Skip to main content

The Other Functions of Torpor

  • Chapter
  • First Online:
Living in a Seasonal World

Abstract

Although energy conservation by cold-climate adult endotherms in winter is often viewed as the main function of torpor, recent evidence suggests that this may not always be the case. We examined whether other functions of torpor may be equally or even more important in some instances. Torpor enhances fat storage during migration, apparently permits prolonged female sperm storage in bats, allows reproduction with limited or fluctuating food supply, and delays parturition until more favorable periods. Torpor appears to increase the efficiency of energy and nutrient use during development. Further, torpor reduces water requirements, appears to permit persistence during droughts, reduces the load of some parasites, permits co-existence of competing species, and also reduces the risk of predation and mammalian extinctions. Thus, the functions of torpor are complex and some of these appear to be not just proximate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armitage KB (2004) Badger predation on yellow-bellied marmots. Am Midl Nat 151:378–387

    Article  Google Scholar 

  • Arnold W, Lichtenstein AV (1991) Ectoparasite loads decrease the fitness of Alpine marmots (Marmota marmota) but not the cost of sociality. Behav Ecol 4:36–39

    Article  Google Scholar 

  • Audet D, Fenton MB (1988) Heterothermy and the use of torpor by the bat Eptesicus fuscus (Chiroptera: Vespertilionidae): a field study. Physiol Zool 61:197–204

    Google Scholar 

  • Barnes BM (1996) Relationship between hibernation and reproduction in male ground squirrels. In: Geiser F, Hulbert AJ and Nicol SC (eds) Adaptations to the Cold, 10th international hibernation symposium, University of New England Press, Armidale, pp 71–80

    Google Scholar 

  • Bieber C, Ruf T (2009) Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96:165–171

    Article  PubMed  CAS  Google Scholar 

  • Birkhead TR, Møller AP (1993) Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biol J Linn Soc 50:295–311

    Article  Google Scholar 

  • Boyles JG, Willis CKR (2010) Could localized warm areas inside cold caves reduce mortality of hibernating bats affected by white-nose syndrome? Front Ecol Environ 8:92–98

    Article  Google Scholar 

  • Brigham RM (1992) Daily torpor in a free-ranging goatsucker, the common poorwill (Phalaenoptilus nuttallii). Physiol Zool 65:457–472

    Google Scholar 

  • Buffenstein R (1985) The effect of starvation, food restriction, and water deprivation on thermoreguation and average daily metabolic rates in Gerbillus pusillus. Physiol Zool 58:320–328

    Google Scholar 

  • Callait M-P, Gauthier D (2000) Parasite adaptations to hibernation in Alpine marmots (Marmota marmota). In: Heldmaier G and Klingenspor M (eds) Life in the cold. 11th international hibernation symposium, Heidelberg, Springer, pp 139–146

    Google Scholar 

  • Carpenter FL, Hixon MA (1988) A new function of torpor: fat conservation in a wild migrant hummingbird. Condor 90:373–378

    Article  Google Scholar 

  • Christian N, Geiser F (2007) To use or not to use torpor? Activity and body temperature as predictors. Naturwissenschaften 94:483–487

    Article  PubMed  CAS  Google Scholar 

  • Chute RM (1964) Hibernation and parasitism: recent developments and some theoretical consideration. Mammalian hibernation 2. Ann Acad Sci Fenn A, 4 Biol 71:113–122

    Google Scholar 

  • Coggins JR, Tedesco JL, Rupprecht CE (1982) Seasonal changes and overwintering of parasites in the bat, Myotis lucifugus (Le Conte), in a Wisconsin hibernaculum. Am Midl Nat 107:305–315

    Article  Google Scholar 

  • Cooper CE, McAllan BM, Geiser F (2005) Effect of torpor on the water economy of an arid-zone marsupial, the striped-faced dunnart (Sminthopsis macroura). J Comp Physiol B 175:323–328

    Article  PubMed  CAS  Google Scholar 

  • Cory Toussaint D, McKechnie AE, van der Merwe M (2010) Heterothermy in free-ranging male Egyptian free-tailed bats (Tadarida aegyptiaca) in a subtropical climate. Mamm Biol 75:466–470

    Article  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175:147–155

    Article  PubMed  Google Scholar 

  • Doucette LI, Brigham RM, Pavey CR, Geiser F (2011) Roost type influences torpor use by Australian owlet-nightjars. Naturwissenschaften 98:845–854

    Article  PubMed  CAS  Google Scholar 

  • Doucette LI, Brigham RM, Pavey CR, Geiser F (2012) Prey availability affects daily torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Oecologia. doi:10.1007/s00442-011-2214-7

  • Eichhorn G, Groscolas R, Le Glaunec G, Parisel C, Arnold L, Medina P, Handrich Y (2011) Heterothermy in growing king penguins. Nat Commun 2:435. doi:10.1038/ncomms1436

    Article  PubMed  Google Scholar 

  • Eisentraut M (1929) Beobachtungen über den Winterschlaf der Haselmaus (Muscardinus avellanarius L.). Z Säugetierkd 4:213–239

    Google Scholar 

  • Frey H, Fleming MR (1984) Torpor and thermoregulatory behaviour in free-ranging feathertail gliders (Acrobates pygmaeus) (Marsupialia: Burramyidae) in Victoria. In: Smith AP, Hume ID (eds) Possums and gliders. Surrey Beatty and Australian Mammal Society, Sydney, pp 393–401

    Google Scholar 

  • Geiser F (1996) Torpor in reproductive endotherms. In: Geiser F, Hulbert AJ and Nicol SC (eds) Adaptations to the cold. 10th international hibernation symposium, University of New England Press, Armidale, pp 81–86

    Google Scholar 

  • Geiser F (2008) Ontogeny and phylogeny of endothermy and torpor in mammals and birds. Comp Biochem Physiol A 150:176–180

    Article  Google Scholar 

  • Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157:335–344

    Article  Google Scholar 

  • Geiser F, Masters P (1994) Torpor in relation to reproduction in the Mulgara, Dasycercus cristicauda (Dasyuridae: Marsupialia). J Thermal Biol 19:33–40

    Article  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Geiser F, Turbill C (2009) Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 96:1235–1240

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, McAllan BM, Brigham RM (2005) Daily torpor in a pregnant dunnart (Sminthopsis macroura Dasyuridae: Marsupialia). Mamm Biol 70:117–121

    Article  Google Scholar 

  • Geiser F, Christian N, Cooper CE, Körtner G, McAllan BM, Pavey CR, Turner JM, Warnecke L, Willis CKR, Brigham RM (2008) Torpor in marsupials: recent advances. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: torpor, hibernation and cryobiology, 13th international hibernation symposium, University of KwaZulu-Natal, Pietermaritzburg, pp 297–306

    Google Scholar 

  • Giroud S, Turbill C, Ruf T (2012) Torpor use and body mass gain during pre-hibernation in late-born juvenile garden dormice exposed to food shortage. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world: thermoregulatory and metabolic adaptations, Springer, Heidelberg

    Google Scholar 

  • Grinevitch L, Holroyd SL, Barclay RMR (1995) Sex differences in the use of daily torpor and foraging time by big brown bats (Eptesicus fuscus) during the reproductive season. J Zool Lond 235:301–309

    Article  Google Scholar 

  • Hall M (1832) On hybernation. Trans Roy Soc Lond B 122:335–360

    Article  Google Scholar 

  • Hiebert SM (1993) Seasonality of daily torpor in a migratory hummingbird. In: Carey C, Florant GL, Wunder BA, Horwitz B (eds) Life in the cold: ecological, physiological and molecular mechanisms. Westview, Boulder, pp 25–32

    Google Scholar 

  • Hill RW (1975) Daily torpor in Peromyscus leucopus on an adequate diet. Comp Biochem Physiol A 51:413–423

    Article  PubMed  CAS  Google Scholar 

  • Hill RW (1976) The ontogeny of homeothermy in neonatal Peromyscus leucopus. Physiol Zool 49:292–306

    Google Scholar 

  • Hollis L, Barclay RMR (2008) Developmental changes in body temperature and use of torpor by the big brown bat (Eptesicus fuscus). In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: torpor, hibernation and cryobiology, 13th international hibernation symposium, University of KwaZulu-Natal, Pietermaritzburg, pp 361–372

    Google Scholar 

  • Horvath A (1878) Beitrag zur Lehre über den Winterschlaf. Verh phys med Ges Würzburg 12:139–198

    Google Scholar 

  • Hosken DJ, Withers PC (1997) Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. J Comp Physiol B 167:71–80

    Article  PubMed  CAS  Google Scholar 

  • Ibuka N, Fukumura K (1997) Unpredictable deprivation of water increases the probability of torpor in the Syrian hamster. Physiol Behav 62:551–556

    Article  PubMed  CAS  Google Scholar 

  • Jaeger EC (1948) Does the poorwill “hibernate”? Condor 50:45–46

    Google Scholar 

  • Kayser C (1939) Exchanges respiratoires des hibernants réveillés. Ann Physiol Physicochim Biol 15:1087–1219

    CAS  Google Scholar 

  • Kissner KJ, Brigham RM (1993) Evidence for the use of torpor by incubating and brooding common poorwills, Phalaenoptilus nuttallii. Ornis Scand 24:333–334

    Article  Google Scholar 

  • Körtner G, Geiser F (2009) The key to winter survival: daily torpor in a small arid zone marsupial. Naturwissenschaften 96:525–530

    Article  PubMed  Google Scholar 

  • Körtner G, Brigham RM, Geiser F (2000) Winter torpor in a large bird. Nature 407:318

    PubMed  Google Scholar 

  • Körtner G, Pavey CR, Geiser F (2008) Thermal biology, torpor and activity in free-living mulgaras in arid zone Australia during the winter reproductive season. Physiol Biochem Zool 81:442–451

    Article  PubMed  Google Scholar 

  • Landry-Cuerrier M, Munro D, Thomas DW, Humphries MM (2008) Climate and resource determinants of fundamental and realized metabolic niches of hibernating chipmunks. Ecology 89:3306–3316

    Article  PubMed  CAS  Google Scholar 

  • Levy O, Dayan T, Kronfeld-Schor N (2011a) Adaptive thermoregulation in golden spiny mice: the influence of season and food availability on body temperature. Physiol Biochem Zool 84:175–184

    Article  PubMed  Google Scholar 

  • Levy O, Dayan T, Kronfeld-Schor N (2011b) Interspecific competition and torpor in golden spiny mice: two sides of the energy-acquisition coin. Int Comp Biol 51:441–448

    Article  Google Scholar 

  • Liow LH, Fortelius M, Lintulaakso K, Mannila H, Stenseth NC (2009) Lower extinction in sleep-or-hide mammals. Am Nat 173:264–272

    Article  PubMed  Google Scholar 

  • Liu J-N, Karasov WH (2011) Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposideros terasensis, in subtropical Taiwan. J Comp Physiol B 181:125–135

    Article  PubMed  Google Scholar 

  • Lourenco S, Palmeirim JM (2008) Which factors regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats? Parasitol Res 104:127–134

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2000) Daily heterothermy in mammals: coping with unpredictable environments. In: Heldmaier G and Klingenspor M (eds) Life in the cold: 11th international hibernation symposium, Springer, Heidelberg, pp 29–40

    Google Scholar 

  • Lyman CP (1948) The oxygen consumption and temperature regulation in hibernating hamsters. J Exp Zool 109:55–78

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New York

    Google Scholar 

  • MacMillen RE (1965) Aestivation in the cactus mouse Peromyscus eremicus. Comp Biochem Physiol 16:227–247

    Article  PubMed  CAS  Google Scholar 

  • Marshall AG (1971) The ecology of Basilia hispida (Diptera: Nycteribiidae) in Malaysia. J Anim Ecol 40:141–154

    Article  Google Scholar 

  • Morrow G, Nicol SC (2009) Cool sex? Hibernation and reproduction overlap in the echidna. PLoS ONE 4(6):e6070. doi:10.1371/journal.pone.0006070

    Article  PubMed  Google Scholar 

  • Morton SR (1978) Torpor and nest-sharing in free-living Sminthopsis crassicaudata (Marsupialia) and Mus musculus (Rodentia). J Mammal 59:569–575

    Article  Google Scholar 

  • Munn AJ, Kern P, McAllan BM (2010) Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). Naturwissenschaften 97:601–605

    Article  PubMed  CAS  Google Scholar 

  • Mzilikazi N, Lovegrove BG (2002) Reproductive activity influences thermoregulation and torpor in pouched mice, Saccostomus campestris. J Comp Physiol B 172:7–16

    Article  PubMed  Google Scholar 

  • Nicol SC, Andersen NA (2002) The timing of hibernation in Tasmanian echidnas: why do they do it when they do? Comp Biochem Physiol B 131:603–611

    Article  PubMed  Google Scholar 

  • Prendergast BJ, Freeman DA, Zucker I, Nelson JR (2002) Periodic arousal from hibernation is necessary for initiation of immune response in ground squirrels. Am J Physiol 282:R1054–R1062

    CAS  Google Scholar 

  • Racey PA (1973) Environmental factors affecting the length of gestation in heterothermic bats. J Reprod Fert Suppl 19:175–189

    CAS  Google Scholar 

  • Racey PA (1979) The prolonged storage and survival of spermatozoa in Chiroptera. J Reprod Fert 56:391–402

    Article  CAS  Google Scholar 

  • Rimbaldini DA, Brigham RM (2008) Torpor use by free-ranging pallid bats (Antrozous pallidus) at the northern extent of their range. J Mammal 89:933–941

    Article  Google Scholar 

  • Ruf T, Bieber C, Turbill C (2012) Survival, aging, and life-history tactics in mammalian hibernators. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world: thermoregulatory and metabolic adaptations, Springer, Heidelberg

    Google Scholar 

  • Schmid J, Speakman JR (2009) Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): a comparison of dry and wet forests. Naturwissenschaften 96:609–620

    Article  PubMed  CAS  Google Scholar 

  • Serventy V, Raymond R (1973) Torpidity in desert mammals. Aust Wildl Heritage 14:2233–2240

    Google Scholar 

  • Stawski C (2010) Torpor during the reproductive season in a free-ranging subtropical bat, Nyctophilus bifax. J Thermal Biol 35:245–249

    Article  Google Scholar 

  • Stawski C, Geiser F (2010) Fat and fed: frequent use of summer torpor in a subtropical bat. Naturwissenschaften 97:29–35

    Article  PubMed  CAS  Google Scholar 

  • Stawski C, Turbill C, Geiser F (2009) Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J Comp Physiol B 179:433–441

    Article  PubMed  Google Scholar 

  • Stephenson PJ, Racey PA (1993) Reproductive energetics of the Tenrecidae (Mammalia: Insectivora). II. The shrew-tenrecs, Microgale spp. Physiol Zool 66:664–685

    Google Scholar 

  • Turbill C, Geiser F (2006) Thermal biology of pregnant and lactating female and male long-eared bats, Nyctophilus geoffroyi and N. gouldi. J Comp Physiol B 176:165–172

    Article  PubMed  Google Scholar 

  • Turbill C, Bieber C, Ruf T (2011) Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc Roy Soc B 278:3355–3363

    Article  Google Scholar 

  • Wang LCH (1978) Energetics and field aspects of mammalian torpor: the Richardsons’s ground squirrel. In: Wang LCH, Hudson JW (eds) Strategies in cold. Academic Press, New York, pp 109–145

    Google Scholar 

  • Wang Z, Liang B, Racey PA, Wang Y-L, Zhang S-Y (2008) Sperm storage, delayed ovulation, and menstruation of the female Rickett’s big-footed bat (Myotis ricketti). Zool Stud 47:215–221

    Google Scholar 

  • Warnecke L, Turner JM, Geiser F (2008) Torpor and basking in a small arid zone marsupial. Naturwissenschaften 95:73–78

    Article  PubMed  CAS  Google Scholar 

  • Willis CKR, Brigham RM, Geiser F (2006) Deep, prolonged torpor by pregnant, free-ranging bats. Naturwissenschaften 93:80–83

    Article  PubMed  CAS  Google Scholar 

  • Wimsatt WA (1960) Some problems of reproduction in relation to hibernation in bats. In: Lyman CP, Dawe AR (eds) Mammalian hibernation. Bull Mus Comp Zool, Cambridge, pp 248–270

    Google Scholar 

  • Withers PC, Richardson KC, Wooller RD (1990) Metabolic physiology of euthermic and torpid honey possums, Tarsipes rostratus. Aust J Zool 37:685–693

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dick Hill, Chris Turbill and the students from RMB’s laboratory for constructive comments. The work was supported by the ARC (FG) and NSERC (RMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Geiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geiser, F., Brigham, R.M. (2012). The Other Functions of Torpor. In: Ruf, T., Bieber, C., Arnold, W., Millesi, E. (eds) Living in a Seasonal World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28678-0_10

Download citation

Publish with us

Policies and ethics