Skip to main content

Part of the book series: Disease Management of Fruits and Vegetables ((DMFV,volume 2))

Abstract

American ginseng (Panax quinquefolius L.) is a perennial herb valued for the medicinal properties of its large, fleshy tap root. These medicinal properties are purported to be due to the triterpenoid saponins, or ginsenosides, that accumulate to 3–6% of the root dry weight. We asked the question: what is the ecological role of ginsenosides in Panax species? In addressing this question, we have determined that ginsenosides, like other saponins, possess fungitoxic properties, although different fungi and oomycotan organisms appear to be differentially affected by them in vitro. In order to play an allelopathic role, however, ginsenosides must be present in the soil at biologically active (i.e., ecologically relevant) concentrations. Results to date support the hypothesis that ginsenosides are phytoanticipins and serve as host resistance factors. The success of certain pathogens (e.g., Pythium cactorum, Pythium irregulare, Cylindrocarpon destructans) on ginseng may arise from their ability to detoxify or otherwise utilize ginsenosides as a nutritive source or growth stimulating factor, while other soil borne organisms appear susceptible to their fungitoxic properties. Ginsenosides have been isolated from rhizosphere soil and root exudates suggesting that these compounds are involved in allelopathic interactions between the host plant and soil fungi. Ultimately this allelopathic interaction may influence the fungal diseases of ginseng.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Anderson, R.C., Fralish, J.S., Armstrong, J.E., Benjamin, P.K. The ecology and biology of Panax quinquefolium L. (Araliaceae) in Illinois. Am Midl Nat 1993; 129:357–372.

    Article  Google Scholar 

  • Armah, C.N., Mackie, A.R., Roy, C., Price, K., Osbourn, A.E., Bowyer, P., Ladha, S. The membranepermeabilizingeffect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophys J 1999;76:281–290.

    PubMed  CAS  Google Scholar 

  • Arneson, P.A., Durbin, R.D. The sensitivity of fungi to α-tomatine. Phytopathology 1968; 58:536–537

    Google Scholar 

  • Assa, Y., Gestetner, B., Chet, I., Henis, Y. Fungistatic activity of lucerne saponins and digitonin as related to sterols. Life Sci 1972; 11:637–647.

    Article  CAS  Google Scholar 

  • Azad, H.R., Davis, J.R., Schnathorst, W.C., Kado, C.I. Influence of Verticillium wilt resistant and susceptible potato genotypes on populations of antagonistic rhizosphere and rhizoplane bacteria and free nitrogen fixers. Appl Microbiol Biotechnol 1987; 26:99–104.

    Article  CAS  Google Scholar 

  • Bécard, G., Douds, D.D., Pfeffer, P.E. Extensive in vitro hyphal growth of VAM fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 1992; 58:821–825.

    PubMed  Google Scholar 

  • Black, R.L.B., Dix, N.J. Utilization of ferulic acid by microfungi from litter and soil. Trans Br Mycol Soc 1976;66:313–317.

    Article  Google Scholar 

  • Bouarab, K., Melton, R., Peart, J., Baulcombe, D., Osbourn, A. A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 2002; 418:889–892.

    Article  PubMed  CAS  Google Scholar 

  • Bowen, G.D., Rovira, A.D. The rhizosphere. In, Plant Roots, the Hidden Half. Waisel, Y., Eshel, A., Kafkafi, U., eds. New York: Marcel Dekker Inc. 1991; pp. 641–670.

    Google Scholar 

  • Bowyer, P., Clarke, B.R., Lunness, P., Daniels, M.J., Osbourn, A.E. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 1995; 267:371–374.

    PubMed  CAS  Google Scholar 

  • Brammall, R.A. Alternaria blight. In Diseases and Pests of Vegetable Crops in Canada. Howard, R.J, Garland, J.A., Seaman, W.L. ed., The Canadian Phytopathological Society and the Entomological Society of Canada, Ottawa, ON. 1994a; pp. 294–295.

    Google Scholar 

  • Brammall, R.A. Disappearing root rot. In, Diseases and Pests of Vegetable Crops in Canada. Howard, R.J., Garland, J.A., Seaman, W.L., ed., The Canadian Phytopathological Society and the Entomological Society of Canada, Ottawa, ON. 1994b; pp. 296–297.

    Google Scholar 

  • Braun, P.G. The combination of Cylindrocarpon lucidum and Pythium irregulare as a possible cause of apple replant disease in Nova Scotia. Can J Plant Pathol 1991; 13:291–297.

    Article  Google Scholar 

  • Braun, P.G. Effects of Cylindrocarpon and Pythium species on apple seedlings and potential role in apple replant disease. Can J Plant Pathol 1995; 17:336–341.

    Article  Google Scholar 

  • Brunner, F., Wirtz, W., Rose, J.K.C., Darvill, A.G., Govers, F., Scheel, D., Nuernberger, T. A beta-glucosidase/xylosidase from the phytopathogenic oomycete, Phytophthora infestans. Phytochemistry 2002; 59:689–696.

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt, H.J., Maizel, J.V., Mitchell, H.K. Avenacin, an antimicrobial substance isolated from Avena sativa. II. Structure. Biochemistry 1964; 3:426–431.

    CAS  Google Scholar 

  • Campbell, C.D., Grayston, S.J., Hirst, D.J. Use of rhizosphere carbon sources in sole carbon utilisation tests to discriminate soil microbial communities. J Microbiol Methods 1997; 30:33–41

    Article  Google Scholar 

  • Capasso, R., Cristinzio, G., Di Maro, A., Ferranti, P., Parente, A. Syringicin, a new alpha-elicitin from an isolate of Phytophthora syringae, pathogenic to citrus fruit. Phytochemistry 2001; 58:257–262.

    Article  PubMed  CAS  Google Scholar 

  • Catling, P.M., Spicer, K.W. Pollen vectors in an American ginseng crop. Econ Bot, 1995; 49:99–102.

    Google Scholar 

  • Chao, W.L., Nelson, E.B., Harman, G.E., Hoch, H.C. Colonization of the rhizosphere by biological control agents applied to seeds. Phytopathology 1986; 76:60–65.

    Google Scholar 

  • Chen, S.E., Staba, E.J. American ginseng I. Large scale isolation of ginsenosides from leaves and stems. Lloydia1978; 41:361–366.

    CAS  Google Scholar 

  • Court, W.A., Reynolds, L.B., Hendel, J.G. Influence of root age on the concentration of ginsenosides of Americanginseng (Panax quinquefolium). Can J Plant Sci 1996; 76:853–855.

    CAS  Google Scholar 

  • D’Arcy Lameta, A., Jay, M. Study of soybean and lentil root exudates: 3. Influence of soybean isoflavonoids onthe growth of rhizobia and some rhizosphere microorganisms. Plant Soil 1987; 101:269–272.

    Google Scholar 

  • Dewick, P.M. Medicinal natural products: A biosynthetic approach. Chichester: John Wiley and Sons, 1997.

    Google Scholar 

  • Escalante, A.M., Santecchia, C.B., López, S.N., Gattuso, M.A., Ravelo, A.G., Monache, F.D., Sierra, M.G., Zacchino, S.A. Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. J Ethnopharm 2002; 82:29–34.

    Article  CAS  Google Scholar 

  • Evans, J.L., Gealt, M.A. The sterols of growth and stationary phases of Aspergillus nidulans cultures. J Gen Microbiol 1985; 131:279–284.

    CAS  Google Scholar 

  • Favel, A., Steinmetz, M.D., Regli, P., Vidal-Olivier, E., Elias, R., Balansard, G. In vitro antifungal activity of triterpenoid saponins. Planta Med 1994; 60:50–53.

    PubMed  CAS  Google Scholar 

  • Ford, J.E., McChance, D.J., Drysdale, R.B. The detoxification of α-tomatine by Fusarium oxysporum f. sp. lycopersici. Phytochemistry 1977; 16:544–546.

    Google Scholar 

  • Fountain, M.S. Vegetation associated with natural populations of ginseng Panax quinquefolium in Arkansas USA. Castanea 1986; 51:42–48.

    Google Scholar 

  • Fuzzati, N., Gabetta, B., Jayakar, K., Pace, R. Peterlongo, F. Liquid chromatography-electrospray mass spectrometric identification of ginsenosides in Panax ginseng roots. J Chromatography A, 1999; 854:69–79.

    Article  CAS  Google Scholar 

  • Grayer, R.J., Harborne, J.B. A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry1994; 37:19–42.

    Article  CAS  Google Scholar 

  • Grayston, S.J., Griffith, G.S., Mawdsley, J.L., Campbell, C.D., Bardgett, R.D. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 2001; 33:533–551.

    Article  CAS  Google Scholar 

  • Green, H. Heiberg, N., Lejbolle, K., Jensen, D.F. The use of a GUS transformant of Trichoderma harzianum, strain T3a, to study metabolic activity in the spermosphere and rhizosphere related to biocontrol of Pythium damping-off and root rot. Eur J Plant Pathol 2001; 107:349–359.

    Article  Google Scholar 

  • Griffiths, K.M., Bacic, A., Howlett, B.J. Sterol composition of mycelia of the plant pathogenic ascomycete Leptosphaeria maculans. Phytochemistry 2003; 62:147–153.

    Article  PubMed  CAS  Google Scholar 

  • Haralampidis, K., Trojanowska, M., Osbourn, A.E. Biosynthesis of triterpenoid saponins in plants. In Advances in Biochemical Engineering/Biotechnology. Scheper Th. ed., Berlin: Springer-Verlag, 2002; pp.31–49.

    Google Scholar 

  • Hartung, A.C., Stephens, C.T. Effects of allelopathic substances produced by asparagus on incidence and severity of asparagus decline due to Fusarium crown rot. J Chem Ecol 1983; 9:1163–1174.

    Article  Google Scholar 

  • Helal, H.M., Sauerbeck, D.R. Influence of plant roots on C and P metabolism in soil. Plant Soil 1984; 76:175–182.

    Article  CAS  Google Scholar 

  • Henderson, M.E.K., Farmer, V.C. Utilization by soil fungi of p-hydroxybenzaldehyde, ferulic acid, syringaldehyde and vanillin. J Gen Microbiol 1955; 12:37–46.

    PubMed  CAS  Google Scholar 

  • Hong, S.C., Gray, A.B., Asiedu, S.K., Ju, H.Y. The evaluation of Trichoderma isolates, benomyl, and propiconazole against Cylindrocarpon destructans. Can J Plant Sci 2000; 80:231.

    Google Scholar 

  • Isutsa, D.K., Merwin, I.A. Malus germplasm varies in resistance or tolerance to apple replant disease in a mixture of New York orchard soils. Hortscience 2000; 35:262–268.

    Google Scholar 

  • Johnson, N.C., Tillman, D., Wedin, D. Plant and soil controls on mycorrhizal fungal communities. Ecology 1992; 73:2034–2042.

    Article  Google Scholar 

  • Jung, J.D., Park, H.W., Hahn, Y., Hur, C.G., In, D.S., Chung, H.J., Liu, J.R., Choi, D.W. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Reports 2003; 22:224–230.

    Article  PubMed  CAS  Google Scholar 

  • Keukens, E.A.J., De Vrije, T., Fabrie, C.H.J.P., Demel, R.A., Jongen, W.M.F., De Kruijff, B. Dual specificity of sterol-mediated glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1992; 1110:127–136.

    PubMed  CAS  Google Scholar 

  • Keukens, E.A.J., De Vrije, T., Van Den Boom, C., De Waard, P., Plasman, H.H., Thiel, F., Chupin, V., Jongen, W.M.F., De Kruijff, B. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1995; 1240:216–228.

    Google Scholar 

  • Kushiro, T., Shibuya, M. Ebizuka, Y. beta-Amyrin synthase: Cloning of oxidosqualene cyclase that catalyzesthe formation of the most popular triterpene among higher plants. Eur J Biochem 1998; 256:238–244.

    Article  PubMed  CAS  Google Scholar 

  • Lagrange, H., Jay-Allemand, C., Lapeyrie, F. Rutin, the phenolglycoside from Eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol 2001; 150:349–355.

    Article  Google Scholar 

  • Larkin, R.P., Hopkins, D.L., Martin, F.N. Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology 1993; 83:1097–1105.

    Google Scholar 

  • Latijnhouwers, M., de Wit, P.J.G.M., Govers, F. Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol, 2003; 11:462–469.

    Article  CAS  Google Scholar 

  • Lawrence, G.H.M. Taxonomy of Vascular Plants. Macmillan Press, New York, 1951.

    Google Scholar 

  • Levy, M., Zehavi, U., Naim, M., Itzhack, P. An improved procedure for the isolation of medicagenic acid 3-Oß-D-glucopyranoside from alfalfa roots and its antifungal activity on plant pathogens. J Agric Food Chem 1986; 34:960–963.

    Article  CAS  Google Scholar 

  • Levy, M., Zehavi, U., Naim, M., Polacheck, I. Isolation, structure determination, synthesis, and anti-fungal activity of a new native alfalfa-root saponin. Carbohydr Res 1989; 193:115–123.

    Article  CAS  Google Scholar 

  • Lewis, W.H., Zenger, V.E. Population dynamics of the American ginseng Panax quinquefolium (Araliaceae). Am J Bot 1982; 69:1483–1490.

    Article  Google Scholar 

  • Li, T.S.C., Mazza, G., Cottrell, A.C., Gao, L. Ginsenosides in roots and leaves of American ginseng. J Agric Food Chem 1996; 44:717–720.

    Article  CAS  Google Scholar 

  • Maizel, J.V., Burkhardt, H.J., Mitchell, H.K. Avenacin, an antimicrobial substance isolated from Avena sativa. I. Isolation and antimicrobial activity. Biochemistry 1964; 3:424–426.

    CAS  Google Scholar 

  • Marston, A., Gafner, F., Dossaji, S.F., Hostettmann, K. Fungicidal and molluscicidal saponins from Dolichos kilimandscharicus. Phytochemistry 1988; 27:1325–1326.

    Article  Google Scholar 

  • Mazzola, M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 1998; 88:930–938.

    PubMed  CAS  Google Scholar 

  • Mazzola, M. Transformation of soil microbial community structure and Rhizoctonia-suppressive potential in response to apple roots. Phytopathology 1999 89:920–927.

    PubMed  CAS  Google Scholar 

  • Miethling, R., Wieland, G., Backhaus, H., Tebbe, C.C. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecology 2000;40:43–56.

    PubMed  CAS  Google Scholar 

  • Mikes, V., Milat, M.L., Ponchet, M., Ricci, P., Blein, J.P. The fungal elicitor cryptogein is a sterol carrier protein. FEBS Lett 1997; 416:190–192.

    Article  PubMed  CAS  Google Scholar 

  • Miller, H.J., Henken, G., van Veen, J.A. Variation and composition of bacterial populations in the rhizosphere of maize, wheat and grass cultivars. Can J Microbiol 1989; 35:656–660.

    Article  Google Scholar 

  • Morrissey, J.P., Osbourn, A.E. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol Biol Rev 1999; 63:708–724.

    PubMed  CAS  Google Scholar 

  • Narasimhan, K., Basheer, C., Bajic, V.B., Swarup, S. Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 2003; 132:146–153.

    Article  PubMed  CAS  Google Scholar 

  • Nes, D.W. Biosynthesis and requirement for sterols in the growth and reproduction of Oomycetes. In Ecology and Metabolism of Plant Lipids. Fuller, G., Nes, W.D. ed., American Chemical Society, Washington, DC. 1987; pp. 304–328.

    Google Scholar 

  • Nicol, R.W., Yousef, L., Traquair, J.A., Bernards, M.A. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry 2003; 64:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Nicol, R.W., Traquair, J.A., Bernards, M.A. Ginsenosides as host resistance factors in American Ginseng (Panax quinquefolius). Can J Bot 2002; 80:557–562.

    Article  CAS  Google Scholar 

  • Ohtani, K., Mavi, S., Hostettmann, K. Molluscicidal and antifungal triterpenoid saponins from Rapanea melanophloeos leaves. Phytochemistry 1993; 33:83–86.

    Article  CAS  Google Scholar 

  • Olsen, R.A. Triterpene glycosides as inhibitors of fungal growth and metabolism. 1. effect on growth, endogenous respiration and leakage of UV-absorbing material from various fungi. Physiol Plant 1971; 24:534–543.

    CAS  Google Scholar 

  • Olsen, R.A. Triterpene glycosides as inhibitors of fungal growth and metabolism. 5. Role of sterol contents of some fungi. Physiol Plant 1973a; 28:507–515.

    Article  CAS  Google Scholar 

  • Olsen, R.A. Triterpene glycosides as inhibitors of fungal growth and metabolism. 6. The effect of aescin on fungi with reduced sterol contents. Physiol Plant 1973b; 29:145–149.

    Article  CAS  Google Scholar 

  • OMAF. Ontario ginseng exports, 1996–2002. Queen’s Printer for Ontario, 2003.

    Google Scholar 

  • Osbourn, A.E., Wubben, J.P., Daniels, M.J. Saponin detoxification by phytopathogenic fungi. In Plant-Microbe Interactions Volume 2. Stacey, G., Keen, N.T. ed., New York: Chapman and Hall, 1995a, pp. 99–124.

    Google Scholar 

  • Osbourn, A. Bowyer, P., Lunness, P., Clarke, B., Daniels, M. Fungal pathogens of oat roots and tomato leaves employ closely related enzymes to detoxify different host plant saponins. Mol Plant Microb Interact 1995b; 8:971–978.

    CAS  Google Scholar 

  • Osbourn, A.E. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 1996;8:1821–1831.

    Article  PubMed  CAS  Google Scholar 

  • Osbourn, A.E. Saponins in cereals. Phytochemistry 2003; 62:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Ouf, S.A., Hady, F.K., Abdel, E.M.H., Shaker, K.H. Isolation of antifungal compounds from some Zygophyllum species and their bioassay against two soil-borne plant pathogens. Folia Microbiol 1994; 39:215–221.

    Google Scholar 

  • Panabières, F., Ponchet, M., Allasia, V., Cardin, L., Ricci, P. Characterization of border species among Pythiaceae: several Pythium isolates produce elicitins, typical proteins from Phytophthora spp. Mycol Res 1997;101:1459–1468.

    Article  Google Scholar 

  • Papadopoulou, K., Melton, R.E., Leggett, M. Daniels, M.J., Osbourn, A.E. Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 1999; 96:12923–12928.

    Article  PubMed  CAS  Google Scholar 

  • Papavizas, G.C. Survival of Trichoderma harzianum in soil and in pea and bean rhizosphere. Phytopathology 1982; 71:121–125.

    Article  Google Scholar 

  • Pedersen, C.T., Safir, G.R., Siqueira, J.O., Parent, S. Effect of phenolic compounds on asparagus mycorrhizae. Soil Biol Biochem 1991; 23:491–494.

    Article  CAS  Google Scholar 

  • Pedras, M.S.C., Khan, A.Q. Biotransformation of the phytoalexin camalexin by the phytopathogen Rhizoctonia solani. Phytochemistry 2000a; 53:59–69.

    Article  CAS  Google Scholar 

  • Pedras, M.S.C., Okanga, F.I., Zaharia, I.L., Khan, A.Q. Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry 2000b; 53:161–176.

    Article  CAS  Google Scholar 

  • Pegg, G.F., Woodward, S. Synthesis and metabolism of alpha tomatine in tomato Lycopersicon esculentum isolines in relation to resistance to Verticillium albo-atrum. Physiol Mol Plant Pathol 1986; 28:187–202.

    CAS  Google Scholar 

  • Peirce, L.C., Colby, L.W. Interaction of asparagus root filtrate with Fusarium oxysporum f.sp. asparagi. J Am Soc Hort Sci 1987; 112:35–40.

    Google Scholar 

  • Peters, N.K., Long, S.R. Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 1988; 88:396–400.

    PubMed  CAS  Google Scholar 

  • Proctor J.T.A., Bailey, W.G. Ginseng, industry botany and culture. Hort Rev 1987; 9:187–236.

    Google Scholar 

  • Punja, Z.K. Fungal pathogens of American ginseng (Panax quinquefolium) in British Columbia. Can J Plant Pathol 1997; 19:301–306.

    Article  Google Scholar 

  • Quidde, T., Osbourn, A.E., Tudzynski, P. Detoxification of alpha-tomatine by Botrytis cinerea. Physiol Mol Plant Pathol 1998; 52:151–165.

    Article  CAS  Google Scholar 

  • Rahouti, M. Seigle-Murandi, F., Steiman, R., Eriksson, K.E. Metabolism of ferulic acid by Paecilomyces variotii and Pestalotia palmarum. Appl Env Microbiol 1989; 55:2391–2398.

    CAS  Google Scholar 

  • Reeleder, R.D., Brammall, R.A. Pathogenicity of Pythium species, Cylindrocarpon destructans, and Rhizoctonia solani to ginseng seedlings in Ontario. Can J Plant Pathol 1995; 16:311–316.

    Article  Google Scholar 

  • Reeleder, R.D., Roy, R., Capell, B. Seed and root rots of ginseng (Panax quinquefolius) caused byCylindrocarpon destructans and Fusarium spp. Phytopathology 1999; 89:S65.

    Google Scholar 

  • Rice, E.L. Allelopathy. Academic Press Inc., New York, 1984.

    Google Scholar 

  • Roddick, J.G. Complex formation between solanaceous steroidal glycoalkaloids and free sterols in vitro. Phytochemistry 1979; 18:1467–1470.

    Article  CAS  Google Scholar 

  • Roldán-Arjona, T., Pérez-Espinosa, A., Ruiz-Rubio, M. Tomatinase from Fusarium oxysporum f. sp. lycopersici defines a new class of saponinases. Mol Plant Microb Interact 1999; 12:852–861.

    Google Scholar 

  • Sandrock, R.W., Van Etten, H.D. Fungal sensitivity to and enzymatic degradation of the phytoanticipin a-tomatine. Phytopathology 1998; 88:137–143.

    CAS  PubMed  Google Scholar 

  • Schlessman, M.A. Floral biology of American ginseng (Panax quinquefolium). Bull Torrey Bot Club 1985;112:129–133.

    Article  Google Scholar 

  • Schmidt, S.K., Ley, R.E. Microbial competition and soil structure limit the expression of allelochemicals in nature. In Principles and Practices in Plant Ecology: Allelochemical Interactions, Inderjit, K.M.M., Dakshini, Foy, C.L. ed. Boca Raton: CRC Press, 1999, pp. 339–351.

    Google Scholar 

  • Scow, K.M. Soil microbial communities and carbon flow in agroecosystems. In Ecology in Agriculture. Jackson, L.E. ed. Academic Press, N.Y. 1997, pp. 367–413.

    Google Scholar 

  • Shepherd, T. The microchemistry of plant/microorganism interactions. In Ecology of Plant Pathogens. Blakeman, J.P., Williamson, B. ed.,Wallingford: CAB International, 1994, pp. 39–62.

    Google Scholar 

  • Shin, H.S., Lee, M.W. Environmental factors and the distribution of soil microorganisms in ginseng field. Kor J Microbiol 1986; 24:184–193.

    Google Scholar 

  • Singh, H.P., Batish, D.R., Kohli, R.K. Autotoxicity: concepts, organisms, and ecological significance. Crit Rev Plant Sci 1999; 18:757–772.

    CAS  Google Scholar 

  • Small, E., Catling, P.M. Canadian medicinal crops. NRC Research Press, Ottawa, ON, 1999.

    Google Scholar 

  • Sparling, G.P., Ord, B.G., Vaughan, D. Microbial biomass and activity in soils amended with glucose. Soil Biol Biochem 1981; 13:99–104.

    Article  CAS  Google Scholar 

  • Steel, C.C., Drysdale, R.B. Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by a-tomatine. Phytochemistry 1988; 27:1025–1030.

    Article  CAS  Google Scholar 

  • Straney, D.C., Van Etten, H.D. Characterization of the PDA1 promoter of Nectria haematococca and identification of a region that binds a pisatin-responsive DNA binding factor. Mol Plant Microb Interact 1994; 7:256–266.

    CAS  Google Scholar 

  • Suleman, P., Tohamy, A.M., Saleh, A.A., Madkour, M.A., Straney, D.C. Variation in sensitivity to tomatine and rishitin among isolates of Fusarium oxysporumf. sp. lycopersici, and strains not pathogenic on tomato. Physiol Mol Plant Pathol 1996; 48:131–144.

    Article  CAS  Google Scholar 

  • Szabo, K., Wittenmayer, L. Plant specific root exudations as possible cause for specific replant diseases in Rosaceen. J Appl Bot 2000; 74:191–197.

    Google Scholar 

  • Takechi, M., Tanaka, Y. Structure-activity relationships of the saponin α-hederin. Phytochemistry 1990; 29:451–452.

    Article  CAS  Google Scholar 

  • Tang, C.S., Young, C.S. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol 1982; 69:155–160.

    Article  PubMed  CAS  Google Scholar 

  • Tani, T., Kubo, M., Katsuki, T., Higashino, M., Hayashi, T., Arichi, S. Histochemistry II. Ginsenosides in ginseng (Panax ginseng root). J Nat Prod 1981; 44:401–407.

    CAS  Google Scholar 

  • Turner, E.M.C. The nature of the resistance of oats to the take-all fungus. II. Inhibition of growth and respiration of Ophiobolus graminis Sacc. and other fungi by a constituent of oat sap. J Exp Bot 1956; 7:80–92.

    CAS  Google Scholar 

  • Utkhede, R.S., Sholberg, P.L., Smirle, M.J. Effects of chemical and biological treatments on growth and yield of apple trees planted in Phytophthora cactorum infested soil. Can J Plant Pathol 2001; 23:163–167.

    Article  CAS  Google Scholar 

  • Van Etten, H.D., Mansfield, J.W., Bailey, J.A., Farmer, E.E. Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 1994; 6:1191–1192.

    Article  CAS  Google Scholar 

  • Van Etten, H.D., Sandrock, R.W., Wasmann, C.C., Soby, S.D., McCluskey, K., Wang, P. Detoxification of phytoanticipins and phytoalexins by phytopathogenic fungi. Can J Bot 1995; 73:518–525.

    Google Scholar 

  • Wardle, D.A. A comparative assessment of factors which influence microbial biomass carbon and nitrogenlevels in soil. Biol Rev 1992; 67:321–358.

    Google Scholar 

  • Weete, J.D. Structure and function of sterols in fungi. Adv Lipid Res 1989; 23:115–167.

    CAS  Google Scholar 

  • Weltring, K.M., Wessels, J., Geyer, R. Metabolism of the potato saponins α-chaconine and α-solanine by Gibberella pulicaris. Phytochemistry 1997; 46:1005–1009.

    Article  CAS  Google Scholar 

  • Zimmer, D.E., Pedersen, M.W., McGuire, D.F. A bioassay for alfalfa saponins using the fungus Trichoderma viride Pers. ex Fr. Crop Sci 1967; 7:223–224.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

BERNARDS, M.A., YOUSEF, L.F., NICOL, R.W. (2006). THE ALLELOPATHIC POTENTIAL OF GINSENOSIDES. In: INDERJIT, MUKERJI, K. (eds) Allelochemicals: Biological Control of Plant Pathogens and Diseases. Disease Management of Fruits and Vegetables, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4447-X_8

Download citation

Publish with us

Policies and ethics