Skip to main content

Energetics of the First Life

  • Chapter
  • First Online:
Origins of Life: The Primal Self-Organization

Abstract

Life can exist only when supported by energy flow(s). Here, the tentative mechanisms of coupling between the natural energy fluxes and the first life forms are discussed. It is argued that the evolutionarily relevant, continuous fluxes of reducing equivalents, which were needed for the syntheses of the first biomolecules, may have been provided by the inorganic photosynthesis and by the redox reactions within hot, iron-containing rocks. The only primordial environments where these fluxes could meet were the continental geothermal systems. The ejections from the hot, continental springs could contain, on the one hand, hydrogen and carbonaceous compounds and, on other hand, transition metals as Zn and Mn, which precipitated around the springs as photosynthetically active ZnS and MnS particles capable of reducing carbon dioxide to diverse organic compounds. At high pressure of the primordial CO2 atmosphere, both the inorganic photosynthesis and the abiotic reduction of carbon dioxide within hot rocks should have proceeded with high yield. Among a plethora of abiotically produced carbonaceous molecules, the natural nucleotides could accumulate as the most photostable structures; their polymerization and folding into double-stranded segments should have been favored by the further increase in the photostability. It is hypothesized that after some aggregates of photo-selected RNA-like polymers could attain the ability for self-replication, the consortia of such replicating entities may have dwelled in honeycomb-like ZnS-enriched mineral compartments which provided shelter and nourishment. The energetics of the first life forms could be driven by their ability to cleave the abiogenically formed organic molecules and by reactions of the phosphate group transfer. The next stage of evolution may be envisaged as a selection for increasingly tighter envelopes of the first organisms; this selection may have eventually yielded ion-tight lipid membranes able to support the sodium-dependent membrane bioenergetics. Lastly, the proton-tight, elaborate membranes independently emerged in Bacteria and Archaea, and enabled the transition to the modern-type proton-dependent bioenergetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Incidentally, the interplay between supporting and erasing energy fluxes, which was disclosed during the aforementioned simulations (Mulkidjanian et al. 2003; Mulkidjanian 2009), should also persist on a higher, organismic level. Indeed, let us take a hare as an example. Via consumed plants, the hare is supported by solar energy. How can the “erasing” flux of solar energy affect the hare? The hare, of course, has a chance to dye of sunstroke. The probability of such indiscriminative elimination is, however, negligibly small. Much larger is the probability of encoutering a fox that (i) exploits a different flow of solar energy than the hare and (ii) can catch the hare, but only if the latter is not smart enough. Hence, one energy flow sustains the population of hares, while the other energy flux, which supports the foxes, cares for the fitness of hares. It is tempting to speculate that the interplay between supporting and erasing energy fluxes might represent the physical essence of biological evolution (see Lotka (1922); Darlington (1972); Danchin (2009) for related discussions).

  2. 2.

    These considerations do not rule out the possibility of abiotic peptide formation (see Chaps. 5 –8 and 12). Abiogenically formed peptides may have paved the way to the biogenic protein synthesis by serving as nourishment for the first RNA-based organisms and by protecting them from different hazards (Mulkidjanian 2009).

  3. 3.

    This suggestion does not contradict the possibility of abiotic formation of amphiphilic molecules, see the chapters by Egel and Sturgis in this volume. Such abiotically formed molecules, by serving as food for the first organisms, may have paved the way to the biogenic syntheses of lipids via reversion of the respective catabolic chains (Mulkidjanian 2009).

References

  • Abo-Riziq A, Grace L, Nir E, Kabelac M, Hobza P, de Vries MS (2005) Photochemical selectivity in guanine-cytosine base-pair structures. Proc Natl Acad Sci USA 102:20–23

    Article  PubMed  CAS  Google Scholar 

  • Anbar AD (2008) Oceans. Elements and evolution. Science 322:1481–1483

    Article  PubMed  CAS  Google Scholar 

  • Bada JL (2004) How life began on Earth: a status report. Earth Planet Sci Lett 226:1–15

    CAS  Google Scholar 

  • Bauer ES (1935) Theoretical biology. VIEM, Moscow

    Google Scholar 

  • Bayley ST, Kushner DJ (1964) The ribosomes of the extremely halophilic bacterium, Halobacterium cutirubrum. J Mol Biol 9:654–669

    Article  PubMed  CAS  Google Scholar 

  • Bekker A et al (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  PubMed  CAS  Google Scholar 

  • Belozersky AN (1959) On the species specificity of the nucleic acids of Bacteria. In: Oparin AI, Pasynskii AG, Braunshtein AE, Pavlovskaya TE, Clark F, Synge RLM (eds) The origin of life on the Earth. Pergamon Publishers, London, pp 322–331

    Google Scholar 

  • Benner SA, Ellington AD, Tauer A (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci USA 86:7054–7058

    Article  PubMed  CAS  Google Scholar 

  • Bennett CH (2003) Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud Hist Philos Mod Phys 34:501–510

    Article  Google Scholar 

  • Bennett CH, Landauer R (1985) The fundamental physical limits of computation. Sci Am 253:48–56

    Article  Google Scholar 

  • Bernal JD (1951) The physical basis of life. Routledge and Kegan Paul, London

    Google Scholar 

  • Biondi E, Branciamore S, Maurel MC, Gallori E (2007) Montmorillonite protection of an UV-irradiated hairpin ribozyme: evolution of the RNA world in a mineral environment. BMC Evol Biol 7(suppl 2):S2

    Article  PubMed  CAS  Google Scholar 

  • Bishop JM, Quintrell N, Koch G (1967) Poliovirus double-stranded RNA – Inactivation by ultraviolet light. J Mol Biol 24:125–128

    Article  CAS  Google Scholar 

  • Bokov K, Steinberg SV (2009) A hierarchical model for evolution of 23 S ribosomal RNA. Nature 457:977–980

    Article  PubMed  CAS  Google Scholar 

  • Borowska Z, Mauzerall D (1988) Photoreduction of carbon dioxide by aqueous ferrous ion: an alternative to the strongly reducing atmosphere for the chemical origin of life. Proc Natl Acad Sci USA 85:6577–6580

    Article  PubMed  CAS  Google Scholar 

  • Bortnikova SB, Bortnikova SP, Mastein YA, Kiryuhin AV, Vernikovskaya IV, Palchik NA (2009) Thermal springs hydrogeochemistry and structure at Northmutnovskoe fumarole field (South Kamchatka, Russia). In: Gordeev EI (ed) Proceedings, thirty – fourth workshop on geothermal reservoir engineering. Stanford University, Stanford, CA, pp SGP-TR-187

    Google Scholar 

  • Branciamore S, Gallori E, Szathmary E, Czaran T (2009) The origin of life: chemical evolution of a metabolic system in a mineral honeycomb? J Mol Evol 69:458–469

    Article  PubMed  CAS  Google Scholar 

  • Brandes JA, Boctor NZ, Cody GD, Cooper BA, Hazen RM, Yoder HS Jr (1998) Abiotic nitrogen reduction on the early Earth. Nature 395:365–367

    Article  PubMed  CAS  Google Scholar 

  • Bridson PK, Orgel LE (1980) Catalysis of accurate poly(C)-directed synthesis of 3′-5′-linked oligoguanylates by Zn2+. J Mol Biol 144:567–577

    Article  PubMed  CAS  Google Scholar 

  • Broda E (1975) The evolution of the bioenergetic processes. Pergamon Press, Oxford

    Google Scholar 

  • Bryant DE, Kee TP (2006) Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-Phosphinic acid from the Nantan meteorite. Chem Commun Camb 22:2344–2346

    Article  PubMed  CAS  Google Scholar 

  • Bryant DE, Marriott KE, Macgregor SA, Kilner C, Pasek MA, Kee TP (2010) On the prebiotic potential of reduced oxidation state phosphorus: the H-phosphinate-pyruvate system. Chem Commun Camb 46:3726–3728

    Article  PubMed  CAS  Google Scholar 

  • Buckel W (2001) Inorganic chemistry in marine sediments. Angew Chem Int Ed 40:1417–1418

    Article  CAS  Google Scholar 

  • Cadet J, Vigny P (1990) The photochemistry of nucleic acids. In: Morrison H (ed) Bioorganic photochemistry: photochemistry and the nucleic acids. John Wiley & Sons, New York, pp 1–273

    Google Scholar 

  • Cairns-Smith AG, Hall AJ, Russell MJ (1992) Mineral theories of the origin of life and an iron sulfide example. Orig Life Evol Biosph 22:161–180

    Article  CAS  Google Scholar 

  • Chen X, Li N, Ellington AD (2007) Ribozyme catalysis of metabolism in the RNA world. Chem Biodivers 4:633–655

    Article  PubMed  CAS  Google Scholar 

  • Chetverin AB, Chetverina EV (2007) Scientific and practical applications of molecular colonies. Mol Biol 41:250–261

    Article  CAS  Google Scholar 

  • Cochrane JC, Strobel SA (2008) Riboswitch effectors as protein enzyme cofactors. RNA 14:993–1002

    Article  PubMed  CAS  Google Scholar 

  • Cohen B, Crespo-Hernandez CE, Kohler B (2004) Strickler-Berg analysis of excited singlet state dynamics in DNA and RNA nucleosides. Faraday Discuss 127:137–147

    Article  PubMed  CAS  Google Scholar 

  • Cohn CA, Borda MJ, Schoonen MA (2004) RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth Planet Sci Lett 225:271–278

    Article  CAS  Google Scholar 

  • Cohn CA et al (2006) Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem Trans 7:3

    Article  PubMed  CAS  Google Scholar 

  • Conway TW (1964) On the role of ammonium or potassium ion in amino acid polymerization. Proc Natl Acad Sci USA 51:1216–1220

    Article  PubMed  CAS  Google Scholar 

  • Cramer WA, Knaff DB (1990) Energy transduction in biological membranes: a textbook of bioenergetics. Springer, New York

    Google Scholar 

  • Crespo-Hernandez CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104:1977–2019

    Article  PubMed  CAS  Google Scholar 

  • Crespo-Hernandez CE, Cohen B, Kohler B (2005) Base stacking controls excited-state dynamics in A-T DNA. Nature 436:1141–1144

    Article  PubMed  CAS  Google Scholar 

  • Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  PubMed  CAS  Google Scholar 

  • Curtis EA, Bartel DP (2005) New catalytic structures from an existing ribozyme. Nat Struct Mol Biol 12:994–1000

    PubMed  CAS  Google Scholar 

  • Danchin A (2009) Natural selection and immortality. Biogerontology 10:503–516

    Article  PubMed  Google Scholar 

  • Darlington PJ Jr (1972) Nonmathematical concepts of selection, evolutionary energy, and levels of evolution. Proc Natl Acad Sci USA 69:1239–1243

    Article  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection or the preservation of races in the struggle for life. John Murray, London

    Google Scholar 

  • Davidovich C, Belousoff M, Bashan A, Yonath A (2009) The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res Microbiol 160:487–492

    Article  PubMed  CAS  Google Scholar 

  • de Duve C (1987) Selection by differential molecular survival: a possible mechanism of early chemical evolution. Proc Natl Acad Sci USA 84:8253–8256

    Article  PubMed  Google Scholar 

  • Deamer DW (1987) Proton permeation of lipid bilayers. J Bioenerg Biomembr 19:457–479

    PubMed  CAS  Google Scholar 

  • DeRonde CEJ, Channer DMD, Faure K, Bray CJ, Spooner ETC (1997) Fluid chemistry of Archean seafloor hydrothermal vents: implications for the composition of circa 3.2 Ga seawater. Geochim Cosmochim Acta 61:4025–4042

    Article  CAS  Google Scholar 

  • Dibrova DV, Galperin MY, Mulkidjanian AY (2010) Characterization of the N-ATPase, a distinct, laterally transferred Na+−translocating form of the Bacterial F-type membrane ATPase. Bioinformatics 26:1473–1476

    Article  PubMed  CAS  Google Scholar 

  • Eggins BR, Robertson PKJ, Stewart JH, Woods E (1993) Photoreduction of carbon dioxide on zinc sulfide to give four-carbon and two-carbon acids. J Chem Soc Chem Commun 349–350

    Google Scholar 

  • Eggins BR, Robertson PKJ, Murphy EP, Woods E, Irvine JTS (1998) Factors affecting the photoelectrochemical fixation of carbon dioxide with semiconductor colloids. J Photochem Photobiol A Chem 118:31–40

    Article  CAS  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  PubMed  CAS  Google Scholar 

  • Ellington AD (1993) Experimental testing of theories of an early RNA world. Methods Enzym. 224:646–664

    Google Scholar 

  • Ellington AD, Chen X, Robertson M, Syrett A (2009) Evolutionary origins and directed evolution of RNA. Int J Biochem Cell Biol 41:254–265

    Article  PubMed  CAS  Google Scholar 

  • Ferris JP (2006) Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Philos Trans R Soc Lond B Biol Sci 361:1777–1786; discussion 1786

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein AV, Ptitsyn OB (2002) Protein physics: a course of lectures. Academic, Amsterdam

    Google Scholar 

  • Foriel J, Philippot P, Rey P, Somogyi A, Banks D, Menez B (2004) Biological control of Cl/Br and low sulfate concentration in a 3.5-Gyr-old seawater from North Pole, Western Australia. Earth Planet Sci Lett 228:451–463

    Article  CAS  Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  • Frigaard NU, Bryant D (2004) Seeing green Bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur Bacteria and filamentous anoxygenic phototrophic Bacteria. Arch Microbiol 182:265–276

    Article  PubMed  CAS  Google Scholar 

  • Frutos LM, Markmann A, Sobolewski AL, Domcke W (2007) Photoinduced electron and proton transfer in the hydrogen-bonded pyridine-pyrrole system. J Phys Chem B 111:6110–6112

    Article  PubMed  CAS  Google Scholar 

  • Gelfand MS, Mironov AA, Jomantas J, Kozlov YI, Perumov DA (1999) A conserved RNA structure element involved in the regulation of Bacterial riboflavin synthesis genes. Trends Genet 15:439–442

    Article  PubMed  CAS  Google Scholar 

  • Getoff N (1962) Reduktion Der Kohlensaure in Wasseriger Losung Unter Einwirkung Von UV-Licht. Z. Naturforsch. 17b:87

    Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability and fluctuations. Wiley-Interscience, New York

    Google Scholar 

  • Glindemann D, de Graaf RM, Schwartz AW (1999) Chemical reduction of phosphate on the primitive earth. Orig Life Evol Biosph 29:555–561

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP et al (1989) Evolution of the vacuolar H+−ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661–6665

    Article  PubMed  CAS  Google Scholar 

  • Goossen JTH, Kloosterboer JG (1978) Photolysis and hydrolysis of adenosine 5′-phosphates. Photochem Photobiol 27:703–708

    Article  CAS  Google Scholar 

  • Granick S (1957) Speculations on the origins and evolution of photosynthesis. Ann NY Acad Sci 69:292–308

    Article  PubMed  CAS  Google Scholar 

  • Gulick A (1955) Phosphorus as a factor in the origin of life. Am Sci 43:479–489

    CAS  Google Scholar 

  • Guzman MI, Martin ST (2009) Prebiotic metabolism: production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology 9:833–842

    Article  PubMed  CAS  Google Scholar 

  • Hagan WJ Jr (1996) Phosphite-based photosphorylation of nucleosides. Orig Life Evol Biosph 26:354

    Article  Google Scholar 

  • Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  • Haines TH (2001) Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res 40:299–324

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1929) The origin of life. In: Watts CA (ed) The rationalist annual Watts, London, pp 3–10

    Google Scholar 

  • Halmann M, Aurian-Blajeni B, Bloch S (1980) Photoassisted carbon dioxide reduction and formation of two and three-carbon compounds. In: Origin of life. Proceedings of the third ISSOL meeting and sixth ICOL meeting. D. Reidel Publishing Co., Dordrecht, Jerusalem, Israel, pp 143–150

    Google Scholar 

  • Halmann M, Ulman M, Aurian-Blajeni B, Zafrir M (1981) Photoassisted carbon dioxide reduction on semiconductor materials. J Photochem 17:156

    Article  Google Scholar 

  • Hartman H (1975) Speculations on origin and evolution of metabolism. J Mol Evol 4:359–370

    Article  PubMed  CAS  Google Scholar 

  • Hartman H (1998) Photosynthesis and the origin of life. Orig Life Evol Biosph 28:515–521

    Article  PubMed  CAS  Google Scholar 

  • Henglein A (1984) Catalysis of photochemical reactions by colloidal semiconductors. Pure Appl Chem 56:1215–1224

    Article  CAS  Google Scholar 

  • Henglein A, Gutierrez M, Fischer CH (1984) Photochemistry of colloidal metal sulfides. 6. Kinetics of interfacial reactions at ZnS particles. Ber Bunsenges Phys Chem 88:170–175

    CAS  Google Scholar 

  • Hilario E, Gogarten JP (1998) The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits. J Mol Evol 46:703–715

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon-dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  CAS  Google Scholar 

  • Inoue H, Moriwaki H, Maeda K, Yoneyama H (1995) Photoreduction of carbon-dioxide using chalcogenide semiconductor microcrystals. J Photochem Photobiol A Chem 86:191–196

    Article  CAS  Google Scholar 

  • Jagannathan B, Golbeck JH (2008) Unifying principles in homodimeric type I photosynthetic reaction centers: properties of PscB and the F-A, F-B and F-X iron-sulfur clusters in green sulfur Bacteria. Biochim Biophys Acta 1777:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Jagger J (1976) Ultraviolet inactivation of biological systems. In: Wang SY (ed) Photochemistry and photobiology of nucleic acids, Volume II Biology. Academic, New York, pp 147–186

    Google Scholar 

  • Joyce GF (2007) Forty years of in vitro evolution. Angew Chem Int Ed Engl 46:6420–6436

    Article  PubMed  CAS  Google Scholar 

  • Kardanova OF (2009) Cu, Zn and Pb behaviour in sediments from thermal waters in the area of the long-living Kikhpinich volcanic center (KDVC). In: Gordeev EI (ed) Volcanological investigations. Russian Academy of Sciences, Petropavlovsk-Kamchatskiy, pp 92–100

    Google Scholar 

  • Karpov GA, Naboko SI (1990) Metal contents of recent thermal waters, mineral precipitates and hydrothermal alteration in active geothermal fields, Kamchatka. J Geochem Explor 36:57–71

    Article  CAS  Google Scholar 

  • Karpov GA, Alekhin YV, Lapitsky SA (2009) New data on minor element composition of thermal springs and fumaroles of Kamchatka. In: Gordeev EI (ed) Volcanological investigations. Russian Academy of Sciences, Petropavlovsk-Kamchatskiy, pp 120–131

    Google Scholar 

  • Kasting JF, Howard MT (2006) Atmospheric composition and climate on the early Earth. Philos Trans R Soc Lond B Biol Sci 361:1733–1741; discussion 1741–1732

    Article  PubMed  CAS  Google Scholar 

  • Kelley DS, Baross JA, Delaney JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci 30:385–491

    Article  CAS  Google Scholar 

  • Kisch H, Künneth R (1991) Photocatalysis by semiconductor powders: preparative and mechanistic aspects. In: Rabek J (ed) Photochemistry and photophysics. CRC Press Inc., pp 131–175

    Google Scholar 

  • Kisch H, Lindner W (2001) Syntheses via semiconductor photocatalysis. Chem unserer Zeit 35:250–257

    Article  CAS  Google Scholar 

  • Kisch H, Twardzik G (1991) Heterogeneous photocatalysis 9. Zinc-sulfide catalyzed photoreduction of carbon dioxide. Chem Ber 124:1161–1162

    Article  CAS  Google Scholar 

  • Koga Y, Morii H (2007) Biosynthesis of ether-type polar lipids in Archaea and evolutionary considerations. Microbiol Mol Biol Rev 71:97–120

    Article  PubMed  CAS  Google Scholar 

  • Konings WN (2006) Microbial transport: adaptations to natural environments. Antonie Leeuwenhoek 90:325–342

    Article  PubMed  CAS  Google Scholar 

  • Könnyű B, Czárán T, Szathmáry E (2008) Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution. BMC Evol Biol 8:267

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2006) On the origin of cells and viruses: a comparative-genomic perspective. Isr J Ecol Evol 52:299–318

    Article  Google Scholar 

  • Koonin EV (2009) On the origin of cells and viruses: primordial virus world scenario. Ann NY Acad Sci 1178:47–64

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Chumakov KM, Agol VI (1980) A comparative study on the UV resistance of double-stranded and single-stranded encephalomyocarditis virus RNAs - evaluation of the possible contribution of host-mediated repair. J Gen Virol 49:437–441

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient virus world and evolution of cells. Biol Direct 1:29

    Article  PubMed  CAS  Google Scholar 

  • Kormas KA, Tivey MK, Von Damm K, Teske A (2006) Bacterial and Archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9 degrees N, East Pacific Rise). Environ Microbiol 8:909–920

    Article  PubMed  CAS  Google Scholar 

  • Kritsky MS, Kolesnikov MP, Telegina TA (2007) Modeling of abiogenic synthesis of ATP. Dokl Biochem Biophys 417:313–315

    Article  PubMed  CAS  Google Scholar 

  • Lahav N (1999) Biogenesis: theories of life’s origin. Oxford University Press, New York, Oxford

    Google Scholar 

  • Lahav N, Chang S (1976) Possible role of solid-surface area in condensation-reactions during chemical evolution – re-evaluation. J Mol Evol 8:357–380

    Article  PubMed  CAS  Google Scholar 

  • Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183–191

    Article  Google Scholar 

  • Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 32:271–280

    Article  PubMed  CAS  Google Scholar 

  • Lazcano A (2010) Which way to life? Orig Life Evol Biosph 40:161–167

    Article  PubMed  Google Scholar 

  • Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85:793–798

    Article  PubMed  CAS  Google Scholar 

  • Lazcano A, Miller SL (1999) On the origin of metabolic pathways. J Mol Evol 49:424–431

    Article  PubMed  CAS  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    Article  PubMed  CAS  Google Scholar 

  • Liu XF, Ni XY, Wang J, Yu XH (2008) A novel route to photoluminescent, water-soluble Mn-doped ZnS quantum dots via photopolymerization initiated by the quantum dots. Nanotechnology 19:485602

    Google Scholar 

  • Lotka AJ (1922) Natural selection as a physical principle. Proc Natl Acad Sci USA 8:151–154

    Article  PubMed  CAS  Google Scholar 

  • Luther GW, Rickard DT (2005) Metal sulfide cluster complexes and their biogeochemical importance in the environment. J Nanopart Res 7:389–407

    Article  CAS  Google Scholar 

  • Macallum AB (1926) The paleochemistry of the body fluids and tissues. Physiol Rev 6:316–357

    Google Scholar 

  • Marian CM (2005) A new pathway for the rapid decay of electronically excited adenine. J Chem Phys 122:104314

    Article  PubMed  CAS  Google Scholar 

  • Marinkovic S, Hoffmann N (2001) Efficient radical addition of tertiary amines to electron-deficient alkenes using semiconductors as photochemical sensitisers. Chem Commun Camb 17:1576–1577

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 358:59–83

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    PubMed  CAS  Google Scholar 

  • Mauzerall D (1992) Light, iron, Sam Granik and the origin of life. Photosynth Res 33:163–170

    Article  CAS  Google Scholar 

  • Meares CF, Datwyler SA, Schmidt BD, Owens J, Ishihama A (2003) Principles and methods of affinity cleavage in studying transcription. Meth Enzymol 371:82–106

    Article  PubMed  CAS  Google Scholar 

  • Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308:659–662

    Article  PubMed  CAS  Google Scholar 

  • Merchan M et al (2006) Unified model for the ultrafast decay of pyrimidine nucleobases. J Phys Chem B 110:26471–26476

    Article  PubMed  CAS  Google Scholar 

  • Metz S, Trefry JH (2000) Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim Cosmochim Acta 64:2267–2279

    Article  CAS  Google Scholar 

  • Miller SL, Cleaves HJ (2006) Prebiotic chemistry on the primitive Earth. In: Rigoutsos I, Stephanopoulos G (eds) Systems biology, vol I, Genomics. Oxford University Press, Oxford, pp 4–56

    Google Scholar 

  • Miller SL, Orgel LE (1973) The origins of life. Prentice Hall Englewood Cliffs, NJ

    Google Scholar 

  • Moore B, Webster TA (1913) Synthesis by sunlight in relationship to the origin of life. Synthesis of formaldehyde from carbon dioxide and water by inorganic colloids acting as transformers of light energy. Proc R Soc Lond B Biol Sci 87:163–176

    Article  Google Scholar 

  • Morgan LA, Shanks WCP III, Pierce KL (2009) Hydrothermal processes above the Yellowstone magma chamber: large hydrothermal systems and large hydrothermal explosions Geological Society of America. Boulder, Colorado

    Google Scholar 

  • Mulkidjanian AY (2009) On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol Direct 4:26

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Galperin MY (2007) Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: towards the consensus paradigm of the abiogenic origin of life. Chem Biodivers 4:2003–2015

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Galperin MY (2009) On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 4:27

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Galperin MY (2010a) Evolutionary origins of membrane proteins. In: Frishman D (ed) Structural bioinformatics of membrane proteins. Springer, Vienna, pp 1–28

    Chapter  Google Scholar 

  • Mulkidjanian AY, Galperin MY (2010b) On the abundance of zinc in the evolutionarily old protein domains. Proc Natl Acad Sci USA 107:E137

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Cherepanov DA, Galperin MY (2003) Survival of the fittest before the beginning of life: selection of the first oligonucleotide-like polymers by UV light. BMC Evol Biol 3:12

    Article  PubMed  Google Scholar 

  • Mulkidjanian AY et al (2006) The cyanoBacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 5:892–899

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Dibrov P, Galperin MY (2008a) The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta 1777:985–992

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Galperin MY, Makarova KS, Wolf YI, Koonin EV (2008b) Evolutionary primacy of sodium bioenergetics. Biol Direct 3:13

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Galperin MY, Koonin EV (2009) Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 34:206–215

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Yamato I, Kakinuma Y, Leslie AG, Walker JE (2005) Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308:654–659

    Article  PubMed  CAS  Google Scholar 

  • Nagaswamy U, Voss N, Zhang ZD, Fox GE (2000) Database of non-canonical base pairs found in known RNA structures. Nucleic Acids Res 28:375–376

    Article  PubMed  CAS  Google Scholar 

  • Nagle JF (1987) Theory of passive proton conductance in lipid bilayers. J Bioenerg Biomembr 19:413–426

    PubMed  CAS  Google Scholar 

  • Natochin YV (2007) The physiological evolution of animals: sodium is the clue to resolving contradictions. Her Russ Acad Sci 77:581–591

    Article  Google Scholar 

  • Nisbet EG (1991) Living Earth: a short history of life and its home. HarperCollins Academic, London

    Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Ohtani B, Pal B, Ikeda S (2003) Photocatalytic organic syntheses: selective cyclization of amino acids in aqueous suspensions. Catal Surv Asia 7:165–176

    Article  CAS  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (1986) RNA catalysis and the origins of life. J Theor Biol 123:127–149

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol 6:5–13

    Article  CAS  Google Scholar 

  • Pasek MA (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci USA 105:853–858

    Article  PubMed  CAS  Google Scholar 

  • Pech H, Henry A, Khachikian CS, Salmassi TM, Hanrahan G, Foster KL (2009) Detection of geothermal phosphite using high-performance liquid chromatography. Environ Sci Technol 43:7671–7675

    Article  PubMed  CAS  Google Scholar 

  • Pereto J, Lopez-Garcia P, Moreira D (2004) Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 29:469–477

    Article  PubMed  CAS  Google Scholar 

  • Perun S, Sobolewski AL, Domcke W (2005a) Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9 H-adenine. J Am Chem Soc 127:6257–6265

    Article  PubMed  CAS  Google Scholar 

  • Perun S, Sobolewski AL, Domcke W (2005b) Photostability of 9 H-adenine: mechanisms of the radiationless deactivation of the lowest excited singlet states. Chem Phys 313:107–112

    Article  CAS  Google Scholar 

  • Perun S, Sobolewski AL, Domcke W (2006) Role of electron-driven proton-transfer processes in the excited-state deactivation adenine-thymine base pair. J Phys Chem A 110:9031–9038

    Article  PubMed  CAS  Google Scholar 

  • Petersen S et al (2005) Shallow drilling of seafloor hydrothermal systems using the BGS rockdrill: conical seamount (New Ireland fore-arc) and PACMANUS (Eastern Manus Basin), Papua New Guinea. Mar Georesour Geotechnol 23:175–193

    Article  CAS  Google Scholar 

  • Pinti DL (2005) The origin and evolution of the oceans. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer, Berlin, pp 83–111

    Chapter  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  PubMed  CAS  Google Scholar 

  • Quastler H (1964) The emergence of biological organization. Yale University Press, New Haven

    Google Scholar 

  • Reiche H, Bard AJ (1979) Heterogeneous photosynthetic production of amino-acids from methane-ammonia-water at Pt-TiO2. Implications in chemical evolution. J Am Chem Soc 101:3127–3128

    Article  CAS  Google Scholar 

  • Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    Article  PubMed  CAS  Google Scholar 

  • Russell M (2006) First life. Am Sci 94:32–39

    Google Scholar 

  • Russell MJ (2007) The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 55:133–179

    Article  PubMed  Google Scholar 

  • Russell MJ, Arndt NT (2005) Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2:97–111

    Article  CAS  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc London 154:377–402

    Article  PubMed  CAS  Google Scholar 

  • Russell M, Hall AJ (2006) The onset and early evolution of life. In: Kesler SE, Ohmoto H (eds) Evolution of early earth’s atmosphere, hydrosphere, and biosphere—constraints from ore deposits: Geological Society of America Memoir 198, pp 1–32

    Google Scholar 

  • Russell MJ, Hall AJ, Cairns-Smith AG, Braterman PS (1988) Submarine hot springs and the origin of life. Nature 336:117

    Article  Google Scholar 

  • Russell M, Allen J, Milner-White E (2007) Inorganic complexes in the onset of life and oxygenic photosynthesis. Photosynth Res 91:269

    Google Scholar 

  • Sagan C (1973) Ultraviolet selection pressure on earliest organisms. J Theor Biol 39:195–200

    Article  PubMed  CAS  Google Scholar 

  • Saladino R, Crestini C, Ciciriello F, Pino S, Costanzo G, Di Mauro E (2009) From formamide to RNA: the roles of formamide and water in the evolution of chemical information. Res Microbiol 160:441–448

    Article  PubMed  CAS  Google Scholar 

  • Saladino R, Neri V, Crestini C, Costanzo G, Graciotti M, Di Mauro E (2010) The role of the formamide/zirconia system in the synthesis of nucleobases and biogenic carboxylic acid derivatives. J Mol Evol 71:100–110

    Article  PubMed  CAS  Google Scholar 

  • Satzger H, Townsend D, Zgierski MZ, Patchkovskii S, Ullrich S, Stolow A (2006) Primary processes underlying the photostability of isolated DNA bases: Adenine. Proc Natl Acad Sci USA 103:10196–10201

    Article  PubMed  CAS  Google Scholar 

  • Schoonen MAA, Xu Y, Strongin DR (1998) An introduction to geocatalysis. J Geochem Explor 62:201–215

    Article  CAS  Google Scholar 

  • Schoonen MAA, Xu Y, Bebie J (1999) Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS-H2S/FeS2 redox couple as reductant. Orig Life Evol Biosph 29:5–32

    Article  PubMed  CAS  Google Scholar 

  • Schoonen M, Smirnov A, Cohn C (2004) A perspective on the role of minerals in prebiotic synthesis. Ambio 33:539–551

    PubMed  Google Scholar 

  • Schrödinger E (1945) What is life? The physical aspect of the living cell. The Macmillan Company, New York

    Google Scholar 

  • Schwartz AW (2006) Phosphorus in prebiotic chemistry. Philos Trans R Soc Lond B Biol Sci 361:1743–1749

    Article  PubMed  CAS  Google Scholar 

  • Scott WG (2007) Ribozymes. Curr Opin Struct Biol 17:280–286

    Article  PubMed  CAS  Google Scholar 

  • Seewald JS, Seyfried WE (1990) The effect of temperature on metal mobility in subseafloor hydrothermal systems: constraints from basalt alteration experiments. Earth Planet Sci Lett 101:388–403

    Article  CAS  Google Scholar 

  • Senanayake SD, Idriss H (2006) Photocatalysis and the origin of life: synthesis of nucleoside bases from formamide on TiO2(001) single surfaces. Proc Natl Acad Sci USA 103:1194–1198

    Article  PubMed  CAS  Google Scholar 

  • Serrano-Andres L, Merchan M (2009) Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective. J Photochem Photobiol, C 10:21–32

    Article  CAS  Google Scholar 

  • Sherwood Lollar B, Westgate TD, Ward JA, Slater GF, Lacrampe-Couloume G (2002) Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416:522–524

    Article  PubMed  CAS  Google Scholar 

  • Shnol SE (1981) Physicochemical factors of biological evolution. Routledge, New York

    Google Scholar 

  • Shu D, Guo P (2003) A viral RNA that binds ATP and contains a motif similar to an ATP-binding aptamer from SELEX. J Biol Chem 278:7119–7125

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (1969) Accumulation of energy in the cell. Nauka, Moscow

    Google Scholar 

  • Skulachev VP (1994) Bioenergetics – the evolution of molecular mechanisms and the development of bioenergetic concepts. Antonie Leeuwenhoek 65:271–284

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (1998) Biochemical mechanisms of evolution and the role of oxygen. Biochemistry Moscow 63:1335–1343

    PubMed  CAS  Google Scholar 

  • Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci USA 101:12818–12823

    Article  PubMed  CAS  Google Scholar 

  • Smith JM, Szathmáry E (1995) The major transitions in evolution. W.H. Freeman, Oxford

    Google Scholar 

  • Sobolewski AL, Domcke W (1999) On the mechanism of rapid non-radiative decay in intramolecularly hydrogen-bonded pi systems. Chem Phys Lett 300:533–539

    Article  CAS  Google Scholar 

  • Sobolewski AL, Domcke W (2006) The chemical physics of the photostability of life. Europhys News 37:20–23

    Article  CAS  Google Scholar 

  • Sobolewski AL, Domcke W, Hattig C (2005) Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes. Proc Natl Acad Sci USA 102:17903–17906

    Article  PubMed  CAS  Google Scholar 

  • Spirin AS (2005) RNA world and its evolution. Mol Biol Mosk 39:550–556

    PubMed  CAS  Google Scholar 

  • Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Moore PB (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418

    Article  PubMed  CAS  Google Scholar 

  • Szathmáry E (2006) The origin of replicators and reproducers. Philos Trans R Soc Lond B Biol Sci 361:1761–1776

    Article  PubMed  CAS  Google Scholar 

  • Szathmáry E (2007) Coevolution of metabolic networks and membranes: the scenario of progressive sequestration. Philos Trans R Soc Lond B Biol Sci 362:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of Archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic Bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic Archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  PubMed  CAS  Google Scholar 

  • Tivey MK (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20:50–65

    Google Scholar 

  • van Roode JHG, Orgel LE (1980) Template-directed synthesis of oligoguanylates in the presence of metal-ions. J Mol Biol 144:579–585

    Article  PubMed  Google Scholar 

  • Vazquez M, Hanslmeier A (2006) Ultraviolet radiation in the solar system. Springer, Dordrecht

    Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  Google Scholar 

  • Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58:85–201

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B Biol Sci 361:1787–1806

    Article  PubMed  CAS  Google Scholar 

  • Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4:584–602

    Article  PubMed  Google Scholar 

  • Wander MCF, Schoonen MAA (2008) Reduction of N2 by Fe2+ via homogeneous and heterogeneous reactions – Part 1: Evaluation of aqueous photochemical, prebiotic pathways. Orig Life Evol Biosph 38:127–137

    Article  PubMed  CAS  Google Scholar 

  • Wander MCF, Kubicki JD, Schoonen MAA (2008) Reduction of N2 by Fe2+ via homogeneous and heterogeneous reactions. Part 2: the role of metal binding in activating N2 for reduction; a requirement for both pre-biotic and biological mechanisms. Orig Life Evol Biosph 38:195–209

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Milner-White EJ (2002) A novel main-chain anion-binding site in proteins: the nest. A particular combination of phi, psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J Mol Biol 315:171–182

    Article  PubMed  CAS  Google Scholar 

  • Westall F et al (2006) Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos Trans R Soc Lond B Biol Sci 361:1857–1875

    PubMed  CAS  Google Scholar 

  • White AK, Metcalf WW (2007) Microbial metabolism of reduced phosphorus compounds. Annu Rev Microbiol 61:379–400

    Article  PubMed  CAS  Google Scholar 

  • Williams RJP, Frausto da Silva JJR (2006) The chemistry of evolution: the development of our ecosystem. Elsevier, Amsterdam

    Google Scholar 

  • Woese CR (1967) The genetic code. Harper and Row, New York

    Google Scholar 

  • Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    Article  PubMed  CAS  Google Scholar 

  • Wolf YI, Koonin EV (2007) On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct 2:14

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineralog 85:543–556

    CAS  Google Scholar 

  • Yanagida S, Kizumoto H, Ishimaru Y, Pac C, Sakurai H (1985) Zinc sulfide catalyzed photochemical conversion of primary amines to secondary amines. Chem Lett (1):141–144

    Google Scholar 

  • Yoneyama H (1997) Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catal Today 39:169–175

    Article  CAS  Google Scholar 

  • Zahnle K et al (2007) Emergence of a habitable planet. Space Sci Rev 129:35–78

    Article  CAS  Google Scholar 

  • Zhang XV, Martin ST, Friend CM, Schoonen MAA, Holland HD (2004) Mineral-assisted pathways in prebiotic synthesis: photoelectrochemical reduction of carbon(+IV) by manganese sulfide. J Am Chem Soc 126:11247–11253

    Article  PubMed  CAS  Google Scholar 

  • Zhang XV et al (2007) Photodriven reduction and oxidation reactions on colloidal semiconductor particles: implications for prebiotic synthesis. J Photochem Photobiol A Chem 185:301–311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Valuable discussions with Drs. A.V. Bogachev, A.Y. Bychkov, D.A. Cherepanov, M. Eigen, M.Y. Galperin, E.V. Koonin, K.S. Makarova, M.J. Russell, V.P. Skulachev, R. Thauer, N.E. Voskoboynikova, and R.J.P. Williams are greatly appreciated. While editing this volume I have learned a lot from my co-editors, Drs. R. Egel and D. Lankenau, as well as from all the authors of this book. This study was supported by the Deutsche Forschungsgemeinschaft and the Russian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Y. Mulkidjanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mulkidjanian, A.Y. (2011). Energetics of the First Life. In: Egel, R., Lankenau, DH., Mulkidjanian, A. (eds) Origins of Life: The Primal Self-Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21625-1_1

Download citation

Publish with us

Policies and ethics