Skip to main content
Log in

Asymmetric Co-evolution in the Lichen Symbiosis Caused by a Limited Capacity for Adaptation in the Photobiont

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

It is proposed that lichen photobionts, compared to mycobionts, have very limited capacity to evolve adaptations to lichenization, so that the symbionts in lichens do not co-evolve. This is because lichens have (a) no sequential selection of photobiont cells from one lichen into another needed for Darwinian natural selection and (b) no photobiont sexual reproduction in the thallus. Molecular studies of lichen photobionts indicate no predictable patterns of photobiont lineages that occur in lichens so supporting this proposal. Any adaptation by photobionts accumulating beneficial mutations for lichenization is probably insignificant compared to the rate of mycobiont adaptation. This proposal poses questions for research relating the photobiont sexual cycle (genetic and cellular), the fate of photobiont lineages after lichenization, whether lineages of photobionts in thalli change with time, thallus formation by from spores as well as carbohydrate movement from photobionts to mycobionts and regulation of co-development of the symbionts in the thallus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ahmadjian, V. 1993a. The Lichen Symbiosis (2nd ed.). Wiley, New York.

    Google Scholar 

  • ———. 1993b. The lichen photobiont—what can it tell us about lichen systematics. Bryologist 96: 310–313

  • Aproot, A. & C. M. van Herk. 2007. Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution 146: 293–298.

    Article  Google Scholar 

  • Baloch, E. & M. Grube. 2006. Evolution and phylogenetic relationships within Porinaceae (Ostropomycetidae), focusing on foliicolous species. Mycological Research 110: 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Barraclough, T. G., D. Fontaneto, C. Ricci & E. A. Herniou. 2007. Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Molecular and Biological Evolution 24: 1952–1962.

    Article  CAS  Google Scholar 

  • Beck, A. & H. U. Koop. 2001. Analysis of the photobiont population in lichens using a single-cell manipulator. Symbiosis 31: 57–67.

    Google Scholar 

  • ———, T. Friedl & G. Rambold. 1998. Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies New Phytologist 139: 709–720.

  • ———, T. Kasalicky & G. Rambold. 2002. Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytologist 153: 317–326.

    Google Scholar 

  • Beiggi, S. & M. D. Piercey-Normore. (2007) Evolution of ITS ribosomal RNA secondary structures in fungal and algal symbionts of selected species of Cladonia sect. Cladonia (Cladoniaceae, Ascomycotina). Journal of Molecular Evolution 64: 528–542.

    Article  PubMed  CAS  Google Scholar 

  • Berg, C. C. & J. T. Wiebes. 1992. African fig trees and fig wasps. Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam.

    Google Scholar 

  • Birky, C. W., C. Wolf, H. Maughan, L. Herbertson & E. Henry. 2005. Speciation and selection without sex. Hydrobiologia 546: 29–45.

    Article  CAS  Google Scholar 

  • Blaha, J., E. Baloch & M. Grube. 2006. High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biological Journal of the Linnean Society 88: 283–293.

    Article  Google Scholar 

  • Cairney, J. W. G. 2000. Evolution of mycorrhiza systems. Naturwissenschaften 87: 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Castagnone-Sereno P. 2006. Genetic variability and adaptive evolution inparthenogenetic root-knot nematodes. Heredity 96: 282–289.

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro, L. M. C., R. A. Reis, L. M. Cruz, E. Stocker-Worgotter, M. Grube & M. Iacomini. 2005. Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. FEMS Microbiology Ecology 54: 381–390.

    Article  PubMed  CAS  Google Scholar 

  • de Meeûs, T., F. Prugnolle & P. Agnew. 2007. Asexual reproduction: genetics and evolutionary aspects. Cellular and Molecular Life Science 64: 1355–1372

    Article  Google Scholar 

  • DePriest, P. T. 2004. Early molecular investigations of lichen-forming symbionts:1986–2001. Annual Review of Microbiology 58: 273–301.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, C. J. & B. J. Coppins. 2007. Reproductive traits indicate successional dynamics of crustose lichen communities on aspen (Populus tremula L.) in Scotland. The Lichenologist 39: 377–391.

    Article  Google Scholar 

  • Fontaneto, D., E. A. Herniou, C. Boschetti, M. Caprioli, G. Melone, C. Ricci & T.G. Barraclough 2007. Independently evolving species in asexual bdelloid rotifers. PLoS Biology 5: 914–921 (www.plosbiology.org)

    Article  CAS  Google Scholar 

  • Friedl, T. & B. Büdel (1996) Photobionts. Pp. 8–23. In: Nash, T.H. (ed.), Lichen Biology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fröberg, L., L. O. Bjorn, A. Baur & B. Baur 2001. Viability of lichen photobionts after passing through the digestive tract of a land snail. Lichenologist 33: 543–545.

    Article  Google Scholar 

  • Guzow-Krzeminska, B. 2006. Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. Lichenologist 38: 469–476.

    Article  Google Scholar 

  • Hawksworth, D. L. 1987. Observations on three algicolous microfungi. Notes of the Royal Botanic Garden, Edinburgh 44: 549–560

    Google Scholar 

  • ———. 1988. The variety of fungal-algal symbioses, their evolutionary significance and the nature of lichens. Botanical Journal of the Linnean Society 96: 3–20

  • ——— & D. J. Hill. 1984. The Lichen-Forming Fungi. Blackie, Glasgow.

  • Hedenås, H., P. Blomberg & L. Ericson. 2007. Significance of old aspen (Populus tremula) trees for the occurrence of lichen photobionts. Biological Conservation 135: 380–387.

    Article  Google Scholar 

  • Helms G, T. Friedl, G. Rambold & H. Mayrhofer. 2001. Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33: 73–86.

    Article  Google Scholar 

  • Hill D. J. 1976. The physiology of the lichen symbiosis. Pp. 457–496. In: Brown D. H., Hawksworth D. L. & Bailey R. H. (eds.), Lichenology: Progress and Problems. Academic, London.

    Google Scholar 

  • ———. 1992a. An overlooked symbiosis. Photosynthesis Research 34: 339–340.

  • ———. 1992b. The co-ordination of development of symbionts in mutualistic symbiosis with reference to the cell cycle of the photobiont in lichens. Symbiosis 14: 325–333.

  • ———. 1994a. The cell cycle of the photobiont of the lichen Parmelia sulcata (Lecanorales, Ascomycotina) during the development of thallus lobes. Cryptogamic Botany 4 270–273.

  • ———. 1994b. The succession of lichens on gravestones: a preliminary investigation. Cryptogamic Botany 4: 179–186.

  • Honegger, R. 1993. The developmental biology of lichens. New Phytologist 125: 659–677

    Article  Google Scholar 

  • Hyvärinen, M., R. Hardling & J. Tuomi. 2002. Cyanobacterial lichen symbiosis: the fungal partner as an optimal harvester. Oikos 98: 498–504.

    Article  Google Scholar 

  • Kappen, L. 1994. The lichen, a mutualistic system—some mainly ecophysiological aspects. Cryptogamic Botany 4: 193–202.

    Google Scholar 

  • Kuhn, G., M. Hijri & I. R. Sanders. 2001. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414: 745–748.

    Article  PubMed  CAS  Google Scholar 

  • Law, R. & D. H. Lewis. 1983. Biotic environment and the maintenance of sex—some evidence from mutualisic symbiosis. Biological Journal of the Linnean Society 20: 249–276.

    Article  Google Scholar 

  • Lohtander, K., I. Oksanen & J. Rikkinen. 2003. Genetic diversity of green algal and cyanobacterial photobionts in Nephroma (Peltigerales). Lichenologist 35: 325–339.

    Article  Google Scholar 

  • Meeks, J. C. & J. Elhai. 2002. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiology and Molecular Biology Reviews 66: 94–121.

    Article  PubMed  CAS  Google Scholar 

  • Meier, F. A., S. Scherrer & R. Honegger. 2002. Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biological Journal of the Linnean Society 76: 259–268.

    Article  Google Scholar 

  • Muggia, L., M. Grube & M. Tretiach. 2008. A combined molecular and morphological approach to species delimitation in black-fruited, endolithic Caloplaca: high genetic and low morphological diversity. Mycological Research 112: 36–49.

    Article  PubMed  Google Scholar 

  • Nelsen, M. P., & A. Gargas. 2008. Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae) New Phytologist 177: 264–275.

    PubMed  CAS  Google Scholar 

  • O’Brien, H. E., J. Miadlikowska & F. Lutzoni. 2005. Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. European Journal of Phycology 40: 363–378.

    Article  Google Scholar 

  • Ohmura, Y., M. Kawachi, F. Kasai, M. M. Watanabe & S. Takeshita. 2006. Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109: 43–59.

    Article  CAS  Google Scholar 

  • Palmqvist, K. 2000. Carbon economy in lichens. New Phytologist 148: 11–36.

    Article  CAS  Google Scholar 

  • Piercey-Normore, M. D. 2006. The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytologist 169: 331–344.

    Article  PubMed  CAS  Google Scholar 

  • ——— & P. T. DePriest. 2001. Algal switching among lichen symbioses. American Journal of Botany 88: 1490–1498.

  • Proctor, M., P. Yeo & A. Lack. 1996. The Natural History of Pollination. HarperCollins, London.

    Google Scholar 

  • Rikkinen, J. 2002. Cyanobionts evolutionary overview. Pp.31–72. In: Rae, A. N. (ed.), Cyanobacteria in Symbiosis. Dordrecht: Kluwer.

    Google Scholar 

  • ———. 2003. Ecological and evolutionary role of photobiont-mediated guilds in lichens. Symbiosis 34: 99–110.

  • Sanders, W. B. 2001. Composite lichen thalli of Sticta sp. from Brazil, with morphologically similar lobes containing either a chlorobiont or a cyanobiont layer. Symbiosis 31: 47–55.

    Google Scholar 

  • ———, R. L. Moe & C. Ascaso. 2005. Ultrastructural study of the brown alga Petroderma maculiforme (Phaeophyceae) in the free-living state and in lichen symbiosis with the intertidal marine fungus Verrucaria tavaresiae (Ascomycotina). European Journal of Phycology 40: 353–361.

  • Sipman, H. J. M. & A. Aproot. 2001. Where are the missing lichens? Mycological Research 105: 1433–1439.

    Article  Google Scholar 

  • Slocum, R. D., V. Ahmadjian & K. C. Hildreth. 1980. Zoosporogenesis in Trebouxia-gelatinosa - ultrastructure potential for zoospore release and implications for the lichen association. Lichenologist 12: 173–187.

    Article  Google Scholar 

  • Smith, D. C. 1980. Mechanisms of nutrient movement between the lichen symbionts. Pp. 197–227. In: Cook. C. L., Pappas, P. W. & Rudolph, E. D. (eds.), Cellular Interactions in Symbiosis and Parasitism. Ohio State University Press, Columbus.

    Google Scholar 

  • Summerfield, T. C., D. J. Galloway & J. J. Eaton-Rye. 2002. Species of cyanolichens from Pseudocyphellaria with indistinguishable ITS sequences have different photobionts. New Phytologist 155: 121–129.

    Article  CAS  Google Scholar 

  • Tibell, L. 2001. Photobiont association and molecular phylogeny of the lichen genus Chaenotheca. Bryologist 104: 191–198.

    Article  Google Scholar 

  • Van Sandt, V. S. T., H. Stieperaere, Y. Guisez, J.-P. Verbelen & K. Vissenberg. 2007. XET activity is found near sites of growth and cell elongation in bryophytes and some green algae: new insights into the evolution of primary cell wall elongation. Annals of Botany 99: 39–51.

    Article  PubMed  Google Scholar 

  • Wedin, M., H. Doring, K. Konberg & G. Gilenstam. 2005. Generic delimitations in the family Stictidaceae (Ostropales, Ascomycota): the Stictis-Conotrema problem. Lichenologist 37: 67–75.

    Article  Google Scholar 

  • Yahr, R., R. Vilgalys & P. T. Depriest. 2004. Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology 13: 3367–3378.

    Article  PubMed  CAS  Google Scholar 

  • Zoller, S. & F. Lutzoni. 2003. Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Molecular Phylogenetics and Evolution 29: 629–640.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, D.J. Asymmetric Co-evolution in the Lichen Symbiosis Caused by a Limited Capacity for Adaptation in the Photobiont. Bot. Rev. 75, 326–338 (2009). https://doi.org/10.1007/s12229-009-9028-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-009-9028-x

Keywords

Navigation