Skip to main content
Log in

Stimulation of menthol production in Mentha piperita cell culture

  • Metabolic Engineering/Secondary Metabolism
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Plant cell culture provides an alternative means for producing secondary metabolites. In this study, experiments were carried out to study the impact of several parameters, independently and in combination, on the stimulation of menthol production in the cell suspension culture of Mentha piperita. Callus was obtained from leaf segments of in vitro grown plantlets on Murashige and Skoog (MS) medium supplemented with 0.2 mg l−1of 2,4-dichlorophenoxy acetic acid to initiate cell suspension culture. This culture was maintained in half-strength MS medium supplemented with 0.2 mg l−1of 2,4-dichlorophenoxy acetic acid at 15 d interval and used for further studies. Precursor feeding alone, i.e., menthone, at 35 μM concentration showed slightly improved productivity. γ-Cyclodextrin alone at 60 μM concentration and in combination with menthone feeding at 35 μM increased menthol yield up to 92 and 110 mg l−1 in comparison to 77 mg l−1 of control culture. Synergistic potentiation effect of menthone feeding at 35 μM and γ-cyclodextrin at 60 μM treatment followed by in situ adsorption with RP-8 also showed potential stimulation of menthol production in M. piperita cell culture. Fungal elicitor treatment showed enhanced production level up to 140.8 mg l−1 in comparison to that of control. Further studies were carried out with the establishment of Agrobacterium tumefaciens (Ach5) gall-mediated calli, and consequently, cell suspension culture and results showed the significant enhancement of menthol yield up to 278 mg l−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

References

  • Asada M.; Shuler M. L. Stimulation of ajmalicine production and excretion from Catharanthus roseus: effects of adsorption in situ, elicitors and alginate immobilazation. Appl. Microbiol. 30: 475–481; 1989.

    CAS  Google Scholar 

  • Badisa R. B.; Tzakou O.; Couladis M.; Pilarinou E. Cytotoxic activities of some Greek Labiatae herbs. Phytother. Res. 17: 472–476; 2003. doi:10.1002/ptr.1175.

    Article  PubMed  CAS  Google Scholar 

  • Baker C. J.; Mock N. M. An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell, Tissue Organ Cult. 39: 7–12; 1994. doi:10.1007/BF00037585.

    Article  Google Scholar 

  • Baser K. H. C.; Kurkcuoglu M. Essential oils of Mentha species from Northern Turkey. J. Essent. Oil Res. 11: 579–588; 1999.

    CAS  Google Scholar 

  • Bonfill M.; Exposito O.; Moyano E.; Cusido R. M.; Palazon J.; Pinol M. T. Manipulation by culture mixing and elicitation of paclitaxel and baccatin III production in Taxus baccata suspension culture. In Vitro Cell. Dev. Biol. Plant 42: 422–426; 2006.

    Article  CAS  Google Scholar 

  • Buitelaar R. M.; Cesario M. T.; Tramper J. Elicitation of thiophene production by hairy roots of Tagetes patula. Enzyme Microb. Technol. 14: 2–7; 1992. doi:10.1016/0141-0229(92)90017-I.

    Article  CAS  Google Scholar 

  • Buitelaar R. M.; Tramper J. Strategies to improve the production of secondary metabolites with plant cell cultures: a literature review. J. Biotechnol. 23: 11–141; 1992. doi:10.1016/0168-1656(92)90087-P.

    Article  Google Scholar 

  • Chang J. H.; Shin J. H.; Chung I. S.; Lee H. J. Improved menthol production from chitosan-elicited suspension culture of Mentha piperita. Biotechnol. Lett. 20: 1097–1099; 1998. doi:10.1023/A:1005396924568.

    Article  CAS  Google Scholar 

  • Chattopadhyay S.; Datta S. K.; Mahato S. B. Production of L-DOPA from cell suspension culture of Mucuna pruiens f. pruiens. Plant Cell Rep. 13: 519–522; 1994. doi:10.1007/BF00232948.

    Article  CAS  Google Scholar 

  • Cresswell R. C.; Fowler M. W.; Stafford A.; Sarkissian G. S. Input and output: primary substrates and secondary metabolism. In: Kurz W. G. W. (ed) Primary and secondary metabolism of plant cell culture II. Springer, Berlin, pp 14–26; 1989.

    Google Scholar 

  • Dorman H. J.; Kosar M.; Kahlos K.; Holm Y.; Hiltunen R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 51: 4563–4569; 2003. doi:10.1021/jf034108k.

    Article  PubMed  CAS  Google Scholar 

  • Edris A. E.; Farrag E. S. Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Nahrung 47: 117–121; 2003. doi:10.1002/food.200390021.

    Article  PubMed  CAS  Google Scholar 

  • Holden P. R.; Holdem M. A.; Yeoman M. M. Variation in the secondary metabolism of cultured plant cells. In: Robins R. J.; Rhodes M. J. C. (eds) Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge, pp 15–29; 1988.

    Google Scholar 

  • Ketchum R. E. B.; Gibson D.; Croteau R.; Shuler M. L. The kinetics of taxoid accumulation in cell suspension culture of Taxus following elicitation with methyl jasmonate. Biotechnol. Bioeng. 62: 97–105; 1999. doi:10.1002/(SICI)1097-0290(19990105)62:1<97::AID-BIT11>3.0.CO;2-C.

    Article  PubMed  CAS  Google Scholar 

  • Kim T.; Kim T. Y.; Bae G. W.; Lee H. J.; Chae Y. A.; Chung I. S. Improved production of essential oils by two-phase culture of Mentha piperita cells. Plant Tissue Cult. Lett. 13: 189–192; 1996.

    CAS  Google Scholar 

  • Kim Y. H.; Yoo Y. J. Peroxidase production from carrot hairy root cell culture. Enzyme Microb. Technol. 18: 531–536; 1996. doi:10.1016/0141-0229(95)00168-9.

    Article  CAS  Google Scholar 

  • Kirakosyana A.; Hayashia H.; Inouea K.; Charchoglyanb A.; Vardapetyanb H. Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry. 53: 345–348; 2000.

    Google Scholar 

  • Kumar A.; Chattopadhyay S. DNA damage protecting activity and antioxidant potential of pudina extract. Food Chem. 100: 1377–1384; 2007. doi:10.1016/j.foodchem.2005.12.015.

    Article  CAS  Google Scholar 

  • Lange B. M.; Croteau R. Genetic engineering of essential oil production in mint. Curr. Opin. Plant Biol. 2: 139–144; 1999. doi:10.1016/S1369-5266(99)80028-4.

    Article  PubMed  CAS  Google Scholar 

  • Liu C. Z.; Wang Y. C.; Xu X.; Ouyang F.; Ye H. C.; Li G. F. Improvement of artemisinin accumulation in hairy root cultures of Artemisia annua L. by fungal elicitor. Bioprocess Eng. 20: 161–164; 1999.

    CAS  Google Scholar 

  • McCabe P. F.; Leaver C. J. Programmed cell death in cell cultures. Plant Mol. Biol. 44: 359–368; 2000. doi:10.1023/A:1026500810877.

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud S. S.; Croteau R. B. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc. Natl. Acad. Sci. U.S.A. 98: 8925–8927; 2001. doi:10.1073/pnas.141237298.

    Article  Google Scholar 

  • Mimica-Duke N.; Bozin B.; Sokovic M.; Mihajlovic B.; Matavulj M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med. 69: 413–419; 2003. doi:10.1055/s-2003-39704.

    Article  Google Scholar 

  • Mukherjee S.; Ghosh B.; Jha S. Establishment of forskolin yielding transformed cell suspension cultures of Coleus forskohlii as controlled by different factors. J. Biotechnol. 76: 73–81; 2000. doi:10.1016/S0168-1656(99)00181-9.

    Article  PubMed  CAS  Google Scholar 

  • Murashige T.; Shook F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Pavlov A.; Popov S.; Kovacheva E.; Georgiev M.; Ilieva M. Volatile and polar compounds in Rosa damascena Mill 1803 cell suspension. J. Biotechnol. 118: 89–97; 2005. doi:10.1016/j.jbiotec.2005.03.005.

    Article  PubMed  CAS  Google Scholar 

  • Payne G. F.; Payne N. N.; Shuler M. L.; Asada M. In situ adsorption for enhanced alkaloid production by Catharanthus roseus. Biotechnol. Lett. 10: 187–192; 1988. doi:10.1007/BF01134827.

    Article  CAS  Google Scholar 

  • Petersen M.; Alfermann A. W. The production of cytotoxic lignans by plant cell cultures. Appl. Microbiol. Biotechnol. 55: 135–142; 2001. doi:10.1007/s002530000510.

    Article  PubMed  CAS  Google Scholar 

  • Phatak V. S.; Heble M. R. Oraganogenesis and terpenoid synthesis in Mentha arvensis. Fitoterapia. 73: 32–39; 2002. doi:10.1016/S0367-326X(01)00347-1.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes M. J. C.; Hamil J.; Parr A. J.; Robins R. J.; Walton N. J. Strain improvement by screening and selection techniques. In: Robins R. J.; Rhodes M. J. C. (eds) Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge, pp 83–93; 1988.

    Google Scholar 

  • Samarth R. M.; Kumar A. Radioprotection of Swiss albino mice by plant extract Mentha piperita (Linn.). J. Radiat. Res. 44: 101–109; 2003. doi:10.1269/jrr.44.101.

    Article  PubMed  CAS  Google Scholar 

  • Schuhmacher A.; Reichling J.; Schnitzler P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine 10: 504–510; 2003. doi:10.1078/094471103322331467.

    Article  PubMed  CAS  Google Scholar 

  • Spencer A.; Hamill J. D.; Rhodes M. J. C. Production of terpenes by shoot of Mentha citrata transformed with Agrobacterium tumefaciens T37. Plant Cell Rep. 8: 601–604; 1990. doi:10.1007/BF00270063.

    Article  CAS  Google Scholar 

  • Spencer A.; Hamill J. D.; Rhodes M. J. C. In vitro biosynthesis of monoterpens by Agrobacterium transformed shoot cultures of two Mentha species. Phytochemistry 32: 911–919; 1993. doi:10.1016/0031-9422(93)85228-J.

    Article  CAS  Google Scholar 

  • Van Uden W.; Woerdenbag H. J.; Pras N. Cyclodextrins as a useful tool for bioconversions in plant cell biotechnology. Plant Cell, Tissue Organ Cult. 38: 103–113; 1994. doi:10.1007/BF00033867.

    Article  CAS  Google Scholar 

  • Wang C.; Wu J.; Mei X. Enhancement of taxol production and excretion in Taxus chinensis cell cultureby fungal elicitation and medium renewal. Appl. Microbial. Biotechnol. 55: 404–410; 2001. doi:10.1007/s002530000567.

    Article  CAS  Google Scholar 

  • Xu J. F.; Sun Y.; Su Z. G. Enhanced peroxidase production by suspension culture of carrot compact callus aggregates. J. Biotechnol. 65: 203–208; 1998. doi:10.1016/S0168-1656(98)00114-X.

    Article  CAS  Google Scholar 

  • Yan Q.; Zongding H.; Tan R. X.; Wu J. Efficient production and recovery of diterpenoid tanshinones in Slavia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi- continuous operation. J. Biotechnol. 119: 416–424; 2005. doi:10.1016/j.jbiotec.2005.04.020.

    Article  PubMed  CAS  Google Scholar 

  • Yukimune Y.; Tabata H.; Higashi Y.; Hara Y. Methyl jasmonate-induced overproduction of palitaxel and bacatin III in Taxus cell suspension cultures. Nat. Biotechnol. 4: 1129–1132; 1996. doi:10.1038/nbt0996-1129.

    Article  Google Scholar 

Download references

Acknowledgments

This work received financial support from Council of Scientific and Industrial Research. The authors express their thanks to Ashis Sen, Deputy Director, IICB, for GC analysis throughout the studies. The financial support from the Department of Biotechnology, Government of India, New Delhi, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Chattopadhyay.

Additional information

Editor: Dwight T. Tomes

Electronic Supplementary Materials

Below is the link to the electronic supplementary materials.

ESM 1

(DOC 2.08 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, A., Chattopadhyay, S. Stimulation of menthol production in Mentha piperita cell culture. In Vitro Cell.Dev.Biol.-Plant 44, 518–524 (2008). https://doi.org/10.1007/s11627-008-9145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9145-y

Keywords

Navigation