Skip to main content

Station Holding of Trout: Behavior, Physiology and Hydrodynamics

  • Chapter
Nature-Inspired Fluid Mechanics

Abstract

Trout commonly experience unsteady flows such as those caused by a stationary object exposed to running water. Instead of avoiding these flows, trout often use flow fluctuations for station holding. The behaviors associated with station holding are entraining, Kármán gaiting and bow wake swimming. We investigated the swimming behavior of trout in the vicinity of a stationary or moving 2-D shaped cylinder. To uncover the sensory modalities used for station holding, we studied the behavior of intact trout and of trout whose lateral line system was partially or totally impaired in the light or under infrared illumination. We also studied the activity of the axial red swimming muscles of entraining, Kármán gaiting and bow wake swimming trout and the neuronal processing of vortex information in the hindbrain of fish. Further studies showed that small motions of the caudal and/or pectoral fins are necessary to stay in preferred areas irrespective of the unsteadiness imposed by the wake of an object. Computational Fluid Dynamics simulations were carried out to uncover the forces that allow trout station holding with a minimum of energy expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beckmann, M., Eros, T., Schmitz, A., Bleckmann, H.: Number and distribution of superficial neuromasts in twelve common European cypriniform fishes and their relationship to habitat occurrence. Intern. Rev. Hydrobiol. 95, 273–284 (2010)

    Article  Google Scholar 

  • Bleckmann, H.: Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer, W. (ed.) Progress in Zoology, vol. 41, pp. 1–115. Gustav Fischer, Stuttgart (1994)

    Google Scholar 

  • Bleckmann, H.: Peripheral and central processing of lateral line information. J. Comp. Physiol. A 194, 145–158 (2007)

    Article  Google Scholar 

  • Bleckmann, H., Breithaupt, T., Blickhan, R., Tautz, J.: The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J. Comp. Physiol. A 168, 749–757 (1991)

    Google Scholar 

  • Blickhan, R., Krick, C., Breithaupt, T., Zehren, D., Nachtigall, W.: Generation of a vortex-chain in the wake of a subundulatory swimmer. Naturwissenschaften 79, 220–221 (1992)

    Article  Google Scholar 

  • Brücker, C., Bleckmann, H.: Vortex dynamics in the wake of a mechanical fish. Exp. Fluids, 799–810 (2007)

    Google Scholar 

  • Chagnaud, B.P., Bleckmann, H., Engelmann, J.: Neural responses of goldfish lateral line afferents to vortex motions. J. Exp. Biol. 209, 327–342 (2006)

    Article  Google Scholar 

  • Chagnaud, B.P., Bleckmann, H., Hofmann, M.: Kármán vortex street detection by the lateral line. J. Comp. Physiol. A 193, 753–763 (2007)

    Article  Google Scholar 

  • Cook, C.L., Coughlin, D.J.: Rainbow trout Oncorhynchus mykiss consume less energy when swimming near obstructions. J. Fish Biol., 1–8 (2010)

    Google Scholar 

  • Cooke, S.J., Thorstad, E.B., Hinch, S.G.: Activity and energetics of free swimming fish; insights from electromyogram telemetry. Fish Fisheries 5, 21–52 (2004)

    Article  Google Scholar 

  • Coombs, S., Janssen, J., Webb, J.F.: Diversity of lateral line systems: evolutionary and functional considerations. In: Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N. (eds.) Sensory Biology of Aquatic Animals, pp. 553–593. Springer, New York (1988)

    Chapter  Google Scholar 

  • Dijkgraaf, S.: The functioning and significance of the lateral line organs. Biol. Rev. 38, 51–106 (1963)

    Article  Google Scholar 

  • Enders, E.C., Boisclair, D., Roy, A.G.: The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 60, 1149–1160 (2003)

    Article  Google Scholar 

  • Engelmann, J., Hanke, W., Bleckmann, H.: Lateral line reception in still- and running water. J. Comp. Physiol. A 188, 513–526 (2002)

    Article  Google Scholar 

  • Glauert, H.: Theoretical relationships for an aerofoil with hinged flap. Aero. Res. Cttee. R and M, 1095 (1927)

    Google Scholar 

  • Kaus, S.: The effect of aminoglycoside antibiotics on the lateral line organ of Alocheilus lineatus (Cyprinodontidae). Acta Otolaryng (Stockh) 103, 291–298 (1987)

    Article  Google Scholar 

  • Kesel, A., Blickhan, R., Nachtigall, W.: Ablation of posterior lateral line organ. Does it effect steady swimming. In: Elsner, N., Singer, W. (eds.) Dynamics and Plasticity in Neuronal Systems, p. 265. Georg Thieme, Stuttgart (1989)

    Google Scholar 

  • Klein, A., Bleckmann, H.: Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals. Beilstein. J. Nanotechnol. 2, 276–283 (2011)

    Article  Google Scholar 

  • Kunze, S.: Untersuchungen zur Strömungs-Struktur Interaktion an dynamisch bewegten, flexiblen Oberflächen. Dissertation TU Freiberg, Freiberg (2011)

    Google Scholar 

  • Kunze, S., Brücker, C.: Flow control over an undulating membrane. Exp. Fluids 50, 747–759 (2011)

    Article  Google Scholar 

  • Liao, J.C.: Neuromuscular control of trout swimming in a vortex street: Implications for energy economy during the Kármán gait. J. Exp. Biol. 207, 3495–3506 (2004)

    Article  Google Scholar 

  • Liao, J.C.: The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J. Exp. Biol. 209, 4077–4090 (2006)

    Article  Google Scholar 

  • Liao, J.C.: A review of fish swimming mechanics and behaviour in altered flows. Phil. Trans. R Soc. Lond. B 362, 1973–1993 (2007)

    Article  Google Scholar 

  • Liao, J.C., Beal, D.N., Lauder, G.V., Triantafyllou, M.S.: The Kármán gait: Novel body kinematics of rainbow trout swimming in a vortex street. J. Exp. Biol. 206, 1059–1073 (2003)

    Article  Google Scholar 

  • McHenry, M.J., Michel, K.B., Stewart, W., Müller, U.K.: Hydrodynamic sensing does not facilitate active drag reduction in the golden shiner (Notemigonus crysoleucas). J. Exp. Biol. 213, 1309–1319 (2010)

    Article  Google Scholar 

  • Mogdans, J., Bleckmann, H.: Peripheral lateral line responses to amplitude modulated hydrodynamic stimuli. J. Comp. Physiol. A 185, 173–180 (1999)

    Article  Google Scholar 

  • Montgomery, J., Coombs, S., Halstead, M.: Biology of the mechanosensory lateral line in fishes. Rev. Fish Biol. Fisheries 5, 399–416 (1995)

    Article  Google Scholar 

  • Montgomery, J.C., Macdonald, F., Baker, C.F., Carton, A.G., Ling, N.: Sensory integration in the hydrodynamic world of rainbow trout. Proc. R Soc. Lond. B (Suppl.), 195–197 (2003)

    Google Scholar 

  • Münz, H.: Functional organization of the lateral line periphery. In: Coombs, S., Görner, P., Münz, H. (eds.) The Mechanosensory Lateral Line Neurobiology and Evolution, pp. 285–298. Springer, New York (1989)

    Chapter  Google Scholar 

  • Northcutt, R.G.: The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs, S., Görner, P., Münz, H. (eds.) The Mechanosensory Lateral Line Neurobiology and Evolution, pp. 17–78. Springer, New York (1989)

    Chapter  Google Scholar 

  • Palmer, L.M., Giuffrida, B.A., Mensinger, A.F.: Neural recordings from the lateral line in free-swimming toadfish, Opsanus tau. Biol. Bull. 205, 216–218 (2003)

    Article  Google Scholar 

  • Popper, A.N., Fay, R.R., Platt, C., Sand, O.: Sound detection mechanisms and capabilities of teleost fish. In: Collin, S.P., Marshall, N.J. (eds.) Sensory Processing in Aquatic Environments, pp. 3–38. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  • Przybilla, A.: The swimming behavior of rainbow trout, Oncorhynchus mykiss, in turbulent water flow, p. 257. Dissertation. Faculty of Mathematics and Natural Sciences. University of Bonn, Bonn (2012)

    Google Scholar 

  • Przybilla, A., Kunze, S., Ruder, A., Bleckmann, H., Brücker, C.: Entraining trout: A behavioural and hydrodynamic analysis. J. Exp. Biol. 213, 2976–2986 (2010)

    Article  Google Scholar 

  • Schmitz, A., Bleckmann, H., Mogdans, J.: Organization of the superficial neuromast system in goldfish, Carassius auratus. J. Morphol. 269, 751–761 (2008)

    Article  Google Scholar 

  • Sutterlin, A.M., Waddy, S.: Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J. Fish Res. Bd. Canada 32, 2441–2446 (1975)

    Article  Google Scholar 

  • Taguchi, M., Liao, J.C.: Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. J. Exp. Biol. 214, 1428–1436 (2011)

    Article  Google Scholar 

  • Vogel, S.: Life in moving fluids. The physical biology of flow. Princeton University Press, Princeton (1983)

    Google Scholar 

  • Wullimann, M.F.: The central nervous system. In: Evans, D.H. (ed.) The Physiology of Fishes, pp. 245–282. CRC Press, New York (1998)

    Google Scholar 

  • Yang, Y., Klein, A., Bleckmann, H., Liu, C.: Atrificial lateral line canal for hydrodynamic detection. Applied Physics Letters 99, 023701 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Bleckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Bleckmann, H., Przybilla, A., Klein, A., Schmitz, A., Kunze, S., Brücker, C. (2012). Station Holding of Trout: Behavior, Physiology and Hydrodynamics. In: Tropea, C., Bleckmann, H. (eds) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28302-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28302-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28301-7

  • Online ISBN: 978-3-642-28302-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics