

  • Honegger R (1984) Cytological aspects of the mycobiont–phycobiont relationship in lichens. Haustorial types, phycobiont cell wall types, and the ultrastructure of the cell wall surface layers in some cultured and symbiotic myco- and phycobionts. Lichenologist 16:111–127

    Article  Google Scholar 

  • Honegger R (1986a) Ultrastructural studies in lichens. I. Haustorial types and their frequencies in a range of lichens with trebouxioid phycobionts. New Phytol 103:785–795

    Article  Google Scholar 

  • Honegger R (1986b) Ultrastructural studies in lichens. II. Mycobiont and photobiont cell wall surface layers and adhering crystalline lichen products in four Parmeliaceae. New Phytol 103:797–808

    Article  CAS  Google Scholar 

  • Honegger R (1987) Questions about pattern formation in the algal layer of lichens with stratified (heteromerous) thalli. Bibl Lichenol 25:59–72

    Google Scholar 

  • Honegger R (1990) Mycobiont-photobiont interactions in adult thalli and in axenically resynthesized prethallus stages of Xanthoria parietina (Teloschistales, lichenized Ascomycetes). Bibl Lichenol 38:191–208

    Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578

    Article  CAS  Google Scholar 

  • Honegger R (1992) Lichens: mycobiont–photobiont relationships. In: Reisser W (ed) Algae and symbiosis. Biopress, Bristol, pp 225–275

    Google Scholar 

  • Honegger R (1993) Developmental biology of lichens. New Phytol 125:659–677

    Article  Google Scholar 

  • Honegger R (1995) Experimental studies with foliose macrolichens: fungal responses to spatial disturbance at the organismic level and to spacial problems at the cellular level. Can J Bot 73:569–578

    Article  Google Scholar 

  • Honegger R (1996) Experimental studies on growth and regenerative capacity in the foliose lichen Xanthoria parietina. New Phytol 133:573–581

    Article  Google Scholar 

  • Honegger R (1997) Metabolic interactions at the mycobiont–photobiont interface in lichens. In: Carroll GC, Tudzynski P (eds) The Mycota V. Plant relationships. Springer, Berlin Heidelberg New York, pp 209–221

    Google Scholar 

  • Honegger R (1998) The lichen symbiosis – what is so spectacular about it? Lichenologist 30:193–212

    Google Scholar 

  • Honegger R (2001) The symbiotic phenotype of lichen-forming ascomycetes. In: Hock B (ed) The Mycota IX (Fungal associations). Springer, Berlin Heidelberg New York, pp 165–188

    Google Scholar 

  • Honegger R (2007) Water relations in lichens. In: Gadd GM, Watkinson SC, Dyer P (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 185–200

    Google Scholar 

  • Honegger R (2009) Lichen-forming fungi and their photobionts. In: Deising HB (ed) The Mycota V (Plant relationships), 2nd edn. Springer, Berlin Heidelberg New York, pp 305–333

    Google Scholar 

  • Honegger R, Brunner U (1981) Sporopollenin in the cell wall of Coccomyxa and Myrmecia phycobionts of various lichens: an ultrastructural and chemical investigation. Can J Bot 59:2713–2734

    Article  CAS  Google Scholar 

  • Honegger R, Haisch A (2001) Immunocytochemical location of the (1 → 3) (1 → 4)-beta-glucan lichenin in the lichen-forming ascomycete Cetraria islandica (Icelandic moss). New Phytol 150:739–746

    Article  CAS  Google Scholar 

  • Honegger R, Hugelshofer G (2000) Water relations in the Peltigera aphthosa group visualized with LTSEM techniques. Bibl Lichenol 75:113–126

    Google Scholar 

  • Honegger R, Peter M (1994) Routes of solute translocation and the location of water in heteromerous lichens visualized with cryotechniques in light and electron microscopy. Symbiosis 16:167–186

    Google Scholar 

  • Honegger R, Conconi S, Kutasi V (1996a) Field studies on growth and regenerative capacity in the foliose macrolichen Xanthoria parietina (Teloschistales, Ascomycotina). Bot Acta 109:187–193

    Google Scholar 

  • Honegger R, Peter M, Scherrer S (1996b) Drought-stress induced structural alterations at the mycobiont photobiont interface in a range of foliose macrolichens. Protoplasma 190:221–232

    Article  Google Scholar 

  • Honegger R, Edwards D, Axe L (2012) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytologist, in press

    Google Scholar 

  • Huneck S (2001) New results on the chemistry of lichen substances. Fort Chem Org Nat 81:1–276

    CAS  Google Scholar 

  • Huneck S (2003) Die wasserabweisende Eigenschaft von Flechtenstoffen. Bibl Lichenol 86:9–12

    Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Huneck S, Lumbsch HT, Porzel A, Schmidt J (2004) Die Verteilung von Flechteninhaltsstoffen in Lecanora muralis und Lecidea inops und die Abhängigkeit der Usninsäure-Konzentration vom Substrat und von den Jahreszeiten bei Lecanora muralis. Bibl Lichenol 88:211–222

    Google Scholar 

  • Hyvärinen M, Hardling R, Tuomi J (2002) Cyanobacterial lichen symbiosis: the fungal partner as an optimal harvester. Oikos 98:498–504

    Article  Google Scholar 

  • Ingólfsdóttir K (2002) Usnic acid. Phytochemistry 61:729–736

    Article  PubMed  Google Scholar 

  • Innes JL (1988) The use of lichens in dating. In: Galun M (ed) CRC handbook of lichenology, vol 3. CRC, Boca Raton, pp 75–91

    Google Scholar 

  • Jaag O, Thomas E (1934) Neue Untersuchungen über die Flechte Epigloea bactrospora Zukal. Ber Schweiz Bot Ges 34:77–89

    Google Scholar 

  • Jahns HM, Ott S (1997) Life strategies in lichens – some general considerations. Bibl Lichenol 67:49–67

    Google Scholar 

  • James PW, Henssen A (1976) The morphological and taxonomic significance of cephalodia. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 27–77

    Google Scholar 

  • Joneson S, Lutzoni F (2009) Revisiting compatibility and thigmotropism in the lichen symbiosis. Symbiosis 47:109–115

    Article  Google Scholar 

  • Joneson S, Armaleo D, Lutzoni F (2011) Fungal and algal gene expression in early developmental stages of lichen-symbiosis. Mycologia 103:291–306

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen PM, Jahns HM (1987) Muhria, a remarkable new lichen genus from Scandinavia. Notes RBG Edinb 44:581–599

    Google Scholar 

  • Joubert JJ, Rijkenberg FHJ (1971) Parasitic green algae. Annu Rev Phytopathol 9:45–64

    Article  Google Scholar 

  • Kadouri A, Derenne S, Largeau C, Casadevall E, Berkaloff C (1988) Resistant biopolymer in the outer walls of Botryococcus braunii, B race. Phytochemistry 27:551–557

    Article  CAS  Google Scholar 

  • Kagami M, Ad B, Ibelings BW, Donk EV (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Kannangara BTSDP, Rajapaksha RSCG, Paranagama PA (2009) Nature and bioactivities of endolichenic fungi in Pseudocyphellaria sp., Parmotrema sp. and Usnea sp. at Hakgala montane forest in Sri Lanka. Lett Appl Microbiol 48:203–209

    Article  PubMed  CAS  Google Scholar 

  • Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) CRC handbook of lichenology, vol 2. CRC, Boca Raton, pp 37–100

    Google Scholar 

  • Kappen L (2000) Some aspects of the great success of lichens in Antarctica. Antarct Sci 12:314–324

    Article  Google Scholar 

  • Karnieli A, Kokaly R, West NE, Clark RN (2001) Remote sensing of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 431–455

    Google Scholar 

  • Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156

    Article  PubMed  CAS  Google Scholar 

  • Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, Cambridge

    Google Scholar 

  • Kershaw M, Thornton C, Wakley G, Talbot N (2005) Four conserved intramolecular disulphide linkages are required for secretion and cell wall localization of a hydrophobin during fungal morphogenesis. Mol Microbiol 56:117–125

    Article  PubMed  CAS  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI Europe, Oxford

    Google Scholar 

  • Kluge M (2002) A fungus eats a cyanobacterium: the story of the Geosiphon pyriformis endocyanosis. Commentaries on cyanobacterial symbioses. Biol Environ 10B:11–14

    Google Scholar 

  • Knowles RD, Pastor J, Biesboer DD (2006) Increased soil nitrogen associated with dinitrogen-fixing, terricolous lichens of the genus Peltigera in northern Minnesota. Oikos 114:37–48

    Article  CAS  Google Scholar 

  • Kodner RB, Summons RE, Knoll AH (2009) Phylogenetic investigation of the aliphatic, non-hydrolyzable biopolymer algaenan, with a focus on green algae. Org Geochem 40:854–862

    Article  CAS  Google Scholar 

  • Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite – what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1972) Is Ascophyllum nodosum lichenized? Bot Mar 15:109–112

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1998) Mycophycias, a new genus for the mycobionts of Apophlaea, Ascophyllum and Pelvetia. Syst Ascomyc 16:1–7

    Google Scholar 

  • Kohlmeyer J, Hawksworth DL, Volkmann-Kohlmeyer B (2004) Observations on two marine and maritime “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae. Mycol Prog 3:51–56

    Article  Google Scholar 

  • Kristmundsdóttir T, Jónsdóttir E, Ogmundsdóttir HM, Ingólfsdóttir K (2005) Solubilization of poorly soluble lichen metabolites for biological testing on cell lines. Eur J Pharm Sci 24:539–543

    Article  PubMed  CAS  Google Scholar 

  • Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103:645–660

    Article  CAS  Google Scholar 

  • Kroken S, Taylor JW (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93:38–53

    Article  CAS  Google Scholar 

  • LaGreca S, Stutzman BW (2006) Distribution and ecology of Lecanora conizaeoides (Lecanoraceae) in eastern Massachusetts. Bryologist 109:335–347

    Article  Google Scholar 

  • Lange O (2001) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 217–240

    Google Scholar 

  • Lange O, Kilian E, Ziegler H (1986) Water vapour uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    Article  Google Scholar 

  • Lange O, Meyer A, Zellner H, Ullmann I, Wessels D (1990) Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone of the Namib desert. Madoqua 17:17–30

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Kilian E (1993) Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 25:175–189

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:195–202

    Article  Google Scholar 

  • Lange OL, Green TGA, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268–280

    Article  Google Scholar 

  • Larson DW (1983) The pattern of production within individual Umbilicaria lichen thalli. New Phytol 94:409–419

    Article  Google Scholar 

  • Larson DW (1984) Habitat overlap/niche segregation in two Umbilicaria lichens: a possible mechanism. Oecologia 62:118–125

    Article  Google Scholar 

  • Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122

    Article  CAS  Google Scholar 

  • Lawrey JD, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106:80–120

    Article  Google Scholar 

  • Lawrey JD, Diederich P (2010) Lichenicolous fungi–worldwide checklist, including isolated cultures and sequences available. URL: http://www.lichenicolous.net

  • Lawrey JD, Torzilli AP, Chandhoke V (1999) Destruction of lichen chemical defenses by a fungal pathogen. Am J Bot 86:184–189

    Article  PubMed  CAS  Google Scholar 

  • Lawrey JD, Binder M, Diederich P, Molina MC, Sikaroodi M, Ertz D (2007) Phylogenetic diversity of lichen-associated homobasidiomycetes. Mol Phylogenet Evol 44:778–789

    Article  PubMed  CAS  Google Scholar 

  • Lehr H, Galun M, Ott S, Jahns H-M, Fleminger G (2000) Cephalodia of the lichen Peltigera aphthosa (L.) Willd. specific recognition of the compatible photobiont. Symbiosis 29:357–365

    Google Scholar 

  • Letsch MR, Muller-Parker G, Friedl T, Lewis LA (2009) Elliptochloris marina sp. nov. (Trebouxiophyceae, Chlorophyta), symbiotic green alga of the temperate pacific sea anemones Anthopleura xanthogrammica and A. elegantissima (Anthozoa, Cnidaria). J Phycol 45:1127–1135

    Article  Google Scholar 

  • Li W-C, Zhou J, Guo S-Y, Guo L (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, china. Fungal Div 25:69–80

    Google Scholar 

  • Linder MB (2009) Hydrophobins: proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci 14:356–363

    Article  CAS  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  PubMed  CAS  Google Scholar 

  • Lines CEM, Ratcliffe RG, Rees TAV, Southon TE (1989) A 13 C NMR study of photosynthate transport and metabolism in the lichen Xanthoria calcicola Oxner. New Phytol 111:447–482

    Article  CAS  Google Scholar 

  • Loso MG, Doak DF (2006) The biology behind lichenometric dating curves. Oecologia 147:223–229

    Article  PubMed  Google Scholar 

  • Lücking R (2008) Foliicolous lichenized fungi. New York Botanical Garden, New York

    Google Scholar 

  • Lücking R, Caceres M (2002) Foliicolous lichens of the world. http://fm2.fieldmuseum.org/plantguides/guide_pdfs/130%20Foliicolous%20Lichens.pdf. Cited 1 June 2011

  • Lücking R, Matzer M (2001) High foliicolous lichen alpha-diversity on individual leaves in Costa Rica and Amazonian Ecuador. Biodivers Conserv 10:2139–2152

    Article  Google Scholar 

  • Lücking R, Lawrey JD, Sikaroodi M et al (2009) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am J Bot 96:1409–1418

    Article  PubMed  CAS  Google Scholar 

  • Lud D, Huiskes AHL, Ott S (2001) Morphological evidence for the symbiotic character of Turgidosculum complicatulum Kohlm. & Kohlm. (= Mastodia tessellata Hook.f. & Harvey). Symbiosis 31:141–151

    Google Scholar 

  • Lumbsch HT, Huhndorf SM (2007) Whatever happened to the pyrenomycetes and loculoascomycetes? Mycol Res 111:1064–1074

    Article  PubMed  Google Scholar 

  • Lumbsch HT, Leavitt SD (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Divers 50:59–72

    Article  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  PubMed  CAS  Google Scholar 

  • Lutzoni F, Kauff F, Cox C et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • MacGinitie H (1937) The flora of the Weaverville beds of Trinity County, California, with descriptions of the plant-bearing beds. In: Eocene flora of western America. Publication 465. Carnegie Institution of Washington, Washington, pp 83–151

    Google Scholar 

  • Maestre FT, Bowker MA, Escolar C et al (2010) Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Phil Trans R Soc B 365:2057–2070

    Article  PubMed  Google Scholar 

  • Mägdefrau K (1957) Flechten und moose im baltischen Bernstein. Ber Dtsch Bot Ges 9:433–435

    Google Scholar 

  • Marsh JE, Timoney KP (2005) How long must Northern saxicolous lichens be immersed to form a waterbody trimline? Wetlands 25:495–499

    Article  Google Scholar 

  • Marshall WA (1996) Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytol 134:523–530

    Article  Google Scholar 

  • Martin F, Tunlid A (2009) The ectomycorrhizal symbiosis: a marriage of convenience. In: Deising HB (ed) The Mycota, vol 5, 2nd edn, Plant relationships. Springer, Berlin Heidelberg New York, pp 237–257, part 2

    Google Scholar 

  • Matthews SW, Tucker SC, Chapman RL (1989) Ultrastructural features of mycobionts and trentepohliaceous phycobionts in selected subtropical crustose lichens. Bot Gaz 150:417–438

    Article  Google Scholar 

  • McCarthy DP (2007) Lichenometry. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, New York, pp 1399–1405

    Chapter  Google Scholar 

  • McCune B, Rosentreter R (2007) Biotic soil crust lichens of the Columbia Basin. Monogr N Am Lichenol 1:1–105

    Google Scholar 

  • McDonald T, Dietrich F, Lutzoni F (2012) Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. Mol Biol Evol 29:51–60

    Article  PubMed  CAS  Google Scholar 

  • McEvoy M, Nybakken L, Solhaug KA, Gauslaa Y (2006) UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid. Mycol Prog 5:221–229

    Article  Google Scholar 

  • Meeks JC, Elhai J, Thiel T et al (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106

    Article  PubMed  CAS  Google Scholar 

  • Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4:81–95

    Article  PubMed  CAS  Google Scholar 

  • Meier JL, Chapman RL (1983) Ultrastructure of the lichen Coenogonium interplexum Nyl. Am J Bot 70:400–407

    Article  Google Scholar 

  • Meier FA, Scherrer S, Honegger R (2002) Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biol J Linn Soc 76:259–268

    Article  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  PubMed  CAS  Google Scholar 

  • Miadlikowska J, Lutzoni F (2000) Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int J Plant Sci 161:925–958

    Article  CAS  Google Scholar 

  • Miadlikowska J, Lutzoni F (2004) Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. Am J Bot 91:449–464

    Article  PubMed  CAS  Google Scholar 

  • Miadlikowska J, Arnold A, Lutzoni F (2004) Diversity of cryptic fungi inhabiting healthy lichen thalli in a temperate and tropical forest. Ecol Soc Am Annu Meet 89:349–350

    Google Scholar 

  • Miadlikowska J, Kauff F, Hofstetter V et al (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98:1088–1103

    Article  PubMed  CAS  Google Scholar 

  • Miao V, Coeffet-LeGal M-F, Brown D, Sinnemann S, Donaldson G, Davies J (2001) Genetic approaches to harvesting lichen products. Trends Biotechnol 19:349–355

    Article  PubMed  CAS  Google Scholar 

  • Millbank JW, Kershaw KA (1970) Nitrogen metabolism in lichens. III. Nitrogen fixation by internal cephalodia in Lobaria pulmonaria. New Phytol 69:595–597

    Article  CAS  Google Scholar 

  • Molina MC, Vicente C (1994) The distribution and mobility of the phycobiont in the thalli and apothecia of Usnea aurantiaco-atra Jacq. Phyton Arg 56:81–89

    Google Scholar 

  • Molina MC, DePriest PT, Lawrey JD (2005) Genetic variation in the widespread lichenicolous fungus Marchandiomyces corallinus. Mycologia 97:454–463

    Article  PubMed  CAS  Google Scholar 

  • Mollenhauer D (1992) Geosiphon pyriforme. In: Reisser W (ed) Algae and symbioses. Biopress, Bristol, pp 339–351

    Google Scholar 

  • Mollenhauer D, Mollenhauer R, Kluge M (1996) Studies on initiation and development of the partner association in Geosiphon pyriforme (Kütz.) v. Wettstein, a unique endocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme (Kütz.) Hariot. Protoplasma 193:3–9

    Article  Google Scholar 

  • Motiejûnaitë J, Jucevièienë N (2005) Epidemiology of the fungus Athelia arachnoidea in epiphytic communities of broadleaved forests under strong anthropogenic impact. Ekologija 4:28–34

    Google Scholar 

  • Mueller UG, Wolf-Mueller B (1991) Epiphyll deterrence to the leafcutter ant Atta cephalotes. Oecologia 86:36–39

    Article  Google Scholar 

  • Muggia L, Hafellner J, Wirtz N, Hawksworth DL, Grube M (2007) The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol Res 112:50–56

    Article  PubMed  CAS  Google Scholar 

  • Muggia L, Gueidan C, Grube M (2010) Phylogenetic placement of some morphologically unusual members of Verrucariales. Mycologia 102:835–846

    Article  PubMed  CAS  Google Scholar 

  • Mukhtar A, Garty J, Galun M (1994) Does the lichen alga Trebouxia occur free-living in nature: further immunological evidence. Symbiosis 17:247–253

    Google Scholar 

  • Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16

    Article  PubMed  Google Scholar 

  • Mushegian AA, Peterson CN, Baker CCM, Pringle A (2011) Bacterial diversity across individual lichens. Appl Environ Microbiol 77:4249–4252

    Article  PubMed  CAS  Google Scholar 

  • Nash TH (2008) Nitrogen, its metabolism and potential contribution ro ecosystems. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 216–233

    Chapter  Google Scholar 

  • Nelsen MP, Gargas A (2009a) Assessing clonality and chemotype monophyly in Thamnolia vermicularis (Icmadophilaceae). Bryologist 112:42–53

    Article  Google Scholar 

  • Nelsen MP, Gargas A (2009b) Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). Bryologist 112:404–417

    Article  Google Scholar 

  • Nelsen MP, Lücking R, Grube M et al (2009) Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Stud Mycol 64:135–144

    Article  PubMed  CAS  Google Scholar 

  • Nelson SC (2008) Cephaleuros species, the plant parasitic green algae. Plant Dis 43:1–6

    Google Scholar 

  • Neustupa J (2003) The genus Phycopeltis (Trentepohliales, Chlorophyta) from tropical Southeast Asia. Nova Hedwigia 76:487–505

    Article  Google Scholar 

  • Nyati S (2006). Photobiont diversity in Teloschistaceae (Lecanoromycetes) [PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät]. Zürich: Universität Zürich.

    Google Scholar 

  • Nyati S, Beck A, Honegger R (2007) Fine structure and phylogeny of green algal photobionts in the microfilamentous genus Psoroglaena (Verrucariaceae, lichen-forming ascomycetes). Plant Biol 9:390–399

    Article  PubMed  CAS  Google Scholar 

  • Nybakken L, Julkunen-Titto R (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38:477–485

    Article  Google Scholar 

  • Nybakken L, Solhaug KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216

    Article  PubMed  Google Scholar 

  • Nybakken L, Helmersen A-M, Gauslaa Y, Selås V (2010) Lichen compounds restrain lichen feeding by bank voles (Myodes glareolus). J Chem Ecol 36:298–304

    Article  PubMed  CAS  Google Scholar 

  • O’Brien H, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378

    Article  Google Scholar 

  • Ohmura Y, Kawachi M, Kasai F, Watanabe M (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109:43–59

    Article  CAS  Google Scholar 

  • Otalora MAG, Aragón G, Molina MC, Martínez I, Lutzoni F (2010) Disentangling the Collema–Leptogium complex through a molecular phylogenetic study of the Collemataceae (Peltigerales, lichen-forming Ascomycota). Mycologia 102:279–290

    Article  PubMed  CAS  Google Scholar 

  • Ott S (1987) Reproductive strategies in lichens. Bibl Lichenol 25:81–93

    Google Scholar 

  • Ott S, Przewosnik R, Sojo F, Jahns HM (1997) The nature of cephalodia in Placopsis contortuplicatus and other species of the genus. Bibl Lichenol 67:69–84

    Google Scholar 

  • Pacioni G, Leonardi M, Aimola P, Ragnelli AM, Rubini A, Paolocci F (2007) Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycol Res 111:1450–1460

    Article  PubMed  CAS  Google Scholar 

  • Palmqvist K, Dahlman L, Jonsson AV, Nash TH (2008) The carbon economy of lichens. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 182–215

    Chapter  Google Scholar 

  • Pankewitz F, Zöllmer A, Gräser Y, Hilker M (2007) Anthraquinones as defensive compounds in eggs of Galerucini leaf beetles: Biosynthesis by the beetles. Arch Insect Biochem 662:98–108

    Article  CAS  Google Scholar 

  • Pannewitz S, Schlensog M, Green TGA, Sancho LG, Schroeter B (2003) Are lichens active under snow in Continental Antarctica? Oecologia 135:30–38

    PubMed  Google Scholar 

  • Paranagama PA, Wijeratne EM, Burns AM et al (2007a) Heptaketides from Corynespora sp. Inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. J Nat Prod 70:1700–1705

    Article  PubMed  CAS  Google Scholar 

  • Paranagama PA, Wijeratne EMK, Gunatilaka MK, Arnold AE, Gunatilaka AAL (2007b) Bioactive and other naphthopyrans from Corynespora sp. Occurring in Usnea cavernosa: first report of metabolites of an endolichenic fungus. J Nat Prod 70:1700–1705

    Article  PubMed  CAS  Google Scholar 

  • Pérez FL (1997) Microbiotic crusts in the high equatorial Andes and their influence on paramo soils. Catena 31:173–198

    Article  Google Scholar 

  • Pérez-Ortega S, de los Ríos A, Crespo A, Sancho LG (2010) Symbiotic lifestyle and phylogenetic relationships of the bionts of Mastodia tessellata (Ascomycota, incertae sedis). Am J Bot 97:738–752

    Article  PubMed  Google Scholar 

  • Peterson EB (2000) An overlooked fossil lichen (Lobariaceae). Lichenolgist 32:289–300

    Google Scholar 

  • Petrini O, Hake U, Dreyfuss MM (1990) An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451

    Article  Google Scholar 

  • Piercey-Normore M (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol 169:331–344

    Article  PubMed  CAS  Google Scholar 

  • Pivato B, Offre P, Marchelli S et al (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90

    Article  PubMed  Google Scholar 

  • Platt JL, Spatafora JW (1999) A re-examination of generic concepts of baeomycetoid lichens based on phylogenetic analyses of nuclear SSU and LSU ribosomal DNA. Lichenologist 31:409–418

    Google Scholar 

  • Platt JL, Spatafora JW (2000) Evolutionary relationships of nonsexual lichenized fungi: molecular phylogenetic hypotheses for the genera Siphula and Thamnolia from SSU and LSU rDNA. Mycologia 92:475–487

    Article  CAS  Google Scholar 

  • Poelt J (1970) Das Konzept der Artenpaare bei den Flechten. Flechtensymposion 1969. Vorträge im Gesamtgebiet der Botanik. Dtsch Bot Ges NF 4:187–198

    Google Scholar 

  • Poelt J, Huneck S (1968) Lecanora vinetorum nova spec., ihre Vergesellschaftung, ihre Ökologie und ihre Chemie. Österr Bot Z 115:411–422

    Article  CAS  Google Scholar 

  • Poelt J, Mayrhofer H (1988) Ueber Cyanotrophie bei Flechten. Plant Syst Evol 158:265–281

    Article  Google Scholar 

  • Poelt J, Vězda A (1990) Ueber kurzlebige Flechten. Bibl Lichenol 38:377–394

    Google Scholar 

  • Poinar GO, Peterson EB, Platt JL (2000) Fossil Parmelia in New World amber. Lichenologist 32:263–269

    Article  Google Scholar 

  • Pöykkö H, Bačkor M, Bencúrová E, Molcanová V, Bačkorová M, Hyvärinen M (2010) Host use of a specialist lichen-feeder: dealing with lichen secondary metabolites. Oecologia 164:423–430

    Article  PubMed  Google Scholar 

  • Prasse R, Bornkamm R (2000) Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecol 150:65–75

    Article  Google Scholar 

  • Puel F, Largeau C, Giraud G (2008) Ocurrence of a resistant biopolymer in the outer walls of the parasitic alga Prototheca wickerhamii (Chlorococcales): ultrastructural and chemical studies. J Phycol 23:649–656

    Article  Google Scholar 

  • Purvis OW, Pawlik-Skowrońska B (2008) Lichens and metals. In: Avery S, Stratford M, van West P (eds) Stress in yeasts and filamentous fungi. Elsevier, Amsterdam, pp 175–200

    Chapter  Google Scholar 

  • Purvis OW, Chimonides PDJ, Jeffries TE, Jones GC, Rusu A-M, Read H (2007) Multi-element composition of historical lichen collections and bark samples, indicators of changing atmospheric conditions. Atmos Environ 41:72–80

    Article  CAS  Google Scholar 

  • Qin JG (2010) Hydrocarbons from algae. In: Timmis KN, McGenity T, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg New York, pp 2817–2826

    Chapter  Google Scholar 

  • Rai AN, Bergman B, Rasmussen U (eds) (2002) Cyanobacteria in symbiosis. http://books.google.com/books/about/Cyanobacteria_in_symbiosis.html?id=HLAx7OhkAmcC. Cited 1 July 2011

  • Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060

    Article  PubMed  CAS  Google Scholar 

  • Richardson DHS (1999) War in the world of lichens: parasitism and symbiosis as exemplified by lichens and lichenicolous fungi. Mycol Res 103:641–650

    Article  Google Scholar 

  • Ridout CJ (2009) Profiles in pathogenesis and mutualism: powdery mildews. In: Deising HB (ed) The Mycota V, part 1, plant relationships. Springer, Berlin Heidelberg New York, pp 51–68

    Google Scholar 

  • Rikkinen J (2003) Calicioid lichens from European Tertiary amber. Mycologia 95:1032–1036

    Article  PubMed  Google Scholar 

  • Rikkinen J, Poinar GO (2002) Fossilised Anzia (Lecanorales, lichen-forming Ascomycota) from European Tertiary amber. Mycol Res 106:984–990

    Article  Google Scholar 

  • Rikkinen J, Poinar GO (2008) A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. J Exp Bot 59:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Rindi F, Guiry MD (2002) The genus Phycopeltis (Trentepohliaceae, Chlorophyta) in Ireland: a taxonomic and distributional reassessment. Phycologia 41:421–431

    Article  Google Scholar 

  • Rindi F, Guiry MD (2003) Composition and distribution of subaerial algal assemblages in Galway city, Western Ireland. Cryptog Algol 24:245–267

    Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Rogers RW, Lange RT, Nicholas DJD (1966) Nitrogen fixation by lichens of arid soil crusts. Nature 209:96–97

    Article  Google Scholar 

  • Rolstad J, Rolstad E (2008) Intercalary growth causes geometric length expansion in Methuselah’s beard lichen (Usnea longissima). Botany 86:1224–1232

    Article  Google Scholar 

  • Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized ascomycetes) along a transect of the Antarctic peninsula. Mol Biol Evol 19:1209–1217

    Article  PubMed  CAS  Google Scholar 

  • Rosentreter R, Belnap J (2001) Biological soil crusts of North America. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 31–50

    Google Scholar 

  • Rosentreter R, Bowler M, Belnap J (2007) A field guide to biological soil crusts of western U.S. drylands. US Government Printing Office, Denver

    Google Scholar 

  • Sancho LG, Pintado A (2004) Evidence of high annual growth rate for lichens in the maritime Antarctic. Polar Biol 27:312–319

    Article  Google Scholar 

  • Sancho LG, de la Torre R, Horneck G et al (2007a) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454

    Article  PubMed  Google Scholar 

  • Sancho LG, Green TGA, Pintado A (2007b) Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora 202:667–673

    Article  Google Scholar 

  • Sancho LG, de la Torre R, Pintado A (2008) Lichens, new and promising material from experiments in astrobiology. Fungal Biol Rev 22:103–109

    Article  Google Scholar 

  • Sanders W (1989) Growth and development of the reticulate thallus in the lichen Ramalina menziesii. Amer J Bot 76:666–678

    Article  Google Scholar 

  • Sanders W (1992) Comparative in situ studies of thallus net development in morphologically distinct populations of the lichen Ramalina menziesii. Bryologist 95:192–204

    Article  Google Scholar 

  • Sanders W (2001) Preliminary light microscope observations of fungal and algal colonization and lichen thallus initiation on glass slides placed near foliicolous lichen communities within a lowland tropical forest. Symbiosis 31:85–94

    Google Scholar 

  • Sanders W (2002) In situ development of the foliicolous lichen Phyllophiale (Trichotheliaceae) from propagule germination to propagule production. Am J Bot 89:1741–1746

    Article  PubMed  Google Scholar 

  • Sanders W (2005) Observing microscopic phases of lichen life cycles on transparent substrata placed in situ. Lichenologist 37:373–382

    Article  Google Scholar 

  • Sanders WB (2006) A feeling for the superorganism: expression of plant form in the lichen thallus. Bot J Linn Soc 150:89–99

    Article  Google Scholar 

  • Sanders WB, Ascaso C (1995) Reiterative production and deformation of cell walls in expanding thallus nets of the lichen Ramalina menziesii (Lecanorales, Ascomycetes). Am J Bot 82:1358–1366

    Article  Google Scholar 

  • Sanders WB, Ascaso C (1997) Fine structural features of rhizomorphs (sensu lato) produced by four species of lichen fungi. Mycol Res 101:319–328

    Article  Google Scholar 

  • Sanders WB, Lücking R (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytol 155:425–435

    Article  Google Scholar 

  • Sanders WB, Ascaso C, Wierzchos J (1994) Physical interactions of two rhizomorph-forming lichens with their rock substrate. Bot Acta 107:432–439

    Google Scholar 

  • Sanders WB, Moe RL, Ascaso C (2004) The intertidal marine lichen formed by the pyrenomycete fungus Verrucaria tavaresiae (Ascomycotina) and the brown alga Petroderma maculiforme (Phaeophyceae): thallus organization and symbiont interaction. Am J Bot 91:511–522

    Article  PubMed  Google Scholar 

  • Sanders WB, Moe RL, Ascaso C (2005) Ultrastructural study of the brown alga Petroderma maculiforme (Phaeophyceae) in the free-living state and in lichen symbiosis with the intertidal marine fungus Verrucaria tavaresiae (Ascomycotina). Eur J Phycol 40:353–361

    Article  CAS  Google Scholar 

  • Schardl CL, Scott B, Florea S, Zhang D (2009) Epichloë endophytes: clavicipitaceous symbionts of grasses. In: Deising HB (ed) The Mycota IX, Plant relationships. Springer, Berlin Heidelberg New York, pp 276–306

    Chapter  Google Scholar 

  • Scheidegger C (1994) Low temperature scanning electron microscopy: the location of free and perturbed water and its role in the morphology of the lichen symbionts. Cryptog Bot 4:290–299

    Google Scholar 

  • Scheidegger C, Schroeter B, Frey B (1995) Structural and functional processes during water vapour uptake and desiccation in selected lichens with green algal photobionts. Planta 197:399–409

    Article  CAS  Google Scholar 

  • Scherrer S, Honegger R (2003) Inter- and intraspecific variation of homologous hydrophobin (H1) gene sequences among Xanthoria spp. (lichen-forming ascomycetes). New Phytol 158:375–389

    Article  CAS  Google Scholar 

  • Scherrer S, De Vries OMH, Dudler R, Wessels JGH, Honegger R (2000) Interfacial self-assembly of fungal hydrophobins of the lichen-forming ascomycetes Xanthoria parietina and X. ectaneoides. Fungal Genet Biol 30:81–93

    Article  PubMed  CAS  Google Scholar 

  • Scherrer S, Haisch A, Honegger R (2002) Characterization and expression of XPH1, the hydrophobin gene of the lichen-forming ascomycete Xanthoria parietina. New Phytol 154:175–184

    Article  CAS  Google Scholar 

  • Schmitt I, Lumbsch HT (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One 4(e4437):1–8

    Article  Google Scholar 

  • Schmitt I, Mueller G, Lumbsch HT (2005) Ascoma morphology is homoplaseous and phylogenetically misleading in some pyrenocarpous lichens. Mycologia 97:362–374

    Article  PubMed  CAS  Google Scholar 

  • Schmitt I, del Prado R, Grube M, Lumbsch HT (2009) Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Mol Phylogenet Evol 52:34–44

    Article  PubMed  CAS  Google Scholar 

  • Schmull M, Miadlikowska J, Pelzer M et al (2011) Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia 103:983–1003

    Article  PubMed  Google Scholar 

  • Schoch CL, Crous PW, Groenewald JZ et al (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15

    Article  PubMed  CAS  Google Scholar 

  • Schroeter B, Scheidegger C (1995) Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytol 131:273–285

    Article  Google Scholar 

  • Schultz C (2006) Remote sensing the distribution and spatiotemporal changes of major lichen communities in the Central Namib Desert. Inauguraldissertation im Fachbereich Biologie. Universität Kaiserslautern, Kaiserslautern, pp 1–320

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schüssler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244:75–83

    Article  Google Scholar 

  • Schwendener S (1867) Ueber die wahre Natur der Flechtengonidien. Verh Schweiz Naturforsch Ges 51:88–90

    Google Scholar 

  • Schwendener S (1869) Die Algentypen der Flechtengonidien. Programm für die Rectoratsfeier der Universität. Universitätsbuchdruckerei C. Schultze, Basel

    Google Scholar 

  • Sedia EG, Ehrenfeld JG (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100:447–458

    Article  Google Scholar 

  • Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinale M, Onofri S (2010) Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 33:71–83

    Article  Google Scholar 

  • Seymour FA, Crittenden PD, Dyer PS (2005) Sex in the extremes: lichen-forming fungi. Mycologist 19:51–58

    Article  Google Scholar 

  • Shirtcliffe NJ, Brian Pyatt F, Newton MI, McHale G (2006) A lichen protected by a super-hydrophobic and breathable structure. J Plant Physiol 163:1193–1197

    Article  PubMed  CAS  Google Scholar 

  • Sikaroodi M, Lawrey JD, Hawksworth DL, Depriest PT (2001) The phylogenetic position of selected lichenicolous fungi: Hobsonia, Illosporium, and Marchandiomyces. Mycol Res 105:453–446

    Article  CAS  Google Scholar 

  • Sinha RP, Singh SP, Häder D-P (2007) Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J Photochem Photobiol B 89:29–35

    Article  PubMed  CAS  Google Scholar 

  • Sipman HJM (1994) Foliicolous lichens on plastic tape. Lichenologist 26:311–312

    Google Scholar 

  • Skaloud P, Peksa O (2008) Comparative study of chloroplast morphology and ontogeny in Asterochloris (Trebouxiophyceae, Chlorophyta). Biologia 3:869–876

    Google Scholar 

  • Skaloud P, Peksa O (2010) Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol Phylogenet Evol 54:36–46

    Article  PubMed  Google Scholar 

  • Smith CW, Aptroot A, Coppins BJ et al (2009) The lichens of Great Britain and Ireland. NHBS/British Lichen Society, London

    Google Scholar 

  • Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100

    Article  CAS  Google Scholar 

  • Spatafora J (2007) Pezizomycotina. http://tolweb.org/Pezizomycotina/29296/2007.12.19

  • Spatafora JW, Sung G-H, Johnson D et al (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028

    Article  PubMed  CAS  Google Scholar 

  • Stahl E (1877) Beiträge zur Entwickelungsgeschichte der Flechten. II. Über die Bedeutung der Hymenialgonidien. Arthur Felix, Leipzig, pp 1–32

    Google Scholar 

  • Stenroos S, Stocker-Wörgötter E, Yoshimura I, Myllys L, Thell A, Hyvönen J (2003) Culture experiments and DNA sequence data confirm the identity of Lobaria photomorphs. Can J Bot 81:232–247

    Article  CAS  Google Scholar 

  • Stocker-Wörgötter E (2001) Experimental lichenology and microbiology of lichens: culture experiments, secondary chemistry of cultured mycobionts, resynthesis, and thallus morphogenesis. Bryologist 104:576–581

    Article  Google Scholar 

  • Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200

    Article  PubMed  CAS  Google Scholar 

  • Stocker-Wörgötter E, Hager A (2008) Culture methods for lichens and lichen symbionts. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 353–363

    Chapter  Google Scholar 

  • Stone BA, Clarke AE (1992) The chemistry and biology of (1-3)-beta-glucans. La Trobe University Press, Melbourne

    Google Scholar 

  • Sun HJ, DePriest PT, Gargas A, Rossman AY, Friedmann EI (2002) Pestalotiopsis maculans: a dominant parasymbiont in North American lichens. Symbiosis 33:215–226

    Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Hariharan G, Balaji P (2005) Occurrence of non-obligate microfungi inside lichen thalli. Sydowia 57:119–129

    Google Scholar 

  • Takano K, Ishikawa Y, Mikami H, Igarashi S, Hino S, Yoshioka T (2008) Fungal infection for cyanobacterium Anabaena smithii by two chytrids in eutrophic region of large reservoir Lake Shumarinai, Hokkaido, Japan. Limnology 9:213–218

    Article  CAS  Google Scholar 

  • Talbot NJ (1998) Plants and fungi: friends and enemies. Trends Microbiol 6:250–251

    Article  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    Article  PubMed  CAS  Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573

    Article  Google Scholar 

  • Taylor T, Hass H, Kerp H (1997) A cyanolichen from the Lower Devonian Rhynie Chert. Am J Bot 84:992–1004

    Article  PubMed  CAS  Google Scholar 

  • Thomas B (2009) Lichens and Katrina. Loyola University Center for Environmental Communication. http://loyno.edu/lucec/natural-history-writings/lichens-and-katrina. Cited 1 July 2011

  • Tomescu AMF, Rothwell GW, Honegger R (2006) Cyanobacterial macrophytes in an Early Silurian (Llandovery) continental biota: Passage Creek, lower Mansanutten Sandstone, Virginia, USA. Lethaia 39:329–338

    Article  Google Scholar 

  • Tormo R, Recio D, Silva I, Muñoz A (2001) A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. Eur J Phycol 36:385–390

    Article  Google Scholar 

  • Trapero A, Romero MA, Varo R, Sánchez ME (2003) First report of Pestalotiopsis maculans causing necrotic leaf spots in nursery plants of Arbutus unedo and Ceratonia siliqua in Spain. Plant Dis 87:1263

    Article  Google Scholar 

  • Trembley ML, Ringli C, Honegger R (2002a) Differential expression of hydrophobins DGH1, DGH2 and DGH3 and immunolocalization of DGH1 in strata of the lichenized basidiocarp of Dictyonema glabratum. New Phytol 154:185–195

    Article  CAS  Google Scholar 

  • Trembley ML, Ringli C, Honegger R (2002b) Hydrophobins DGH1, DGH2, and DGH3 in the lichen-forming basidiomycete Dictyonema glabratum. Fungal Genet Biol 35:247–259

    Article  PubMed  CAS  Google Scholar 

  • Trembley ML, Ringli C, Honegger R (2002c) Morphological and molecular analysis of early stages in the resynthesis of the lichen Baeomyces rufus. Mycol Res 106:768–776

    Article  CAS  Google Scholar 

  • Tschermak-Woess E (1978) Myrmecia reticulata as a phycobiont and free-living – free-living Trebouxia – the problem of Stenocybe septata. Lichenologist 10:69–79

    Article  Google Scholar 

  • Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) Handbook of lichenology, vol 1. CRC, Boca Raton, pp 39–92

    Google Scholar 

  • Tschermak-Woess E, Poelt J (1976) Vezdaea, a peculiar lichen genus, and its phycobiont. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 89–105

    Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J, Arnold AE (2010) Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb Ecol 60:340–353

    Article  PubMed  Google Scholar 

  • van Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenogist 34:141–154

    Google Scholar 

  • Voegele RT, Hahn M, Mendgen K (2009) The Uredinales: cytology, biochemistry, and molecular biology. In: Deising H (ed) The Mycota, vol V, Plant relationships. Springer, Berlin Heidelberg New York, pp 69–98

    Google Scholar 

  • Voisey CR (2010) Intercalary growth in hyphae of filamentous fungi. Fungal Biol Rev 24:123–131

    Article  Google Scholar 

  • Wang Y, Niu S, Liu S, Guo L, Che Y (2010) The first naturally occurring thiepinols and thienol from an endolichenic fungus Coniochaeta sp. Org Lett 12:5081–5083

    Article  PubMed  CAS  Google Scholar 

  • Wedin M, Tehler A, Gargas A (1998) Phylogenetic relationships of Sphaerophoraceae (Ascomycetes) inferred from SSU rDNA sequences. Plant Syst Evol 209:75–83

    Article  Google Scholar 

  • Wedin M, Döring H, Nordin A, Tibell L (2000) Small subunit rDNA phylogeny shows the lichen families Caliciaceae and Physciaceae (Lecanorales, Ascomycotina) to form a monophyletic group. Can J Bot 78:246–254

    CAS  Google Scholar 

  • Wedin M, Baloch E, Grube M (2002) Parsimony analyses of mtSSU and nITS rDNA sequences reveal the natural relationships of the lichen families Physciaceae and Caliciaceae. Taxon 51:655–660

    Article  Google Scholar 

  • Wedin M, Wiklund E, Jørgensen PM, Ekman S (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Mol Phylogenet Evol 53:862–871

    Article  PubMed  Google Scholar 

  • Werth S, Sork VL (2010) Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. Am J Bot 97:821–830

    Article  PubMed  CAS  Google Scholar 

  • Wessels JGH (1997) Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45

    Article  PubMed  CAS  Google Scholar 

  • Whiteford J, Spanu P (2002) Hydrophobins and the interactions between fungi and plants. Mol Plant Pathol 3:391–400

    Article  PubMed  CAS  Google Scholar 

  • Wiermann R, Ahlers F, Schmitz-Thom I (2001) Sporopollenin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers, vol 1. Wiley-VCH, Weinheim, pp 209–229

    Google Scholar 

  • Wijeratne EM, Bashyal BP, Gunatilaka MK, Arnold AE, Gunatilaka AA (2010) Maximizing chemical diversity of fungal metabolites: biogenetically related heptaketides of the endolichenic fungus Corynespora sp. J Nat Prod 73:1156–1159

    Article  PubMed  CAS  Google Scholar 

  • Winchester V (1988) An assessment of lichenometry as a method for dating recent stone movements in two stone circles in Cumbria and Oxfordshire. Bot J Linn Soc 96:57–68

    Article  Google Scholar 

  • Winchester V, Harrison S (2000) Dendrochronology and lichenometry: colonization, growth rates and dating of geomorphological events on the east side of the North Patagonia Icefield, Chile. Geomorphology 34:181–194

    Article  Google Scholar 

  • Wirth V (1985) Zur Ausbreitung, Herkunft und Ökologie anthropogen geförderter Rinden- und Holzflechten. Tüxenia 5:523–536

    Google Scholar 

  • Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    Article  PubMed  Google Scholar 

  • Wösten HAB, Schuren FHJ, Wessels JGH (1994) Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13:5848–5854

    PubMed  Google Scholar 

  • Xu H, Deckert RJ, Garbary DJ (2008) Ascophyllum and its symbionts. X. Ultrastructure of the interaction between A. Nodosum (phaeophyceae) and mycophycias ascophylli (ascomycetes). Botany 86:185–193

    Article  Google Scholar 

  • Yahr R, Vilgalys R, Depriest PT (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol Ecol 13:3367–3378

    Article  PubMed  CAS  Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Zedda L, Rambold G (2009) Diversity and ecology of soil lichens in the Knersvlakte (South Africa). Bryologist 112:19–29

    Article  Google Scholar 

  • Zhang YM, Chen J, Wang L, Wang XQ, Gu ZH (2007) The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. J Arid Environ 68:599–610

    Article  Google Scholar 

  • Zhang F, Liu S, Lu X, Guo L, Zhang H, Che Y (2009) Allenyl and alkynyl phenyl ethers from the endolichenic fungus Neurospora terricola. J Nat Prod 72:1782–1785

    Article  PubMed  CAS  Google Scholar 

  • Ziegler R (1997) Fossil organosilicon compounds- a type of silicification diagenetically developed in Triassic vascular plant cuticles and thallophytes. Documenta naturae 112, vol 1. Documenta Naturae, Munich, pp 1–24

    Google Scholar 

  • Ziegler R (2002) Fossiler Pflanzenmoder aus dem Keuper. Documenta naturae 112, vol 2. Documenta Naturae, Munich, pp 1–65

    Google Scholar 

Download references

Acknowledgements

My sincere thanks are due to my colleagues David L. Hawksworth for helpful information on lichenicolous fungi, to Burkhard Büdel and Robert Lücking for providing specimens (Peltula and Psoroglaena spp.), to Reinhard Berndt for Fig. 15.1y, to my husband Thomas G. Honegger for patient help with all computer problems, to the editor, Prof. Bertold Hock for his encouragement, patience and help, to the project manager, Athiappan Kumar, for his valuable support, to the Directorium of the Institute of Plant Biology of the University of Zürich for providing access to the infrastructure beyond my retirement and to the Swiss National Science Foundation for generous financial support (grant 3100A0-116597).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Honegger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Honegger, R. (2012). 15 The Symbiotic Phenotype of Lichen-Forming Ascomycetes and Their Endo- and Epibionts. In: Hock, B. (eds) Fungal Associations. The Mycota, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30826-0_15

Download citation

Publish with us

Policies and ethics