Skip to main content
Log in

Community Analysis Reveals Close Affinities Between Endophytic and Endolichenic Fungi in Mosses and Lichens

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Endolichenic fungi live in close association with algal photobionts inside asymptomatic lichen thalli and resemble fungal endophytes of plants in terms of taxonomy, diversity, transmission mode, and evolutionary history. This similarity has led to uncertainty regarding the distinctiveness of endolichenic fungi compared with endophytes. Here, we evaluate whether these fungi represent distinct ecological guilds or a single guild of flexible symbiotrophs capable of colonizing plants or lichens indiscriminately. Culturable fungi were sampled exhaustively from replicate sets of phylogenetically diverse plants and lichens in three microsites in a montane forest in southeastern Arizona (USA). Intensive sampling combined with a small spatial scale permitted us to decouple spatial heterogeneity from host association and to sample communities from living leaves, dead leaves, and lichen thalli to statistical completion. Characterization using data from the nuclear ribosomal internal transcribed spacer and partial large subunit (ITS-LSU rDNA) provided a first estimation of host and substrate use for 960 isolates representing five classes and approximately 16 orders, 32 families, and 65 genera of Pezizomycotina. We found that fungal communities differ at a broad taxonomic level as a function of the phylogenetic placement of their plant or lichen hosts. Endolichenic fungal assemblages differed as a function of lichen taxonomy, rather than substrate, growth form, or photobiont. In plants, fungal communities were structured more by plant lineage than by the living vs. senescent status of the leaf. We found no evidence that endolichenic fungi are saprotrophic fungi that have been “entrapped” by lichen thalli. Instead, our study reveals the distinctiveness of endolichenic communities relative to those in living and dead plant tissues, with one notable exception: we identify, for the first time, an ecologically flexible group of symbionts that occurs both as endolichenic fungi and as endophytes of mosses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  2. Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Article  Google Scholar 

  3. Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  CAS  PubMed  Google Scholar 

  4. Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  CAS  PubMed  Google Scholar 

  5. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  6. Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297

    Article  CAS  PubMed  Google Scholar 

  7. Barr DJS (2001) Chytridiomycota. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol. 7A. Springer, New York

    Google Scholar 

  8. Barton AM (1994) Gradient analysis of relationships among fire, environment, and vegetation in a southwestern USA mountain range. Bulletin of the Torrey Botantical Club 121:251–265

    Article  Google Scholar 

  9. Berbee ML (2001) The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant Pathol 59:165–187

    Article  CAS  Google Scholar 

  10. During HJ, Van Tooren BF (1990) Bryophyte interactions with other plants. Bot J Linn Soc 104:79–98

    Article  Google Scholar 

  11. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    CAS  PubMed  Google Scholar 

  12. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  13. Faeth SH, Hammon KE (1997) Fungal endophytes in oak trees: long-term patterns of abundance and associations with leafminers. Ecology 78:810–819

    Article  Google Scholar 

  14. Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58

    Article  Google Scholar 

  15. Fröhlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    Article  Google Scholar 

  16. Fröhlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  17. Gallery RE, Dalling JW, Arnold AE (2007) Diversity, host affinity, and distribution of seed-infecting fungi: a case study with Cecropia. Ecology 88:582–588

    Article  PubMed  Google Scholar 

  18. Gamboa MA, Bayman P (2001) Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae). Biotropica 33:352–360

    Google Scholar 

  19. Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci USA 101:10107–10112

    Article  CAS  PubMed  Google Scholar 

  20. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity of basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  21. Girlanda M, Isocrono D, Bianco C, Luppi-Mosca AM (1997) Two foliose lichens as microfungal ecological niches. Mycologia 89:531–536

    Article  Google Scholar 

  22. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  CAS  PubMed  Google Scholar 

  23. Henry T, Iwen PC, Hinrichs SH (2000) Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microbiol 38:1510–1515

    CAS  PubMed  Google Scholar 

  24. Herre EA, Mejia LC, Kyllo DA, Rojas EI, Maynard Z, Butler A, Van Bael SA (2007) Ecological implications of anti-pathogen effects of tropical endophytes and mycorrhizae. Ecology 88:550–558

    Article  PubMed  Google Scholar 

  25. Hibbett DS, Gilbert L-B, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508

    Article  CAS  PubMed  Google Scholar 

  26. Higgins KLH, Coley P, Kursar T, Arnold AE (2010) Culturing and direct PCR reveal highly diverse and host generalist endophytes in tropical forest grasses. Mycologia (in press)

  27. Hoffman M, Arnold AE (2008) Geography and host identity interact to shape communities of endophytic fungi in cupressaceous trees. Mycol Res 112:331–344

    Article  CAS  PubMed  Google Scholar 

  28. Hoffman M, Arnold AE (2010) Diverse bacteria inhabit hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075

    Google Scholar 

  29. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schussler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lucking R, Budel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  30. Kannangara BTSDP, Rajapaksha RSCG, Paranagama PA (2009) Nature and bioactivities of endolichenic fungi in Pseudocyphellaria sp., Parmotrema sp. and Usnea sp. at Hakgala montane forest in Sri Lanka. Lett Appl Microbiol 48:203–209

    Article  CAS  PubMed  Google Scholar 

  31. Lawrey JD, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106:80–120

    Article  Google Scholar 

  32. Li W-C, Zhou J, Guo S-Y, Guo L-D (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  33. Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  CAS  PubMed  Google Scholar 

  34. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  35. Nickrent DL, Parkinson CL, Palmer JD, Duff RJ (2000) Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol 7:1885–1895

    Google Scholar 

  36. Nilsson RH, Kristiansson E, Ryberg M, Larsson K-H (2005) Approaching the taxonomic affiliation of unidentified sequences in public databases—an example from the mycorrhizal fungi. BMC Bioinform 6:178

    Article  Google Scholar 

  37. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinf 4:193–201

    Google Scholar 

  38. Petrini O, Hake U, Dreyfuss MM (1990) An anlaysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451

    Article  Google Scholar 

  39. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York

    Google Scholar 

  40. Poulin R (1998) Comparison of three estimators of species richness in parasite component communities. J Parasitol 84:485–490

    Article  CAS  PubMed  Google Scholar 

  41. Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    Article  PubMed  Google Scholar 

  42. Redecker D, Kodner R, Graham LE (2000) Glomelean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  43. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  44. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed  Google Scholar 

  45. Spatafora JW, Sung GH, Johnson D, Hesse C, O'Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lucking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Budel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028

    Article  CAS  PubMed  Google Scholar 

  46. Stone JK, Bacon CW, White JFJ (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophyes. Marcel Dekker, New York

    Google Scholar 

  47. Suryanarayanan TS, Thirunavukkarasu GN, Hariharan GN, Balaji P (2005) Occurrence of non-obligate microfungi inside lichen thalli. Sydowia 57:120–130

    Google Scholar 

  48. Taylor LR (1978) Bates, Williams, Hutchinson—a variety of diversities. In: Mound LA, Warloff N (eds) Diversity of insect faunas. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  49. Taylor TN, Krings M (2005) Fossil microorganisms and land plants: associations and interactions. Symbiosis 40:119–135

    CAS  Google Scholar 

  50. U'Ren JM, Dalling JW, Gallery RE, Maddison DR, Davis EC, Gibson CM, Arnold AE (2009) Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analyzing fungal environmental samples. Mycol Res 113:432–449

    Article  PubMed  Google Scholar 

  51. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    CAS  PubMed  Google Scholar 

  52. Vilgalys R (2003) Taxonomic misidentification in public DNA databases. New Phytol 160:4–5

    Article  CAS  Google Scholar 

  53. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego

    Google Scholar 

  54. Yu Y, Breitbart M, McNairnie P, Rohwer F (2006) FastGroupII: a web-based bioinformatics platform for analyses of large 16 S rDNA libraries. BMC Bioinform 7:57

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Science Foundation for supporting this research (DEB-0640996 to AEA, DEB-0640956 to FL, and an NSF-supported IGERT Fellowship in Genomics to JMU) and for fostering discussion that informed this work through the Fungal Environmental Sampling and Informatics Network (FESIN; DEB-0639048 to T. Bruns, K. Hughes, and AEA). We thank E. Gaya, A. Laetsch, F. Santos, M. Gunatilaka, M. Hoffman and M. del Olmo R. for technical assistance, D. R. Maddison for sharing pre-release versions of Mesquite and ChromaSeq, T. Wheeler and J. Stajich for computational assistance, R. J. Steidl for helpful discussion, R. Harris, B. Hodkinson, E. Gaya and S. Heidmarsson for assistance with lichen identifications, and J. Bronstein for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elizabeth Arnold.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Fig. S1

Excerpts from majority rule-consensus trees with posterior probability values generated from 10,000 post burn-in trees sampled during a Bayesian analysis of ITS-LSU rDNA data with GTR model of evolution demonstrating the congruence of ITS-LSU rDNA genotype groups based on Sequencher analyses of 95% and 100% sequence similarity. Name, host species, substrate, and OTU at both 95% and 100% sequence similarity are listed for each isolate. Nine isolates (a) and 23 isolates (b) from both plants and lichens were aligned in MUSCLE (default parameters) and the appropriate model of evolution was determined for each alignment using the Akaike Information Criterion (AIC) in ModelTest. Phylogenetic estimations were conducted for each alignment using the appropriate model of evolution using MrBayes 3.1.2 for 1 million generations each, using two independent runs (each with four chains) and sampling every 100th generation. To determine the burn-in for each analysis, the average standard deviation of the split frequencies was evaluated, as well as plots of –lnL values. Posterior probability values are shown on trees. Genotype groups based on 95% ITS-LSU rDNA similarity as calculated in Sequencher are conservative, in that individual genotype groups often contain within them more than one strongly supported phylogenetic group (DOC 6352 kb)

Fig. S2

Host-based accumulation curves (Sobs Mao Tau), 95% confidence intervals, and bootstrap estimates of richness, based on ITS-LSU rDNA OTU (95% sequence similarity) for a 36 OTU of endophytic fungi from living photosynthetic tissues of 33 individual plants; b 53 OTU of endolichenic fungi from living thalli of 30 lichens; c 32 OTU of fungi from dead leaves in canopies of 16 trees (dead leaf fungi (DLF)); and d 33 OTU of fungi from leaf litter beneath 16 trees (leaf litter fungi (LLF)) (DOC 3633 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

U’Ren, J.M., Lutzoni, F., Miadlikowska, J. et al. Community Analysis Reveals Close Affinities Between Endophytic and Endolichenic Fungi in Mosses and Lichens. Microb Ecol 60, 340–353 (2010). https://doi.org/10.1007/s00248-010-9698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9698-2

Keywords

Navigation