Skip to main content
Log in

Summer dormancy in edible dormice (Glis glis) without energetic constraints

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Average longevity in free-living edible dormice (Glis glis) can reach 9 years, which is extremely high for a small rodent. This remarkable life span has been related to a peculiar life history strategy and the rarity of reproductive bouts in these seed eaters. Most females (96%) reproduce only once or twice in their lifetime, predominantly during years of mast seeding of, e.g., beech, but entire populations can skip reproduction in years of low seed availability. Surprisingly, in non-reproductive years, large fractions of populations apparently vanished and were never captured above ground. Therefore, we determined the duration of above-ground activity, and body temperature profiles in a subset of animals, of dormice under semi-natural conditions in outdoor enclosures. We found that non-reproductive dormice returned to dormancy in underground burrows throughout summer after active seasons as short as <2 weeks. Thus, animals spent up to >10 months per year in dormancy. This exceeds dormancy duration of any other mammal under natural conditions. Summer dormancy was not caused by energy constraints, as it occurred in animals in good condition, fed ad libitum and without climatic stress. We suggest that almost year-round torpor has evolved as a strategy to escape birds of prey, the major predators of this arboreal mammal. This unique predator-avoidance strategy clearly helps in explaining the unusually high longevity of dormice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Arendt T, Stieler J, Strijkstra AM, Hut RA, Rüdiger J, Van der Zee EA, Harkany T, Holzer M, Härtig W (2003) Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23:6972–6981

    PubMed  CAS  Google Scholar 

  • Bartholomew GA, Hudson JW (1961) Aestivation in the Mohave ground squirrel (Citellus mohavensis). Bull Mus Comp Zool 124:193–208

    Google Scholar 

  • Bieber C (1998) Population dynamics, sexual activity, and reproduction failure in the fat dormouse (Myoxus glis). J Zool (Lond) 244:223–229

    Article  Google Scholar 

  • Bieber C, Ruf T (2004) Seasonal timing of reproduction and hibernation in the edible dormouse (Glis glis). In: Barnes BM, Carey HV (eds) Life in the cold: evolution, mechanism, adaptation, and application. Biological Papers of the University of Alaska 27, Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA, pp 113–125

  • Brunet-Rossini AK, Austad SN (2004) Aging studies on bats: a review. Biogerontology 5:211–222

    Article  Google Scholar 

  • Buck CL, Barnes BM (1999) Annual cycle of body composition and hibernation in free-living arctic ground squirrels. J Mammal 80:430–442

    Article  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826

    Article  PubMed  CAS  Google Scholar 

  • Fietz J, Schlund W, Dausmann KH, Regelmann M, Heldmaier G (2004) Energetic constraints on sexual activity in the male edible dormouse (Glis glis). Oecologia 138:202–209

    Article  PubMed  Google Scholar 

  • Fietz J, Pflug M, Schlund W, Tataruch F (2005) Influences of the feeding ecology on body mass and possible implications for reproduction in the edible dormouse (Glis glis). J Comp Physiol B 175:45–55

    Article  PubMed  Google Scholar 

  • French AR (1982) Effects of temperature on the duration of arousal episodes during hibernation. J Appl Physiol 52:216–220

    PubMed  CAS  Google Scholar 

  • French AR (1985) Allometries of the durations of torpid and euthermic intervals during mammalian hibernation: a test of the theory of metabolic control of the timing of changes in body temperatures. J Comp Physiol B 156:13–19

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (2007) Yearlong hibernation in a marsupial mammal. Naturwissenschaften 94:941–944 doi:10.1007/s00114-007-0274-7

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Humphries MM, Thomas DW, Kramer DL (2003) The role of energy availability in mammalian hibernation: a cost–benefit approach. Physiol Biochem Zool 76:165–179

    Article  PubMed  Google Scholar 

  • Kenagy GJ, Bartholomew GA (1985) Seasonal reproductive patterns in five coexisting California desert rodent species. Ecol Monogr 55:371–397

    Article  Google Scholar 

  • Kirkwood TBL (2002) Evolution of ageing. Mech Ageing Dev 123:737–745

    Article  PubMed  Google Scholar 

  • Luis AD, Hudson PJ (2006) Hibernation patterns in mammals: a role for bacterial growth? Funct Ecol 20:471–477

    Article  Google Scholar 

  • Lyman CP, O’Brien RC, Greene GC, Papafrangos ED (1981) Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science 212:668–670

    Article  PubMed  CAS  Google Scholar 

  • Millesi E, Prossinger H, Dittami JP, Fieder M (2001) Hibernation effects on memory in European ground squirrels (Spermophilus citellus). J Biol Rhythm 16:264–271

    Article  CAS  Google Scholar 

  • Mrosovsky N (1977) Hibernation and body weight in dormice: a new type of endogenous cycle. Science 196:902–903

    Article  PubMed  CAS  Google Scholar 

  • Nicol S, Andersen NA (2002) The timing of hibernation in Tasmanian echidnas: why do they do it when they do? Comp Biochem Physiol, Part B 131:603–611

    Article  Google Scholar 

  • Nicol S, Vedel-Smith C, Andersen NA (2004) Behaviour, body temperature, and hibernation in Tasmanian Echidnas (Tachyglossus aculeatus). In: Barnes BM, Carey HV (eds) Life in the cold: evolution, mechanism, adaptation, and application. Biological Papers of the University of Alaska 27, Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA, pp 149–159

  • Ostfeld RS, Keesing F (2000) Pulsed resources and community dynamics of consumers in terrestrial ecosystems. TREE 15:232–237

    PubMed  Google Scholar 

  • Pilastro A, Tavecchia G, Marin G (2003) Long living and reproduction skipping in the fat dormouse. Ecology 84:1784–1792

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D; the R Core Team (2007) nlme: linear and nonlinear mixed effects models. R Package Version 3, pp 1–86

  • Prendergast BJ, Freeman DA, Zucker I, Nelson RJ (2002) Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels. Am J Physiol Regul Integr Comp Physiol 282:R1054–R1082

    PubMed  CAS  Google Scholar 

  • R development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Ruf T, Arnold W (2008) Effects of polyunsaturated fatty acids (PUFAs) on hibernation and torpor: a review and hypothesis. Am J Physiol Regul Integr Comp Physiol 294:R1044–R1052 doi:10.1152/ajpregu.00688.2007

    PubMed  CAS  Google Scholar 

  • Ruf T, Fietz J, Schlund W, Bieber C (2006) High survival in poor years: life history tactics adapted to mast seeding in the edible dormouse. Ecology 87:372–381

    Article  PubMed  CAS  Google Scholar 

  • Schaub M, Vaterlaus-Schlegel C (2001) Annual and seasonal variation of survival rates in the garden dormouse (Eliomys quercinus). J Zool (Lond) 255:89–96

    Article  Google Scholar 

  • Schlund W, Scharfe F, Ganzhorn JU (2002) Long-term comparison of food availability and reproduction in the edible dormouse (Glis glis). Mamm Biol 67:219–232

    Article  Google Scholar 

  • Schmidt KA, Ostfeld RS (2008) Numerical and behavioral effects within a pulse-driven system: consequences for shared prey. Ecology 89:635–646

    Article  PubMed  Google Scholar 

  • Silvertown JW (1980) The evolutionary ecology of mast seeding in trees. Biol J Linn Soc 14:235–250

    Article  Google Scholar 

  • Turbill C, Law BS, Geiser F (2003) Summer torpor in a free-ranging bat from subtropical Australia. J Therm Biol 28:223–226

    Article  Google Scholar 

  • von Vietinghoff-Riesch AF (1960) Der Siebenschläfer (Glis glis L.). Monographien der Wildsäugetiere XIV, Jena, Germany

  • Webb PI, Skinner JD (1996) Summer torpor in African woodland dormice Graphiurus murinus (Myoxidae: Graphiurinae). J Comp Physiol B 166:325–330

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GS, South JM (2002) Life history, ecology and longevity in bats. Aging Cell 1:124–131

    Article  PubMed  CAS  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Williams PD, Fletcher TQ, Rowe L (2006) The shaping of senescence in the wild. TREE 21:458–463

    PubMed  Google Scholar 

  • Wilz M, Heldmaier G (2000) Comparison of hibernation, estivation, and daily torpor in the edible dormouse, Glis glis. J Comp Physiol B 170:511–521

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank P. Steiger, K. Außerlechner, C. Skerget for their help with data collection and W. Zenker, F. Balfanz, C. Beiglböck, C. Walzer for implantation of iButtons. We thank the province of lower Austria and the city of Vienna for financial support. We declare that all experiments in this study comply with the current laws of Austria in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Bieber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieber, C., Ruf, T. Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96, 165–171 (2009). https://doi.org/10.1007/s00114-008-0471-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0471-z

Keywords

Navigation