Skip to main content

Sound Detection Mechanisms and Capabilities of Teleost Fishes

  • Chapter
Sensory Processing in Aquatic Environments

Abstract

This chapter, written from the perspective of four authors who have been studying fish bioacoustics for over 120 years (cumulative!), examines the major issues of the field. Each topic is put in some historical perspective, but the chapter emphasizes current thinking about acoustic communication, hearing (including bandwidth, sensitivity, detection of signals in noise, discrimination, and sound source localization), the functions of the ear (both auditory and vestibular, and including the role(s) of the otoliths and sensory hair cells) and their relationships to peripheral structures such as the swim bladder, and the interactions between the ear and the lateral line. Hearing in fishes is not only for acoustic communication and detection of sound-emitting predators and prey but can also play a major role in telling fishes about the acoustic scene at distances well beyond the range of vision. The chapter concludes with the personal views of the authors as to the major challenges and questions for future study. There are still many gaps in our knowledge of fish bioacoustics, including questions on ear function and the significance of interspecific differences in otolith size and shape and hair cell orientation, the role of the lateral line vis-à-vis the ear, the mechanisms of central processing of acoustic (and lateral line) signals, the mechanisms of sound source localization and whether fishes can determine source distance as well as direction, the evolution and functional significance of hearing specializations in taxonomically diverse fish species, and the origins of fish (and vertebrate) hearing and hearing organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. McN. (1959a). The physical properties of the swim bladder in intact Cyprinoformes. J. Exp. Biol. 36:315–332.

    Google Scholar 

  • Alexander, R. McN. (1959b). The physical properties of the swim bladders of fish other than Cyprinoformes. J. Exp. Biol. 36:347–355.

    Google Scholar 

  • Alexander, R. McN. (1966). Physical aspects of swim bladder function. Biol. Rev. 41:141–176.

    Article  PubMed  CAS  Google Scholar 

  • Allen, J. (1997). OHCs shift the excitation pattern via BM tension. In: Diversity in Auditory Mechanics (Lewis, E.R., Long, G.R., Lyon, R.F., Narins, P.M., Steele, C.R., and Hecht-Poinar, E., eds.), pp. 167–175. Singapore: World Scientific Publishers.

    Google Scholar 

  • Astrup, J. (1999). Ultrasound detection in fish: A parallel to the sonar-mediated detection of bats by ultrasound-sensitive insects? Comp. Biochem. Physiol. A. 124:19–27.

    Article  CAS  Google Scholar 

  • Astrup, J., and Møhl, B. (1993). Detection of intense ultrasound by the cod Gadus morhua. J. Exp. Biol. 182:71–80.

    Google Scholar 

  • Astrup, J., and Møhl, B. (1998). Discrimination between high and low repetition rates of ultrasonic pulses by the cod. J. Fish Biol. 52:205–208.

    Article  Google Scholar 

  • Atema, A., Fay, R.R., Popper, A.N., and Tavolga, W.N. (eds.) (1988). Sensory Biology of Aquatic Animals. New York: Springer-Verlag.

    Google Scholar 

  • Banner, A. (1967). Evidence of sensitivity to acoustic displacements in the lemon shark, Negaprion brevirostris (Poey). In: Lateral Line Detectors (Cahn, PH., ed.), pp. 265–273. Bloomington, In: Indiana University Press.

    Google Scholar 

  • Blaxter, J.H.S., Denton, E.J., and Gray, J.A.B. (1979). The herring swim bladder as a gas reservoir for the acoustico-lateralis system. J. Mar. Biol. Assoc. UK 59:1–10.

    Google Scholar 

  • Blaxter, J.H.S., Denton, E.J., and Gray, J.A.B. (1981). Acousticolateralis system in clupeid fishes. In: Hearing and Sound Communication in Fishes (Tavolga, W.N., Popper, A.N., and Fay, R.R., eds.), pp. 39–53. New York: Springer-Verlag.

    Google Scholar 

  • Boyle, R., Carey, J.P., and Highstein, S.M. (1991). Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular calyx afferents of the toadfish, Opsanus tau. J. Neurophysiol. 66:1504–1521.

    CAS  Google Scholar 

  • Bregman, A.S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Buerkle, U. (1969). Auditory masking and the critical band in Atlantic cod (Gadus morhua).]. Fish. Res. Board Canada 26:1113–1119.

    Google Scholar 

  • Buwalda, R.J.A. (1981). Segregation of directional and nondirectional acoustic information in the cod. In: Hearing and Sound Communication in Fishes (Tavolga, W.N., Popper, A.N., and Fay, R.R., eds.), pp. 139–172. New York: Springer-Verlag.

    Google Scholar 

  • Buwalda, R.J.A., Schuijf, A., and Hawkins, A.D. (1983). Discrimination by the cod of sound from opposing directions. J. Comp. Physiol. 150:175–184.

    Article  Google Scholar 

  • Carlström, D. (1963). A crystallographic study of vertebrate otoliths. Biol. Bull. 125:441–463.

    Article  Google Scholar 

  • Chang, J.S.Y., Popper, A.N., and Saidel, W.M. (1992). Heterogeneity of sensory hair cells in a fish ear. J. Comp. Neurol. 324:621–640.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, C.J., and Hawkins, A. (1973). A field study of hearing in the cod, Gadus morhua L. J. Comp. Physiol. 85:147–167.

    Article  Google Scholar 

  • Chapman, C.J., and Johnstone, A.D.F. (1974). Some auditory discrimination experiments on marine fish. J. Exp. Biol. 61:521–528.

    PubMed  CAS  Google Scholar 

  • Chapman, C.J., and Sand, O. (1974). Field studies of hearing in two species of flatfish, Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae). Comp. Biochem. Physiol. 47:371–385.

    Article  CAS  Google Scholar 

  • Clack, J.A. (1996). Otoliths in fossil coelacanths. J. Vertebr. Paleontol. 16:168–171.

    Google Scholar 

  • Coates, M.L. (1999). Endocranial preservation of a Carboniferous actinopterygian from Lancashire, UK, and the interrelationships of primitive actinopterygians. Philos. Trans. R. Soc. Lond. B 354:435–462.

    Article  Google Scholar 

  • Coombs, S., Hastings, M., and Finneran, J. (1996). Measuring and modeling lateral line excitation patterns to changing dipole source locations. J. Comp. Physiol. 178A:359–371.

    Google Scholar 

  • Coombs, S., and Popper, A.N. (1979). Hearing differences among Hawaiian squirrelfishes (family Holocentridae) related to differences in peripheral auditory system. J. Comp. Physiol. 132:203–207

    Article  Google Scholar 

  • Cortopassi, K.A., and Lewis, E.R. (1998). A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena. Brain Behav. Evol. 51:331–348.

    Article  PubMed  CAS  Google Scholar 

  • Corwin, IT. (1981). Audition in elasmobranchs. In: Hearing and Sound Communication in Fishes (Tavolga, W.N., Popper, A.N., and Fay, R.R., eds.), pp. 81–105. New York: Springer-Verlag.

    Google Scholar 

  • Crawford, A.C., and Fettiplace, R. (1981). An electrical tuning mechanism in turtle cochlear hair cells. J. Physiol. (Lond.) 312:377–412.

    CAS  Google Scholar 

  • Crawford, J.D., Cook, A.P., and Heberlein, A.S. (1997). Bioacoustic behavior of African fishes (Mormyridae): Potential cues for species and individual recognition in Pollimyrus. J. Acoust. Soc. Am. 102:1–13.

    Google Scholar 

  • Demski, L., Gerald, G.W., and Popper, A. (1973). Central and peripheral mechanisms in teleost sound production. Am. Zool. 13:1141–1167.

    Google Scholar 

  • Denton, E.J., and Blaxter, J.H.S. (1976). The mechanical relationships between the clupeid swim bladder, inner ear and lateral line. J. Mar. Biol. Assoc. UK 56:787–807.

    Article  Google Scholar 

  • Denton, E.J., and Gray, J.A.B. (1982). The rigidity of fish and patterns of lateral line stimulation. Nature 297:679–681.

    Article  PubMed  CAS  Google Scholar 

  • Denton, E.J., and Gray, J.A.B. (1983). Mechanical factors in the excitation of clupeid lateral lines. Proc. R. Soc. Lond. B. 218:1–26.

    PubMed  CAS  Google Scholar 

  • Denton, E.J., and Gray, I.A.B. (1989). Some observations on the forces acting on neuromasts in fish lateral line canals. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, M., eds.), pp. 229–246. Berlin: Springer-Verlag.

    Google Scholar 

  • de Vries, H.I. de. (1950). The mechanics of the labyrinth otoliths. Acta Oto-Laryngol. 38:262–273.

    Article  Google Scholar 

  • Dijkgraaf, S. (1932). Untersuchungen über die Funktion der Seitenorgane an Fischen. Z. Vergl. Physiol. 20:162–214.

    Article  Google Scholar 

  • Dijkgraaf, S. (1947). Ein Töne erzeugender Fisch im Neapler Aquarium. Experientia 3:493–494.

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf, S. (1952). über die Schallwahrnehmung bei Meeresfischen. Z. Vergl. Physiol. 34:104–122.

    Google Scholar 

  • Dijkgraaf, S. (1963). The functioning and significance of the lateral-line organs. Biol. Rev. 38: 51–105.

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf, S., and Verheijen, F (1950). Neue Versuchen über das Tonunterscheidungsverm gen der Elritze. Z. Vergl. Physiol. 32:248–265.

    Article  Google Scholar 

  • Døving, K.B., Westerberg, H., and Johnsen, P.B. (1985). Role of olfaction in the behavioral and neuronal responses of Atlantic Salmon, Salmo salar, to hydrographic stratification. Can. J. Fish. Aquat. Sci. 42:1658–1667.

    Article  Google Scholar 

  • Dunning, D.I., Ross, Q.E., Geoghegan, P., Reichle, II, Menezes, J.K., and Watson, J.K. (1992). Alewives in a cage avoid high-frequency sound. N Am. J. Fish. Manage. 12:407–416.

    Article  Google Scholar 

  • Edds-Walton, PL., Fay, R.R., and Highstein, S. (1999). Dendritic arbors and central projections of physiologically characterized auditory fibers from the saccule of the toadfish, Opsanus tau. J. Comp. Neurol. 411:212–238.

    Article  CAS  Google Scholar 

  • Engelmann, J., Hanke, W., Mogdans, J., and Bleckmann, H. (2000). Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52.

    Article  PubMed  CAS  Google Scholar 

  • Enger, P.S. (1967). Hearing in herring. Comp. Biochem. Physiol. 22:527–538.

    Article  PubMed  CAS  Google Scholar 

  • Enger, P.S. (1973). Masking of auditory responses in the medulla oblongata of goldfish. J. Exp. Biol. 59:415–424.

    PubMed  CAS  Google Scholar 

  • Enger, P.S. (1981). Frequency discrimination in teleosts: Central or peripheral? In: Hearing and Sound Communication in Fishes (Tavolga, W.N., Popper, A.N., and Fay, R.R., eds.), pp. 243–255. New York: Springer-Verlag.

    Google Scholar 

  • Enger, P.S., Kalmijn, A.J., and Sand, O. (1989). Behavioral investigations on the functions of the lateral line and inner ear in predation. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, M., eds.), pp. 575–587. Berlin: Springer-Verlag.

    Google Scholar 

  • Fay, R.R. (1969). Auditory sensitivity of the goldfish within the near acoustic field. U.S. Naval Submarine Medical Center, Submarine Base, Groton, Connecticut, Report No. 605:1–11.

    Google Scholar 

  • Fay, R.R. (1970a). Auditory frequency generalization in the goldfish (Carassius auratus). J. Exp. Anal. Behav. 14:353–360.

    Article  PubMed  Google Scholar 

  • Fay, R.R. (1970b). Auditory frequency discrimination in the goldfish (Carassius auratus). J. Comp. Physiol. Psychol. 73:175–180.

    Article  Google Scholar 

  • Fay, R.R. (1974a). Masking of tones by noise for the goldfish (Carassius auratus). J. Comp. Physiol. Psychol. 87:708–716.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (1974b). Auditory frequency discrimination in vertebrates. J. Acoust. Soc. Am. 56:206–209.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (1984). The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (1985). Sound intensity processing by the goldfish. J. Acoust. Soc. Am. 78:1296–1309.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (1988). Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay, R.R. (1989a). Intensity discrimination of pulsed tones by the goldfish (Carassius auratus). J. Acoust. Soc. Am. 85:500–502.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (1989b). Frequency discrimination in the goldfish (Carassius auratus): Effects of roving intensity, sensation level, and the direction of frequency change. J. Acoust. Soc. Am. 85:503–505.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (1992a). Structure and function in sound discrimination among vertebrates. In: The Evolutionary Biology of Hearing (Webster, D.B., Fay, R.R., and Popper, A.N., eds.), pp. 229–263. New York: Springer-Verlag.

    Google Scholar 

  • Fay, R.R. (1992b). Analytic listening by the goldfish. Hear. Res. 59:101–107.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (1995). Perception of spectrally and temporally complex sounds by the goldfish (Carassius auratus). Hear. Res. 89:146–154.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (1997). Frequency selectivity of saccular afferents of the goldfish revealed by revcor analysis. In: Diversity in Auditory Mechanics (Lewis, E.R., Long, GR., Lyon, R.F, Narins, P.M., Steele, C.R., and Hecht-Poinar, E., eds.), pp. 69–75. Singapore: World Scientific Publishers.

    Google Scholar 

  • Fay, R.R. (1998a). Perception of two-tone complexes by goldfish (Carassius auratus). Hear. Res. 120:17–24.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (1998b). Auditory stream segregation in goldfish (Carassius auratus). Hear. Res. 120:69–76.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (2000). Frequency contrasts underlying auditory stream segregation in goldfish. J. Assoc. Res. Otolaryngol. 1:120–128.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R., and Coombs, S. (1983). Neural mechanisms in sound detection and temporal summation. Hear. Res. 10:69–92.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R., and Edds-Walton, PL. (1997a). Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hear. Res. 111:1–21.

    Article  CAS  Google Scholar 

  • Fay, R.R., and Edds-Walton, PL. (1997b). Diversity in frequency response properties of saccular afferents of the toadfish (Opsanus tau). Hear. Res. 111:235–246.

    Article  Google Scholar 

  • Fay, R.R., and Popper, A.N. (1975). Modes of stimulation of the teleost ear. J. Exp. Biol. 62: 379–387.

    PubMed  CAS  Google Scholar 

  • Fay, R.R., and Popper, A.N. (2000). Evolution of hearing in vertebrates: The inner ears and processing. Hear. Res. 149:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R., and Ream, T.J. (1986). Acoustic response and tuning in saccular nerve fibers of the goldfish (Carassius auratus). J. Acoust. Soc. Am. 79:1883–1895.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R., Ahroon, W.A., and Orawski, A.A. (1978). Auditory masking patterns in the goldfish (Carassius auratus): Psychophysical tuning curves. J. Exp. Biol. 74:83–100.

    PubMed  CAS  Google Scholar 

  • Fay, R.R., Chronopoulos, M., and Patterson, R.D. (1996). The sound of a sinusoid: Perception and neural representations in the goldfish (Carassius auratus). Aud. Neurosci. 2:377–392.

    Google Scholar 

  • Finneran, J.J., and Hastings, M.C. (2000). A mathematical analysis of the peripheral auditory system mechanics in the goldfish (Carassius auratus). J. Acoust. Soc. Am. 108:1308–1321.

    Article  PubMed  CAS  Google Scholar 

  • Fish, M.P., and Mowbray, W.H. (1970). Sounds of Western North Atlantic Fishes. Baltimore, MD: Johns Hopkins Press.

    Google Scholar 

  • Fish, IE, and Offutt, G.C. (1972). Hearing thresholds from toadfish, Opsanus tau, measured in the laboratory and field. J. Acoust. Soc.Am. 51:1318–1321.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, H. (1940). Auditory patterns. Rev. Mod. Phys. 12:47–65.

    Article  Google Scholar 

  • Fletcher, L.B., and Crawford, ID. (2001). Acoustic detection by sound-producing fishes (Mormyridae): The role of gas-filled tympanic bladders. J. Exp. Biol. 204:175–183.

    PubMed  CAS  Google Scholar 

  • Flock, A. (1964). Structure of the macula utriculi with special reference to directional interplay of sensory responses as revealed by morphological polarization. J. Cell Biol. 22:413–431.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, T., and Ishii, Y. (1967). Neurophysiological studies on hearing in the goldfish. J. Neurophysiol. 30:1337–1403.

    Google Scholar 

  • Gauldie, R.W., Mulligan, K., and Thompson, R.K. (1987). The otoliths of a chimaera, the New Zealand elephant fish Callorhynchus milii. N. Z. J. Mar. Freshwater Res. 21:275–280.

    Google Scholar 

  • Guttman, N. (1963). Laws of behavior and facts of perception. In: Psychology: A Study of a Science, Vol. 5 (Koch, S., ed.), pp. 114–178. New York: McGraw-Hill.

    Google Scholar 

  • Hartmann, W.M. (1988). Pitch perception and the segregation and integration of auditory entities. In: Auditory Function: Neurological Bases of Hearing (Edelman, G.M., Gall, W.E., and Cowan, W.M., eds.), pp. 623–645. New York: Wiley.

    Google Scholar 

  • Hawkins, A.D. (1981). The hearing abilities of fish. In: Hearing and Sound Communication in Fishes (Tavolga, W.N., Popper, A.N., and Fay, R.R., eds.), pp. 109–137. New York: Springer-Verlag.

    Google Scholar 

  • Hawkins, A.D., and Chapman, C.J. (1975) Masked auditory thresholds in the cod, Gadus morhua L. J. Comp. Physiol. A. 103:209–226.

    Article  Google Scholar 

  • Hawkins, A.D., and Johnstone, A.D.F. (1978). The hearing of the Atlantic salmon, Salmo salar. J. Fish Biol. 13:655–673.

    Article  Google Scholar 

  • Hawkins, A.D., and Myrberg, A.A. Jr. (1983). Hearing and sound communication under water. In: Bioacoustics: A Comparative Approach (Lewis, B., ed.), pp. 347–405. London: Academic Press.

    Google Scholar 

  • Hawkins, A.D., and Sand, O. (1977). Directional hearing in the median vertical plane by the cod. J. Comp. Physiol. A. 122:1–8.

    Article  Google Scholar 

  • Heuch, P.A., and Karlsen, H.E. (1997). Detection of infrasonic water oscillations by copepods of Lepeophtheirus salmonis (Copepoda: Caligida). J. Plankton Res. 19:735–746.

    Article  Google Scholar 

  • Hudspeth, A.J. (1989). How the ear’s works work. Nature 341:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth, A.J., and Corey, D.P (1977). Sensitivity, polarity and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl. Acad. Sci. USA 74:2407–2411.

    Article  PubMed  CAS  Google Scholar 

  • Hulse, S.H., MacDougall-Shackelton, S.A., and Wisniewski, B. (1997). Auditory scene analysis by songbirds: Stream segregation of birdsong by European starlings (Sturnus vulgaris). J. Comp. Psychol. 111:3–13.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, D.W., and Tavolga, W.N. (1967). Acoustic intensity limens in the goldfish. Anim. Behav. 15:324–335.

    Article  PubMed  CAS  Google Scholar 

  • Ierkø, H., Turunen-Rise, L, Enger, P.S., and Sand, O. (1989). Hearing in the eel (Anguilla). J. Comp. Physiol. 165A:455–459.

    Google Scholar 

  • Jones, F.R.H., and Marshall, N.B. (1953). The structure and function of the teleostean swim bladder. Biol. Rev. 28:16–83.

    Article  Google Scholar 

  • Kalmijn, A.J. (1988). Hydrodynamic and acoustic field detection. In: Sensory Biology of Aquatic Animals (Atema, A., Fay, R.R., Popper, A.N., and Tavolga, W.N., eds.), pp. 83–130. New York: Springer-Verlag.

    Google Scholar 

  • Kalmijn, A.J. (1989). Functional evolution of lateral line and inner ear sensory systems. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, M., eds.), pp. 187–215. Berlin: Springer-Verlag.

    Google Scholar 

  • Kalmijn, A.J. (1997). Electric and near-field acoustic detection, a comparative study. Acta Physiol. Scand. 161:Suppl 638, 25–38.

    Google Scholar 

  • Karlsen, H.E. (1992a). Infrasound sensitivity in the plaice (Pleuronectes platessa). J. Exp. Biol. 171: 173–187.

    Google Scholar 

  • Karlsen, H.E. (1992b). The inner ear is responsible for detection of infrasound in the perch (Percafluviatilis). J. Exp. Biol. 171:163–172.

    Google Scholar 

  • Karlsen, H.E., and Sand, O. (1987). Selective and reversible blocking of the lateral line in freshwater fish. J. Exp. Biol. 133:249–267.

    Google Scholar 

  • Knudsen, FR., Enger, P.S., and Sand, O. (1992). Awareness reactions and avoidance responses to sound in juvenile Atlantic salmon, Salmo salar L. J. Fish Biol. 40:523–534.

    Article  Google Scholar 

  • Knudsen, FR., Enger, P.S., and Sand, O. (1994). Avoidance responses to low frequency sound in downstream migrating Atlantic salmon smolt, Salmo salar L. J. Fish Biol. 45:227–233.

    Article  Google Scholar 

  • Knudsen, FR., Schreck, C.B., Knapp, S.M., Enger, P.S., and Sand, O. (1997). Infrasound produces flight and avoidance responses in Pacific juvenile salmonids. J. Fish Biol. 51:824–829.

    Article  Google Scholar 

  • Koslowsk, J., and Crawford, I (2000). Transformations of an auditory temporal code in the medulla of a sound-producing fish. J. Neurosci. 20:2400–2408.

    Google Scholar 

  • Koyama, H., Lewis, E.R., Leverenz, E.L., and Baird, R.A. (1982). Acute seismic sensitivity of the bullfrog ear. Brain Res. 250:168–172.

    Article  PubMed  CAS  Google Scholar 

  • Kroese, A.B.A., and Schellart, N.A.M. (1992). Velocityand acceleration-sensitive units in the trunk lateral line of the trout. J. Neurophysiol. 68:2212–2221.

    PubMed  CAS  Google Scholar 

  • Ladich, F. (2000). Acoustic communication and the evolution of hearing in fishes. Philos. Trans. R. Soc. Lond. 355:1285–1288.

    Article  CAS  Google Scholar 

  • Lanford, P.J., Platt, C., and Popper, A.N. (2000). Structure and function in the saccule of the goldfish (Carassius auratus): A model of diversity in the non-amniote ear. Hear. Res. 143:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E.R., Everenz, E.L., and Bialek, W.S. (1985). The Vertebrate Ear. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lowenstein, O. (1971). The labyrinth. In: Physiology of Fishes, Vol. 5 (Hoar, W.S., and Randall, D.J., eds.), pp. 207–240. New York: Academic Press.

    Google Scholar 

  • Lowenstein, O., and Roberts, T.D.M. (1950). The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J. Physiol. (Lond.) 110:392–415.

    Google Scholar 

  • Lowenstein, O., and Roberts, T.D.M. (1951). The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth: A contribution to the problem of the evolution of hearing in vertebrates. J. Physiol. (Lond.) 114: 471–489.

    CAS  Google Scholar 

  • Lowenstein, O., Osborne, M.P., and Wersäll, J. (1964). Structure and innervation of the sensory epithelia of the labyrinth in the thornback ray (Raja clavata). Proc. R. Soc. Lond. B. 160:1–12.

    PubMed  CAS  Google Scholar 

  • Lu, Z., and Fay, R.R. (1993). Acoustic response properties of single units in the torus semicircularis of the goldfish, Carassius auratus. J. Comp. Physiol. 173:33–48.

    CAS  Google Scholar 

  • Lu, Z., and Fay, R.R. (1996). Two-tone interaction in auditory nerve fibers and midbrain neurons of the goldfish, Carassius auratus. Aud. Neurosci. 2:57–273.

    Google Scholar 

  • Lu, Z., and Popper, A.N. (1997). Encoding of acoustic particle motion by saccular ganglion cells of a fish: Intracellular recording and tracing. Soc. Neurosci. Abstr. 23:180.

    Google Scholar 

  • Lu, Z., and Popper, A.N. (2001). Neural response directionality correlates of hair cell orientation in a teleost fish. J. Comp. Physiol. A. 187:453–465.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z., Popper, A.N., and Fay, R.R. (1996). Behavioral detection of acoustic particle motion by a teleost fish, Astronotus ocellatus: Sensitivity and directionality. J. Comp. Physiol. A. 179:227–233.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z., Song, I, and Popper, A.N. (1998). Encoding of acoustic directional information by saccular afferents of the sleeper goby, Dormitator latifrons. J. Comp. Physiol. A 182:805–815.

    Article  PubMed  CAS  Google Scholar 

  • Lychakov, D.V., and Rebane, Y.T (2000). Otolith regularities. Hear. Res. 143:83–102.

    Article  PubMed  CAS  Google Scholar 

  • Maisey, J.G. (1988). Reply to Schulze. Copeia 1988:259–260.

    Article  Google Scholar 

  • Mann, D.A., Lu, Z., and Popper, A.N. (1997). Ultrasound detection by a teleost fish. Nature 389:341.

    Article  CAS  Google Scholar 

  • Mann, D.A., Lu, Z., Hastings, M.C., and Popper, A.N. (1998). Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). J. Acoust. Soc. Am. 104:562–568.

    Article  PubMed  CAS  Google Scholar 

  • Mann, D.A., Higgs, D.M., Tavolga, W.N., Souza, M.J., and Popper, A.N. (2001). Ultrasound detection by clupeiform fishes. J. Acoust. Soc. Am. 109:3048–3054.

    Article  PubMed  CAS  Google Scholar 

  • Minnaert, FM. (1933). On musical air-bubbles and the sounds of running water. Phil. Mag. 16:235–248.

    Google Scholar 

  • McCormick, C., and Popper, A.N. (1984). Auditory sensitivity and psychophysical tuning curves in the elephant nose fish, Gnathonemus petersii. J. Comp. Physiol. A. 155:753–761.

    Article  Google Scholar 

  • Montgomery, J., Baker, C.F., and Carton, A.G. (1997). The lateral line can mediate rheotaxis in fish. Nature 389:960–963.

    Article  CAS  Google Scholar 

  • Moorman, S.J., Burress, C., Cordova, R., and Slater, J. (1999). Stimulus dependence of the development of the zebrafish (Danio rerio) vestibular system. J. Neurobiol. 38:247–258.

    Article  PubMed  CAS  Google Scholar 

  • Moulton, J.M. (1963). Acoustic behaviour of fish. In: Acoustic Behavior of Animals (Busnel, R.G., ed.), pp. 655–687. Amsterdam: Elsevier.

    Google Scholar 

  • Myrberg, A.A. Jr. (1980). Sensory mediation of social recognition in fishes. In: Fish Behavior and its Use in the Capture and Culture of Fishes (Bardach, J.E., Magnuson, J.J., and May, R.C., eds.), pp. 146–178. Manila: ICLARM.

    Google Scholar 

  • Myrberg, A.A. Jr. (1981). Sound communication and interception in fishes. In: Hearing and Sound Communication in Fishes (Tavolga, W.N, Popper, A.N., and Fay, R.R., eds.), pp. 395–426. New York: Springer-Verlag.

    Google Scholar 

  • Myrberg, A.A. Jr., and Riggio, R.J. (1985). Acoustically mediated individual recognition by a coral reef fish (Pomacentrus partitus). Anim. Behav. 33:411–416.

    Article  Google Scholar 

  • Myrberg, A.A. Jr., and Spires, J.Y (1980). Hearing in damselfishes: An analysis of signal detection among closely related species. J. Comp. Physiol. 140:135–144.

    Article  Google Scholar 

  • Nestler, J.M., Ploskey, G.R., Pickens, J., Menezes, J., and Schilt, C. (1992). Responses of blueback herring to high-frequency sound and implications for reducing entrainment at hydropower dams. N. Am. J. Fish. Manage. 12:667–683.

    Article  Google Scholar 

  • Offutt, G. (1973). Structures for detection of acoustic stimuli in the Atlantic codfish Gadus morhua. J. Acoust. Soc.Am. 56:665–671.

    Article  Google Scholar 

  • Oman, C.M., Marcus, E.N., and Curthoys, I.S. (1987). The influence of semicircular canal morphology on endolymph flow dynamics: An anatomically descriptive mathematical model. Acta Otoaryngol. 103:1–13.

    Article  CAS  Google Scholar 

  • Packard, A., Karlsen, H.E., and Sand, O. (1990). Low-frequency hearing in cephalopods. J. Comp. Physiol. 166A:501–505.

    Google Scholar 

  • Parker, G.H. (1902). Hearing and allied senses in fishes. Bull. U.S. Fish. Comm. 22:45–64.

    Google Scholar 

  • Parker, G.H. (1903). The sense of hearing in fishes. Am. Nat. 37:185–203.

    Article  Google Scholar 

  • Parker, G.H. (1904). The function of the lateral line organs in fishes. Bull. U.S. Bur. Fish. 24:185–207.

    Google Scholar 

  • Parker, G.H. (1909). The sense of hearing in the dogfish. Science 29:428.

    Google Scholar 

  • Parvulescu, A. (1964). Problems of propagation and processing. In: Marine Bioacoustics (Tavolga, W.N., ed.), pp. 87–100. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Parvulescu, A. (1967). The acoustics of small tanks. In: Marine Bioacoustics II (Tavolga, W.N., ed.), pp. 7–14. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Plachta, D. (2000). Responses of toral lateral line units of the goldfish, Carassius auratus, to dipole and complex water wave stimuli. Doctoral dissertation, Univ. Bonn.

    Google Scholar 

  • Platt, C. (1973). Central control of postural orientation in flatfish. I. Postural change dependence on central neural changes. J. Exp. Biol. 59:491–521.

    PubMed  CAS  Google Scholar 

  • Platt, C. (1977). Hair cell distribution and orientation in goldfish otolith organs. J. Comp. Neurol. 172: 293–297.

    Article  Google Scholar 

  • Platt, C. (1983). The peripheral vestibular system of fishes. In: Fish Neurobiology. I. Brain Stem and Sense Organs (Northcutt, R.G, and Davis, R.E., eds.),pp. 89–124. Ann Arbor, MI: UMichigan Press.

    Google Scholar 

  • Platt, C. (1988). Equilibrium in the vertebrates: Signals senses, and steering underwater. In: Sensory Biology of Aquatic Animals (Atema, A., Fay, R.R., Popper, A.N., and Tavolga, W.N., eds.), pp. 783–809. New York: Springer-Verlag.

    Google Scholar 

  • Platt, C. (1993). Zebrafish inner ear sensory surfaces are similar to those in goldfish. Hear. Res. 65:133–140.

    Article  PubMed  CAS  Google Scholar 

  • Platt, C., and Popper, A.N. (1981). Structure and function in the ear. In: Hearing and Sound Communication in Fishes (Tavolga, W.N., Popper, A.N., and Fay, R.R., eds.), pp. 3–38. New York: Springer-Verlag.

    Google Scholar 

  • Platt, G, Popper, A.N., and Fay, R.R. (1989). The ear as part of the octavolateralis system. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, M., eds.), pp. 633–651. Berlin: Springer-Verlag.

    Google Scholar 

  • Poggendorf, D. (1952). Die absoluten Hörschwellen des Zwergwelses (Amiurus nebulosus) und Beiträge zur Physik des Weberschen Apparates der Ostariophysen. Z. Vergl. Physiol. 34:222–257.

    Article  Google Scholar 

  • Popper, A.N. (1970). Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus). Anim. Behav. 18:552–562.

    Article  Google Scholar 

  • Popper, A.N. (1978). Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphyrhynchus platyrynchus). J. Comp. Neurol. 18:117–128.

    Article  Google Scholar 

  • Popper, A.N. (1981). Comparative scanning electron microscopic investigations of the sensory epithelia in the teleost sacculus and lagena. J. Comp. Neurol. 200:357–374.

    Article  PubMed  CAS  Google Scholar 

  • Popper, A.N. (1983). Organization of the inner ear and processing of acoustic information. In: Fish Neurobiology. I. Brain Stem and Sense Organs (Northcutt, R.G, and Davis, R.E., eds.), pp. 125–178. Ann Arbor, MI: U. Michigan Press.

    Google Scholar 

  • Popper, A.N. (2000). Hair cell heterogeneity and ultrasonic hearing: Recent advances in understanding fish hearing. Philos. Trans. R. Soc. Lond. 355:1277–1280.

    Article  CAS  Google Scholar 

  • Popper, A.N., and Carlson, TJ. (1998). Application of the use of sound to control fish behavior. Trans. Am. Fish. Soc. 127:673–707.

    Article  Google Scholar 

  • Popper, A.N., and Coombs, S. (1982). The morphology and evolution of the ear in Actinopterygian fishes. Am. Zool. 22:311–328.

    Google Scholar 

  • Popper, A.N., and Fay, R.R. (1993). Sound detection and processing by fish: Critical review and major research questions. Brain Behav. Evol. 41:14–38.

    Article  PubMed  CAS  Google Scholar 

  • Popper, A.N., and Fay, R.R. (1997). Evolution of the ear and hearing: Issues and questions. Brain Behav. Evol. 50:213–221.

    Article  PubMed  CAS  Google Scholar 

  • Popper, A.N., and Fay, R.R. (1999). The auditory periphery in fishes. In: Comparative Hearing: Fish and Amphibians (Fay, R.R., and Popper, A.N., eds.), pp. 43–100. New York: Springer-Verlag.

    Google Scholar 

  • Popper, A.N., and Lu, Z. (2000). Structure-function relationships in fish otolith organs. Fish. Res. 46:15–25.

    Article  Google Scholar 

  • Popper, A.N., and Northcutt, R.G. (1983). Structure and innervation of the inner ear of the bowfin, Amia calva. J. Comp. Neurol. 213:279–286.

    Article  PubMed  CAS  Google Scholar 

  • Popper, A.N., and Platt, C. (1983). Sensory surface of the saccule and lagena in the ears of ostariophysan fishes. J. Morphol. 176:121–129.

    Article  Google Scholar 

  • Popper, A.N., and Platt, C. (1993). Inner ear and lateral line of bony fishes. In: The Physiology of Fishes (Evans, D.H., ed.), pp. 99–136. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Popper, A.N., and Tavolga, W.N (1981). Structure and function of the ear of the marine catfish, Arius felis. J. Comp. Physiol. 144:27–34.

    Article  Google Scholar 

  • Popper, A.N., Saidel, W.M., and Chang, J.S.Y. (1993). Two types of sensory hair cell in the saccule of a teleost fish. Hear. Res. 66:211–216.

    Article  Google Scholar 

  • Popper, A.N., Salmon, M., and Parvulescu, A. (1973). Sound localization by two species of Hawaiian squirrelfish, Myripristis berndti and M. argyromus. Anim. Behav. 21:86–97.

    Article  PubMed  CAS  Google Scholar 

  • Rabbitt, R.D., Boyle, R., and Highstein, S.M. (1994). Sensory transduction of head velocity and acceleration in the toadfish horizontal semicircular canal. J. Neurophysiol. 72:1041–1048.

    PubMed  CAS  Google Scholar 

  • Retzius, G. (1881). Das Gehörorgan der Wirbelthiere, Vol. I. Stockholm: Samson and Wallin.

    Google Scholar 

  • Rogers, PH., and Cox, M. (1988). Underwater sound as a biological stimulus. In: Sensory Biology of Aquatic Animals (Atema, A., Fay, R.R., Popper, A.N., and Tavolga, W.N., eds.), pp. 131–149. New York: Springer-Verlag.

    Google Scholar 

  • Ross, Q.E., Dunning, D. J., Menezes, J.K., Kenna, M.J., and Tiller, G. (1995). Reducing impingement of alewives with high-frequency sound at a power plant on Lake Ontario. N. Am. J. Fish. Manage. 15:378–388.

    Google Scholar 

  • Ross, Q.E., Dunning, DJ., Thorne, R., Menezes, J.K., Tiller, G.W., and Watson, IK. (1996). Response of alewives to high-frequency sound at a power plant intake on Lake Ontario. N. Am. J. Fish. Manage. 16:548–559.

    Article  Google Scholar 

  • Saidel, W.M., and Popper, A.N. (1987). Sound reception in two anabantid fishes. Comp. Biochem. Physiol. 88A:37–44.

    Article  Google Scholar 

  • Saidel, W.M., Lanford, P.J., Yan, H.Y, and Popper, A.N. (1995). Hair cell heterogeneity in the goldfish saccule. Brain Behav. Evol. 46:362–370.

    Article  PubMed  CAS  Google Scholar 

  • Sand, O. (1974). Directional sensitivity of microphonic potentials from the perch ear. J. Exp. Biol. 60:881–899.

    PubMed  CAS  Google Scholar 

  • Sand, O. (1981). The lateral-line and sound reception. In: Hearing and Sound Communication in Fishes (Tavolga, W.N, Popper, A.N., and Fay, R.R., eds.), pp. 459–480. New York: Springer-Verlag.

    Google Scholar 

  • Sand, O. (1984). Lateral line systems. In: Comparative Physiology of Sensory Systems (Bolis, L., Keynes, R.D., and Maddrell, S.H.R, eds.), pp. 3–32. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Sand, O., and Enger, P.S. (1973). Evidence for an auditory function of the swim bladder in the cod. J. Exp. Biol. 59:405–414.

    PubMed  CAS  Google Scholar 

  • Sand, O., and Hawkins, A.D. (1973). Acoustic properties of the cod swim bladder. J. Exp. Biol. 58:797–820.

    Google Scholar 

  • Sand, O., and Hawkins, A.D. (1974). Measurements of swim bladder volume and pressure in the cod. Norw. J. Zool. 22:31–34.

    Google Scholar 

  • Sand, O., and Karlsen, H.E. (1986). Detection of infrasound by the Atlantic cod. J. Exp. Biol. 125:197–204.

    PubMed  CAS  Google Scholar 

  • Sand, O., and Karlsen, H.E. (2000). Detection of infrasound and linear acceleration in fish. Philos. Trans. R. Soc. Lond. B 355:1295–1298.

    Article  CAS  Google Scholar 

  • Sand, O., and Michelsen, A. (1978). Vibration measurements of the perch saccular otolith. J. Comp. Physiol. 123:85–89.

    Article  Google Scholar 

  • Sand, O., Enger, P.S., Karlsen, H.E., Knudsen, F.R., and Kvernstuen, T (2000). Avoidance responses to infrasound in downstream migrating European silver eels, Anguilla anguilla. Environ. Biol. Fishes 57:327–336.

    Article  Google Scholar 

  • Schellart, N.A.M., and Popper, A.N. (1992). Functional aspects of the evolution of the auditory system of actinopterygian fish. In: The Evolutionary Biology of Hearing (Webster, D.B., Fay, R.R., and Popper, A.N., eds.), pp. 295–322. New York: Springer-Verlag.

    Google Scholar 

  • Schöne, H. (1964). über die Arbeitsweise der Statolithenapparate bei Plattfischen. Biol. Jahresh. 4:135–156.

    Google Scholar 

  • Schuijf, A. (1975). Directional hearing of cod (Gadus morhua) under approximate free field conditions. J. Comp. Physiol. A. 98:307–332.

    Article  Google Scholar 

  • Schuijf, A., and Buwalda, R.J.A. (1975). On the mechanism of directional hearing in cod (Gadus morhua). J. Comp. Physiol. A. 98:333–344.

    Article  Google Scholar 

  • Schuijf, A., and Hawkins, A.D. (1983). Acoustic distance discrimination by the cod. Nature 302: 143–144.

    Article  Google Scholar 

  • Schuijf, A., and Siemelink, M. (1974). The ability of cod (Gadus morhua) to orient towards a sound source. Experientia 30:773–774.

    Article  PubMed  CAS  Google Scholar 

  • Schuijf, A., Baretta, J.W., and Wildschut, IT. (1972). A field investigation on the discrimination of sound direction in Labrus berggylta (Pisces: Perciformes). Neth. J. Zool. 22:81–104.

    Article  Google Scholar 

  • Schultze, H.-P. (1990). A new acanthodian from the Pennsylvanian of Utah, USA, and the distribution of otoliths in gnathostomes. J. Vertebr. Paleontol. 10:49–58.

    Google Scholar 

  • Sento, S., and Furukawa, T. (1987). Intra-axonal labeling of saccular afferents in the goldfish Carassius auratus: Correlations between morphological and physiological characteristics. J. Comp. Neurol. 258:352–367.

    Article  PubMed  CAS  Google Scholar 

  • Spanier, E. (1979). Aspects of species recognition by sound in four species of damselfishes, genus Eupomacentrus (Pisces: Pomacentridae). Z. Tierpsychol. 51:301–316.

    PubMed  CAS  Google Scholar 

  • Steen, J.B. (1971). The swim bladder as a hydrostatic organ. In: Fish Physiology, Vol. TV (Hoar, W.S., and Randall, D.J., eds.), pp. 413–443. New York: Academic Press.

    Google Scholar 

  • Steinacker, A., and Rojas, L. (1988). Acetylcholine modulated potassium channel in the hair cell of the toadfish saccule. Hear. Res. 155:265–269

    Article  Google Scholar 

  • Steinacker, A., and Romero, A. (1991). Characterization of the voltage gated potassium current in toadfish saccule hair cell. Brain Res. 556:22–32.

    Article  PubMed  CAS  Google Scholar 

  • Steinacker, A., and Romero, A. (1992). Voltage-gated potassium current resonance in the toadfish saccular hair cell. Brain Res. 574:229–236.

    Article  PubMed  CAS  Google Scholar 

  • Stipetc, E. (1939). Über das Gehörorgan der Mormyriden. Z. Vergl. Physiol. 26:740–752.

    Article  Google Scholar 

  • Sundnes, G., and Gytre, T. (1972). Swim bladder gas pressure in cod in relation to hydrostatic pressure. J. Cons. Perm. Int. Explor. Mer. 34:529–532.

    Google Scholar 

  • Sundnes, G, and Sand, O. (1975). Studies of a physostome swim bladder by resonance frequency analyses. J. Cons. Perm. Int. Explor. Mer. 36:176–182.

    Google Scholar 

  • Tavolga, W.N. (1956). Visual, chemical and sound stimuli as cues in the sex discriminatory behavior of the gobiid fish, Bathygobius soporator. Zoologica 41:49–64.

    Google Scholar 

  • Tavolga, W.N. (1958). The significance of underwater sounds produced by males of the gobiid fish, Bathygobius soporator. Physiol. Zool. 31:259–271.

    Google Scholar 

  • Tavolga, W.N. (1971a). Sound production and detection. In: Fish Physiology, Vol. V (Hoar, WS., and Randall, D.J., eds.), pp. 135–205. New York: Academic Press.

    Google Scholar 

  • Tavolga, W.N. (1971b). Acoustic orientation in the sea catfish, Galeichthys felis. Ann. NY Acad. Sci. 188:80–97.

    Article  CAS  Google Scholar 

  • Tavolga, W.N. (1974). Signal/noise ratio and the critical band in fishes. J. Acoust. Soc. Am. 55:1323–1333.

    Article  PubMed  CAS  Google Scholar 

  • Tavolga, W.N. (1976a). Acoustic obstacle detection in the sea catfish (Arius felis). In: Sound Reception in Fish (Schuijf, A., and Hawkins, A.D., eds.) pp. 185–204. Amsterdam: Elsevier.

    Google Scholar 

  • Tavolga, W.N. (ed.). (1976b). Sound Reception in Fishes: Benchmark Papers in Animal Behavior, Vol. 7. Stroudsburg, PA: Dowden, Hutchinson & Ross.

    Google Scholar 

  • Tavolga, W.N. (ed.). (1977). Sound Production in Fishes: Benchmark Papers in Animal Behavior, Vol. 9. Stroudsburg, PA: Dowden, Hutchinson & Ross.

    Google Scholar 

  • Tavolga, W.N. (1982). Auditory acuity in the sea catfish (Arius felis). J. Exp. Biol. 96:367–376.

    Google Scholar 

  • Tavolga, W.N, and Wodinsky, J. (1963). Auditory capacities in fishes: Pure tone thresholds in nine species of marine teleosts. Bull. Am. Mus. Nat. Hist. 126:177–240.

    Google Scholar 

  • Urick, R.J. (1974). Sea-bed motion as a source of the ambient noise background of the sea. J. Acoust. Soc. Am. 56:1010–1011.

    Article  Google Scholar 

  • van Bergeijk, W.A. (1964). Directional and nondirectional hearing in fish. In: Marine Bioacoustics (Tavolga, W.N, ed.), pp. 281–299. Oxford, UK: Pergamon Press

    Google Scholar 

  • van Bergeijk, W.A. (1967). The evolution of vertebrate hearing. Contrib. Sens. Physiol. 2:1–49.

    PubMed  Google Scholar 

  • von Bekesy, G. (1960). Experiments in Hearing (Wever, E.G., ed.). New York: McGraw-Hill.

    Google Scholar 

  • von Frisch, K. (1923). Ein Zwergwels der kommt, wenn man ihm pfeift. Biol. Zentralbl. Leipzig 43:439–446.

    Google Scholar 

  • von Frisch, K. (1936). Über den Gehörsinn der Fische. Biol. Rev. 11:210–246.

    Article  Google Scholar 

  • von Frisch, K. (1938a). The sense of hearing in fish. Nature 141:8–11.

    Article  Google Scholar 

  • von Frisch, K. (1938b). Über die Bedeutung des Sacculus und der Lagena für den Gehörsinn der Fische. Z Vergl. Physiol. 25:703–747.

    Article  Google Scholar 

  • von Frisch, K., and Dijkgraaf, S. (1935). Können Fische die Schallrichtung Wahrnehmen? Z Vergl. Physiol. 22:641–655.

    Google Scholar 

  • von Holst, E. (1950). Die Arbeitsweise des Statolithenapparates bei Fischen. Z Vergl. Physiol. 32:60–120.

    Article  Google Scholar 

  • Webb, J.F. (1998). The laterophysic connection: a unique link between the swim bladder and the lateral-line system in Chaetodon (Perciformes: Chaetodontidae). Copeia 1032–1036.

    Google Scholar 

  • Webb, IF, and Smith, W.L. (2000). The laterophysic connection in chaetodontid butterflyfish: Morphological variation and speculation on sensory function. Philos. Trans. R. Soc. Lond. B. 355:1125–1129.

    Article  CAS  Google Scholar 

  • Weber, E.H. (1820). De aure et auditu hominis et animalium. Pars I. De aure animalium aquatilium. Leipzig., Gehard Fleischer.

    Google Scholar 

  • Wersäll, J. (1961). Vestibular receptor cells in fish and mammals. Acta Oto-Laryngol. Suppl. 163:25–29.

    Article  Google Scholar 

  • Wever, E.G. (1949). Theory of Hearing. New York: Wiley.

    Google Scholar 

  • Winn, H.E. (1964). The biological significance of fish sounds. In: Marine Bioacoustics (Tavolga, W.N., ed.), pp. 213–231. New York: Pergamon Press.

    Google Scholar 

  • Wohlfahrt, T.A. (1939). Untersuchungen über das Tonunterscheidungsverm gen der Elritze. Z. Vergl. Physiol. 26:570–604.

    Google Scholar 

  • Yan, H.Y, and Curtsinger, WS. (2000). The otic gasbladder as an ancillary auditory structure in a mormyrid fish. J. Comp. Physiol. A. 186:595–602.

    Article  PubMed  CAS  Google Scholar 

  • Yan, H.Y, Fine, M.L., Horn, N.S., and Colon, WE. (2000). Variability in the role of the gasbladder in fish audition. J. Comp. Physiol. A. 186:435–445.

    Article  PubMed  CAS  Google Scholar 

  • Yost, W.A., and Gourevitch, G (eds.) (1987). Directional Hearing. New York: Springer-Verlag.

    Google Scholar 

  • Zelick, R., Mann, D., and Popper, A.N. (1999). Acoustic communication in fishes and frogs. In: Comparative Hearing: Fish and Amphibians (Fay, R.R., and Popper, A.N., eds.), pp. 363–411. New York: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Popper, A.N., Fay, R.R., Platt, C., Sand, O. (2003). Sound Detection Mechanisms and Capabilities of Teleost Fishes. In: Collin, S.P., Marshall, N.J. (eds) Sensory Processing in Aquatic Environments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22628-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22628-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95527-8

  • Online ISBN: 978-0-387-22628-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics