Skip to main content

Pharmacology of Ginsenosides

  • Reference work entry
  • First Online:
Natural Products

Abstract

Ginseng is also known as “The King of All Herbs.” It not only possesses superior status in the field of traditional Chinese medicine and being extensively used in Chinese communities for thousands of years, it is one of the most popular herbs in the world and accounts for over 800 million US dollar of international market. Many scientific approaches (e.g., bioassays and omics studies) have been used to unlock the mechanisms behind the biological effects of ginseng. Frequently, ginsenosides are being said to be the most pharmacologically active constituents in ginseng. In this chapter, we will cover the basic biochemistry and pharmacology of ginsenosides, as well highlight how ginsenosides work in human body with respect to various pathological conditions, including cancer and age-related disorders. Lastly, we will discuss the possibilities of developing ginsenosides into targeted therapeutic agents to benefit the human society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ER:

Estrogen receptor

GR:

Glucocorticoid receptor

References

  1. Bigelow J (1817) American Medical Botany. Boston: Cummings and Hillard

    Google Scholar 

  2. Sadler T (1999) Australian ginseng. Crop establishment research. Rural Industries Research and Development Corporation, Barton

    Google Scholar 

  3. Lim W, Mudge KW, Vermeylen F (2005) Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 53:8498–8505

    Article  CAS  Google Scholar 

  4. Schlag EM, Mclntosh MS (2006) Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 67:1510–1519

    Article  CAS  Google Scholar 

  5. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH (2000) Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 63:1702–1704

    Article  CAS  Google Scholar 

  6. Kasai R, Besso H, Tanaka O, Saruwatari Y, Fuwa T (1983) Saponins of red ginseng. Chem Pharm Bull(Tokyo) 31:2120–2125

    Article  CAS  Google Scholar 

  7. Kim SI, Park JH, Ryu JH, Park JD, Lee YH, Park JH, Kim TH, Baek NI (1996) Ginsenoside Rg5, a genuine dammarane glycoside from Korean red ginseng. Arch Pharm Res 19:551–553

    Article  CAS  Google Scholar 

  8. Ryu JH, Park JH, Eun JH, Jung JH, Sohn DH (1997) A dammarane glycoside from Korean red ginseng. Phytochemistry 44:931–933

    Article  CAS  Google Scholar 

  9. Park JD, Lee YH, Kim SI (1998) Ginsenoside Rf2, a new dammarane glycoside from Korean red ginseng (Panax ginseng). Arch Pharm Res 21:615–617

    Article  CAS  Google Scholar 

  10. Kaneko H, Nakanishi K (2004) Proof of the mysterious efficacy of ginseng: basic effects of medical ginseng, Korean red ginseng: its anti-stress action for prevention of disease. J Pharmacol Sci 95:158–162

    Article  CAS  Google Scholar 

  11. Lee KY, Lee YH, Kim SI, Park JH, Lee SK (1997) Ginsenoside-Rg5 suppresses cyclin E-dependent protein kinase activity via up-regulating p21Cip/WAF1 and down-regulating cyclin E in SK-HEP-1 cells. Anticancer Res 17:1067–1072

    CAS  Google Scholar 

  12. Liu WK, Xu SX, Che CT (2000) Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci 67:1297–1306

    Article  CAS  Google Scholar 

  13. Kwon SW, Han SB, Park IH, Kim JM, Park MK, Park JH (2001) Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr A 921:335–339

    Article  CAS  Google Scholar 

  14. Xu TM, Xin Y, Cui MH, Jiang X, Gu LP (2007) Inhibitory effect of ginsenoside Rg3 combined with cyclophosphamide on growth and angiogenesis of ovarian cancer. Chin Med J (Engl) 120:584–588

    CAS  Google Scholar 

  15. Kim YJ, Kwon HC, Ko H, Park JH, Kim HY, Yoo JH, Yang HO (2008) Anti-tumor activity of the ginsenoside Rk1 in human hepatocellular carcinoma cells through inhibition of telomerase activity and induction of apoptosis. Biol Pharm Bull 31:826–830

    Article  CAS  Google Scholar 

  16. Yoo JH, Kwon HC, Kim YJ, Park JH, Yang HO (2010) KG-135, enriched with selected ginsenosides, inhibits the proliferation of human prostate cancer cells in culture and inhibits xenograft growth in athymic mice. Cancer Lett 289:99–110

    Article  CAS  Google Scholar 

  17. Park JH, Cha HY, Seo JJ, Hong JT, Han K, Oh KW (2005) Anxiolytic-like effects of ginseng in the elevated plus-maze model: comparison of red ginseng and sun ginseng. Prog Neuropsychopharmacol Biol Psychiatry 29:895–900

    Article  Google Scholar 

  18. National Institutes of Health, National Center for Complementary and Alternative Medicine (NCCAM), http://nccam.nih.gov/health/asianginseng/

  19. European Federation for Complementary and Alternative Medicine (EFCAM), http://www.efcam.eu/

  20. Ovodov YS, Solov’eva TF (1966) Polysaccharides of Panax ginseng. Chem Nat Comp 2:292–303

    Article  Google Scholar 

  21. Tomoda M, Takeda K, Shimizu N, Gonda R, Ohara N, Takada K, Hirabayashi K (1993) Characterization of two acidic polysaccharides having immunological activities from the root of Panax ginseng. Biol Pharm Bull 16:22–25

    Article  CAS  Google Scholar 

  22. Baek SH, Lee JG, Park SY, Bae ON, Kim DH, Park JH (2010) Pectic polysaccharides from Panax ginseng as the antirotavirus principals in ginseng. Biomacromolecules 11:2044–2052

    Article  CAS  Google Scholar 

  23. Zhao H, Zhang W, Xiao C, Lu C, Xu S, He X, Li X, Chen S, Yang D, Chan AS, Lu A (2011) Effect of ginseng polysaccharide on TNF-a and IFN-g produced by enteric mucosal lympocytes in collagen induced arthritic rats. J Med Plant Res 5:1536–1542

    Article  CAS  Google Scholar 

  24. Ivanova T, Han Y, Son HJ, Yun YS, Song JY (2006) Antimutagenic effect of polysaccharide ginsan extracted from Panax ginseng. Food Chem Toxicol 44:517–521

    Article  CAS  Google Scholar 

  25. Kim HJ, Kim MH, Byon YY, Park JW, Jee Y, Joo HG (2007) Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells. J Vet Sci 8:39–44

    Article  Google Scholar 

  26. Qian ZM, Lu J, Gao QP, Li SP (2009) Rapid method for simultaneous determination of flavonoid, saponins, and polyacetylenes in folium ginseng and radix ginseng by pressurized liquid extraction and high-performance liquid chromatography coupled with diode array detection and mass spectrometry. J Chromatogr A 1216:3825–3830

    Article  CAS  Google Scholar 

  27. Jung CH, Seog HM, Choi IW, Cho HY (2005) Antioxidant activities of cultivated and wild Korean ginseng leaves. Food Chem 92:535–540

    Article  CAS  Google Scholar 

  28. Attele AS, Wu JA, Yuan CS (1999) Multiple pharmacological effects of ginseng. Biochem Pharmacol 58:1685–1693

    Article  CAS  Google Scholar 

  29. Soldati F, Tanaka O (1984) Panax ginseng: relation between age of plant and content of ginsenosides. Planta Med 50:351–352

    Article  CAS  Google Scholar 

  30. Court WA, Reynolds LB, Hendel JG (1996) Influence of root age on the concentration of ginsenosides of American ginseng (Panax quinquefolium). Can J Plant Sci 76:853–855

    Article  CAS  Google Scholar 

  31. Christensen LP (2009) Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 55:1–99

    Article  CAS  Google Scholar 

  32. Shibata S, Fujita M, Itokawa H, Tanako O, Ishii T (1963) Studies on the constituents of Japanese and Chinese Crude Drugs. XI. Panaxadiol, a sapogenin of ginseng roots. (1). Chem Pharm Bull (Tokyo) 11:759–761

    Google Scholar 

  33. Matsuura H, Kasai R, Tanaka O, Saruwatari Y, Kunihiro K, Fuwa T (1984) Further studies on the dammarane-saponins of ginseng roots. Chem Pharm Bull(Tokyo) 32:1188–1192

    Article  CAS  Google Scholar 

  34. Li W, Gu C, Zhang H, Awang DVC, Fitzloff JF, Fong HHS, van Breemen RB (2000) Use of high-performance liquid chromatography-tandem mass spectrometry to distinguish Panax ginseng C.A. meyer (Asian ginseng) and Panax quinquefolius L. (North American ginseng). Anal Chem 72:5417–5422

    Article  CAS  Google Scholar 

  35. Assinewe VA, Baum BR, Gagnon D, Arnason JT (2003) Phytochemistry of wild populations of Panax quinquefolium L. (North American ginseng). J Agric Food Chem 51:4549–4553

    Google Scholar 

  36. Hwang IG, Kim HY, Joung EM, Woo KS, Jeong JH, Yu KW, Lee J, Jeong HS (2010) Changes in ginsenosides and antioxidant activity of Korean ginseng (Panax ginseng C.A. Meyer) with heating temperature and pressure. Food Sci Biotechnol 19:941–949

    Article  CAS  Google Scholar 

  37. Casanova H, Ortiz C, Pelaez C, Vallejo A, Moreno ME, Acevedo M (2002) Insecticide formulations based on nicotine oleate stabilized by sodium caseinate. J Agric Food Chem 50:6389–6394

    Article  CAS  Google Scholar 

  38. Fukami H, Nakajima M (1971) Rotenone and rotenoids. In: Jacobson M, Crosby DG (eds) Naturally occurring insecticides. Marcel Dekker, New York, p 71

    Google Scholar 

  39. Elliott M (1976) Properties and applications of pyrethroids. Environ Health Perspect 14:1–13

    Article  CAS  Google Scholar 

  40. Aerts RJ, Mordue AJ (1997) Feeding deterrence and toxicity of neem triterpenoids. J Chem Ecol 23:2117–2132

    Article  CAS  Google Scholar 

  41. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  Google Scholar 

  42. Palazon J, Cusido RM, Bonfill M, Mallol A, Moyano E, Morales C, Pinol MT (2003) Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol Biochem 41:1019–1025

    Article  CAS  Google Scholar 

  43. Choi DW, Jung JD, Ha YI, Park HW, In DS, Chung HJ, Liu JR (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557–566

    Article  CAS  Google Scholar 

  44. Ali MB, Yu KW, Hahn EJ, Paek KY (2006) Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep 25:613–620

    Article  CAS  Google Scholar 

  45. Nicol RW, Traquair JA, Bernards MA (2002) Ginsenosides as host resistance factors in American ginseng (Panax quinquefolius). Can J Bot 80:557–562

    Article  CAS  Google Scholar 

  46. Bernards MA, Yousef LF, Nicol RW (2006) The allelopathic potential of ginsenosides. Allelochemicals: biological control of plant pathogens and diseases. Disease Management of Fruits and Vegetables 2:157–175

    Article  Google Scholar 

  47. Sung WS, Lee DG (2008) In vitro candidacidal action of Korean red ginseng saponins against candida albicans. Biol Pharm Bull 31:139–143

    Article  CAS  Google Scholar 

  48. Mallvadhani UV, Mahapatra A, Raja SS, Manjula C (2003) Antifeedant activity of some pentacyclic triterpene acids and their fatty acid ester analogues. J Agric Food Chem 51:1952–1955

    Article  CAS  Google Scholar 

  49. Harada T, Nakagawa Y, Akamatsu M, Miyagawa H (2009) Evaluation of hydrogen bonds of ecdysteroids in the ligand-receptor interactions using a protein modeling system. Bioorg Med Chem 17:5868–5873

    Article  CAS  Google Scholar 

  50. Cutler SJ, Cutler HG (2000) Biologically active natural products: pharmaceuticals. CRC Press, New York

    Google Scholar 

  51. Hall T, Lu ZZ, Yat PN, Fitzloff JF, Arnason JT, Awang DVC, Fong HHS, Blumenthal M (2001) Evaluation of consistency of standardized Asian ginseng products in the ginseng evaluation program. Herbalgram 52:31–45

    Google Scholar 

  52. Chang TKH, Chen J, Benetton SA (2002) In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2 and CYP1B1. Drug Metab Dispos 30:378–384

    Article  CAS  Google Scholar 

  53. Park SA, Kim EH, Na HK, Surh YJ (2007) KG-135 inhibits COX-2 expression by blocking the activation of JNK and AP-1 in phorbol ester-stimulated human breast epithelial cells. Ann N Y Acad Sci 1095:545–553

    Article  CAS  Google Scholar 

  54. Tanaka H, Fukuda N, Shoyama Y (1999) Formation of monoclonal antibody against a major ginseng component, ginsenoside Rb1 and its characterization. Cytotechnology 29:115–120

    Article  CAS  Google Scholar 

  55. Fukuda N, Tanaka H, Shoyama Y (2000) Formation of monoclonal antibody against a major ginseng component, ginsenoside Rg1 and its characterization. Cytotechnology 34:197–204

    Article  CAS  Google Scholar 

  56. Morinaga O, Tanaka H, Shoyama Y (2006) Detection and quantification of ginsenoside Re in ginseng samples by chromatographic immunostaining method using monoclonal antibody against ginsenoside Re. J Chromatogr B 830:100–104

    Article  CAS  Google Scholar 

  57. Joo EJ, Ha YW, Shin H, Son SH, Kim YS (2009) Generation and characterization of monoclonal antibody to ginsenoside Rg3. Biol Pharm Bull 32:548–552

    Article  CAS  Google Scholar 

  58. Karikura M, Miyase T, Tanizawa H, Takino Y (1991) Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VI. The decomposition products of ginsenoside Rb2 in the stomach of rats. Chem Pharm Bull (Tokyo) 39:400–404.

    Google Scholar 

  59. Hasegawa H, Sung JH, Matsumiya S, Uchiyama M (1996) Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med 62:453–457

    Article  CAS  Google Scholar 

  60. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH (2002) Metabolism of ginsenoside Re by human intestinal bacteria and its related antiollergic activity. Biol Pharm Bull 25:743–747

    Article  CAS  Google Scholar 

  61. Park CS, Yoo MH, Noh KH, Oh DK (2010) Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 87:9–19

    Article  CAS  Google Scholar 

  62. Popovich DG, Kitts DD (2002) Structure-function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line. Arch Biochem Biophys 406:1–8

    Article  CAS  Google Scholar 

  63. Bae EA, Han MJ, Kim EJ, Kim DH (2004) Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res 27:61–67

    Article  CAS  Google Scholar 

  64. Liu Y, Zhang JW, Li W, Ma H, Sun J, Deng MC, Yang L (2006) Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicol Sci 91:356–364

    Article  CAS  Google Scholar 

  65. Wakabayashi C, Hasegawa H, Marata J, Saiki I (1997) In vivo antimetastatic action of Ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol Res 9:411–417

    CAS  Google Scholar 

  66. Takino Y (1994) Studies on pharmacodynamics of ginsenoside-Rg1, Rb1 and - Rb2 in rats. Yakugaku Zasshi 114:550–564

    CAS  Google Scholar 

  67. Xu QF, Fang XL, Chen DF (2003) Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol 84:187–192

    Article  CAS  Google Scholar 

  68. Han M, Fang XL (2006) Difference in oral absorption of ginsenoside Rg1 between in vitro and in vivo models. Acta Pharmacol Sin 27:499–505

    Article  CAS  Google Scholar 

  69. Han M, Sha X, Wu Y, Fang X (2006) Oral absorption of ginsenoside Rb1 using in vitro and in vivo models. Planta Med 72:398–404

    Article  CAS  Google Scholar 

  70. Odani T, Tanizawa H, Takino Y (1983) Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. II. The absorption, distribution and excretion of ginsenoside Rg1 in the rat. Chem Pharm Bull (Tokyo) 31:292–298.

    Google Scholar 

  71. Odani T, Tanizawa H, Takino Y (1983) Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. III. The bsorption, distribution and excretion of ginsenoside Rb1 in the rat. Chem Pharm Bull (Tokyo) 31:1059–1066.

    Google Scholar 

  72. Xie HT, Wang GJ, Chen M, Jiang XL, Li H, Lv H, Huang CR, Wang R, Roberts M (2005) Uptake and metabolism of ginsenoside Rh2 and its aglycon protopanaxadiol by Caco-2 cells. Biol Pharm Bull 28:383–386

    Article  CAS  Google Scholar 

  73. Xiong J, Sun M, Guo J, Huang L, Wang S, Meng B, Ping Q (2009) Active absorption of ginsenoside Rg1 in vitro and in vivo: the role of odiumdependent glucose co-transporter 1. J Pharm Pharmacol 61:381–386

    CAS  Google Scholar 

  74. Xiong J, Sun M, Guo J, Huang L, Wang S, Meng B, Ping Q (2009) Enhancement by adrenaline of ginsenoside Rg1 transport in Caco-2 cells and oral absorption in rats. J Pharm Pharmacol 61:347–352

    Article  CAS  Google Scholar 

  75. Xiong J, Guo J, Huang L, Meng B, Ping Q (2008) The use of lipid-based formulations to increase the oral bioavailability of Panax notoginseng saponins following a single oral gavage to rats. Drug Dev Ind Pharm 34:65–72

    Article  CAS  Google Scholar 

  76. Han M, Fu S, Gao JQ, Fang XL (2009) Evaluation of intestinal absorption of ginsenoside Rg1 incorporated in microemulsion using parallel artificial membrane permeability assay. Biol Pharm Bull 32:1069–1074

    Article  CAS  Google Scholar 

  77. Gu Y, Wang GJ, Sun JG, Jia YW, Wang W, Xu MJ, Lv T, Zheng YT, Sai Y (2009) Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem Toxicol 47:2257–2268

    Article  CAS  Google Scholar 

  78. Xie HT, Wang GJ, Chen M, Jiang XL, Li H, Lv H, Huang CR, Wang R, Roberts M (2005) Uptake and metabolism of ginsenoside Rh2 and its aglycon protopanaxadiol by Caco-2 cells. Biol Pharm Bull 28:383–386

    Article  CAS  Google Scholar 

  79. Liu H, Yang J, Du F, Gao X, Ma X, Huang Y, Xu F, Niu F, Mao Y, Sun Y, Lu T, Liu C, Zhang B, Li C (2009) Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab Dispos 37:2290–2298

    Article  CAS  Google Scholar 

  80. Leung KW, Cheng YK, Mak NK, Chan KKC, Fan TPD, Wong RNS (2006) Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett 580:3211–3216

    Article  CAS  Google Scholar 

  81. Leung KW, Ng HM, Tang MKS, Wong CCK, Wong RNS, Wong AST (2011) Ginsenoside-Rg1 mediates a hypoxia-independent upregulation of hypoxia-inducible factor-1a to promote angiogenesis. Angiogenesis 14:515–522

    Article  CAS  Google Scholar 

  82. Leung KW, Cheung LWT, Pon YL, Wong RNS, Mak NK, Fan TPD, Au SCL, Tombran-Tink J, Wong AST (2007) Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen b-receptor. Brit J Pharmacol 152:207–215

    Article  CAS  Google Scholar 

  83. Suh SO, Kroh M, Kim NR, Joh YG, Cho MY (2002) Effects of red ginseng upon postoperative immunity and survival in patients with Stage III gastric cancer. Am J Chin Med 30:482–494

    Article  Google Scholar 

  84. Yun TK, Choi SY (1998) Non-organ specific cancer prevention of ginseng: a prospective study in Korea. Int J Epidemiol 27:359–364

    Article  CAS  Google Scholar 

  85. Yun TK, Choi SY (1990) A case–control study of ginseng intake and cancer. Int J Epidemol 19:871–6

    Article  CAS  Google Scholar 

  86. He BC, Gao JL, Luo X, Luo J, Shen J, Wang L, Zhou Q, Wang YT, Luu HH, Haydon RC, Wang CZ, Du W, Yuan CS, He TC, Zhang BQ (2011) Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/b-catenin signaling. Int J Oncol 38:437–445

    Article  CAS  Google Scholar 

  87. Ng WY, Yang MS (2008) Effects of ginsenosides Re and Rg3 on intracellular redox state and cell proliferation in C6 glioma cells. Chin Med 3:8

    Article  Google Scholar 

  88. Kim SW, Kwon HY, Chi DW, Shim JH, Park JD, Lee YH, Pyo S, Rhee DK (2003) Reversal of p-glycoprotein-mediated multidrug resistance by ginsenosides Rg(3). Biochem Pharmacol 65:75–82

    Article  CAS  Google Scholar 

  89. Zhang J, Zhou F, Wu X, Gu Y, Ai H, Zheng Y, Li Y, Zhang X, Hao G, Sun J, Peng Y, Wang G (2010) 20(S)-ginsenoside Rh2 Noncompetitively inhibits p-glycoprotein in vitro and in vivo: a case for herb-drug interaction. Drugs Metab Dispos 38:2179–2187

    Article  CAS  Google Scholar 

  90. Zhang J, Zhou F, Niu F, Lu M, Wu X, Sun J, Wang G (2012) Stereoselective regulation of p-glycoprotein by ginsenoside Rh2 epimers and the potential mechanisms from the view of pharmacokinetics. PLoS One 7:e35768

    Article  CAS  Google Scholar 

  91. Kemper EM, Verheij M, Boogerd W, Beijnen JH, van Tellingen O (2004) Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer 40:1269–1274

    Article  CAS  Google Scholar 

  92. van Waterschoot RA, Schinkel AH (2011) A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol Rev 63:390–410

    Article  CAS  Google Scholar 

  93. Kimura I, Nakashima N, Sugihara Y, Fu-Jun C, Kimura M (1999) The antihyperglycemic blend effect of traditional Chinese medicine Byakko-ka-ninjin-to on alloxan and diabetic KK-CAy mice. Phytother Res 13:484–488

    Article  CAS  Google Scholar 

  94. Bensky D, Gamble A (1993) Chinese herbal medicine material medica. Eastland Press, Dealttle, WA

    Google Scholar 

  95. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858

    Article  CAS  Google Scholar 

  96. Vuksan V, Sievenpiper JL, Koo VY, Trancis T, Beljan-Zdrankovic U, Xu Z, Vidgen E (2000) American ginseng (Panax quinquefolius L.) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Arch Intern Med 160:1009–1013

    Article  CAS  Google Scholar 

  97. Akagawa G, Abe S, Tansho S, Uchida K, Yamaguchi H (1996) Protection of C3H/HEJ mice from development of Candida albicans infection by oral administration of Juzen-taiho-to and its component, Ginseng radix: possible roles of macrophages in the host defense mechanisms. Immunopharmacol Immunotoxicol 18:73–89

    Article  CAS  Google Scholar 

  98. Lee YS, Chung IS, Lee IR, Kim KH, Hong WS, Yun YS (1997) Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsang isolated from Panax ginseng. Anticancer Res 17:323–331

    CAS  Google Scholar 

  99. Luo YM, Cheng XJ, Yuan WX (1993) Effects of ginseng root saponins and ginsenoside Rb1 on immunity in cold water swim stress mice and rats. Acta Pharmacol Sin 14:401–404

    CAS  Google Scholar 

  100. Kim JY, Germolec DR, Luster MI (1990) Panax ginseng as a potential immunomodulator: studies in mice. Immunopharmacol Immunotoxicol 12:257–276

    Article  CAS  Google Scholar 

  101. Jie YH, Cammisuli S, Baggiolini M (1984) Immunomodulatory effects of Panax ginseng C.A. Meyer in the mouse. Agents Actions 15:386–391

    Article  CAS  Google Scholar 

  102. Scaglione F, Ferrara F, Dugnani S, Falchi M, Santoro G, Fraschini F (1990) Immunomodulatory effects of two extracts of Panax ginseng C.A. Meyer. Drugs Exp Clin Res 16:537–542

    CAS  Google Scholar 

  103. Mizuno M, Yamada J, Terai H, Kozukue N, Lee YS, Tsuchida H (1994) Differences in immunomodulating effects between wild and cultured Panax ginseng. Biochem Biophys Res Commun 200:1672–1678

    Article  CAS  Google Scholar 

  104. Harris J, Sengar D, Stewart T, Hyslop D (1976) The effect of immunosuppressive chemotherapy on immune function in patients with malignant disease. Cancer 37:1058–1069 Supplement: Conference on the delayed consequences of cancer therapy: proven and potential

    Article  CAS  Google Scholar 

  105. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive Strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  CAS  Google Scholar 

  106. Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK (1997) Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 133:135–140

    Article  CAS  Google Scholar 

  107. Leung KW, Cheng YK, Mak NK, Chan KKC, Fan TPD, Wong RNS (2006) Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett 580:3211–3216

    Article  CAS  Google Scholar 

  108. Lee Y, Jin Y, Lim W, Ji S, Choi S, Jang S, Lee S (2003) A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. J Steroid Biochem Mol Biol 84:463–468

    Article  CAS  Google Scholar 

  109. Gao QG, Chen WF, Xie JX, Wong MS (2009) Ginsenoside Rg1 protects against 6- OHDA-induced neurotoxicity in neuroblastoma SK-N-SH cells via IGF-I receptor and estrogen receptor pathways. J Neurochem 109:1338–1347

    Article  CAS  Google Scholar 

  110. Furukawa T, Bai CX, Kaihara A, Ozaki E, Kawano T, Nakaya Y, Awais M, Sato M, Umezawa Y, Kurokawa J (2006) Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones. Mol Pharmacol 70:1916–1924

    Article  CAS  Google Scholar 

  111. Leung KW, Leung FP, Mak NK, Tombran-Tink J, Huang Y, Wong RNS (2009) Protopanaxadiol and protopanaxatriol bind to glucocorticoid and oestrogen receptors in endothelial cells. Br J Pharmacol 156:626–637

    Article  CAS  Google Scholar 

  112. Wiklung IK, Mattsson LA, Lindgren R, Limoni C (1999) Effects of a standardized ginseng extract on quality of life and physiological parameters in symptomatic postmenopausal women: a double-blind, placebo-controlled trial Swedish Alternative Medicine Group. Int J Clin Pharm Res 19:89–99

    Google Scholar 

  113. Salim KN, McEwen BS, Chao HM (1997) Ginsenoside Rb1 regulates ChAT, NGF and TrkA mRNA expression in the rat brain. Mol Brain Res 47:177–182. 92.

    Google Scholar 

  114. Choi S, Lee JH, Oh S, Rhim H, Lee SM, Nah SY (2003) Effects of ginsenoside Rg2 on the 5-HT3A receptor-mediated ion current in Xenopus oocytes. Mol Cells 15:108–113

    CAS  Google Scholar 

  115. Kim HS, Hwang SL, Oh S (2000) Ginsenoside Rc and Rg1 differentially modulate NMDA receptor subunit mRNA levels after intracerebroventricular infusion in rats. Neurochem Res 25:1149–1154

    Article  CAS  Google Scholar 

  116. Choi S, Jung SY, Lee JH, Sala F, Criado M, Mulet J, Valor LM, Sala S, Engel AG, Nah SY (2002) Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. Eur J Pharmacol 442:37–45

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kar Wah Leung Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Leung, K.W. (2013). Pharmacology of Ginsenosides. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_151

Download citation

Publish with us

Policies and ethics