Skip to main content

Sulfur-oxidizing Bacteria: A Novel Bioinoculant for Sulfur Nutrition and Crop Production

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Nutrient Management

Abstract

Sulfur is an essential nutrient for plant growth as sulfur-deficient conditions cause severe losses in crop yield. Sulfur nutrition has received little attention for many years, since fertilizers and atmospheric inputs have provided adequate amounts. However, recent reductions in sulfur inputs from atmospheric depositions have resulted in a negative sulfur balance in agricultural soils, making crop plants increasingly dependent on the soil to supply sulfur. Thus to alleviate this deficiency, sulfur fertilizers are invariably added to soils, usually in a reduced form, such as elemental sulfur. Yet, reduced sulfur fertilizers must be oxidized to sulfate before they become available to the plant, a process that is mediated by microorganisms. Sulfur and sulfur fertilizers and physiological role of sulfur in crop plants and interaction of sulfur with other elements along with ecological niches for isolation of sulfur-oxidizing bacteria and their role in sulfur oxidation in soil and sulfur nutrition to crop plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elfattah A, Hilal MH, El-Hahhasha KM, Bakry MD (1990) Amendment of alkaline clay soil by elemental sulfur and its effect on the response of garlic to phosphorous and nitrogen. In: Proceedings Middle East sulfur symposium, Cairo, 12–16 Feb, pp 295–313

    Google Scholar 

  • Abdel-Samad S, Ismail H, El-Mashhadi HM, Radwan SA (1990) Effects of the interaction between leaching process with sulfur and peat on growth and uptake of nutrients by Barley grown in saline soil. In: Proceedings Middle East sulfur symposium, Cairo, 12–16 Feb, pp 325–337

    Google Scholar 

  • Adetuni MT (1992) Effect of lime and phosphorus application on sulfate adsorption capacity of south-western Nigerian soils. Indian J Agr Sci 62:150–152

    Google Scholar 

  • Anandham R, Sridar R, Nalayini P, Poonguzhali S, Madhaiyan M, Indira Gandhi P, Choi KH, Sa TM (2005) Isolation of sulfur oxidizing bacteria from different ecological niches. Korean J Soil Sci Fert 38:180–187

    CAS  Google Scholar 

  • Anandham R, Sridar R, Nalayini P, Poonguzhali S, Madhaiyan M, Sa TM (2007a) Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur oxidizing bacteria and Rhizobium. Microbiol Res 162:139–153

    Article  PubMed  CAS  Google Scholar 

  • Anandham R, Choi KH, Indira Gandhi P, Yim WJ, Park SJ, Kim KA, Madhaiyan M, Sa TM (2007b) Evaluation of shelf life and rock phosphate solubilization of Burkholderia sp. in nutrient amended clay, rice bran and rock phosphate-based granular formulation. World J Microbiol Biotechnol 23:1121–1129

    Article  CAS  Google Scholar 

  • Anandham R, Indira Gandhi P, Madhaiyan M, Kim KA, Yim WJ, Saravanan VS, Chung JB, Sa TM (2007c) Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Can J Microbiol 53:869–876

    Article  PubMed  CAS  Google Scholar 

  • Anandham R, Indira Gandhi P, Madhaiyan M, Sa TM (2008a) Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. J Basic Microbiol 48:439–447

    Article  PubMed  CAS  Google Scholar 

  • Anandham R, Indira Gandhi P, Madhaiyan M, Ryu HY, Jee HJ, Sa TM (2008b) Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Res Microbiol 159:579–589

    Article  PubMed  CAS  Google Scholar 

  • Anandham R, Indira Gandhi P, Madhaiyan M, Chung JB, Ryu KY, Jee HJ, Sa TM (2009a) Thiosulfate oxidation, mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense. J Microbiol Biotechnol 19:17–22

    PubMed  CAS  Google Scholar 

  • Anandham R, Indira Gandhi P, Kwon SW, Sa TM, Jee HJ (2009b) Taxonomic characterization of facultative chemolithoautotrophic strains ATSB16 isolated from rhizosphere soils. In: International workshop on microbial sulfur metabolism, Tomar, Portugal, 15–18 Mar, p 151

    Google Scholar 

  • Anandham R, Indira Gandhi P, Kwon SW, Sa TM, Kim YK, Jee HJ (2009c) Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxydans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classfication of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. thiooxydans subsp. nov. Arch Microbiol 191:885–894

    Article  PubMed  CAS  Google Scholar 

  • Anandham R, Indira Gandhi P, Kwon SW, Sa TM, Jeon CO, Kim YK, Jee HJ (2010) Pandoraea thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soils of seasame (Sesamum indicum L.). Int J Syst Evol Microbiol 60:21–26

    Article  PubMed  CAS  Google Scholar 

  • Beijerinck MW (1904) Phenomenes de reduction proguits parles microbes. Arch Sci Exactes et Nat Haarlem Ser 2:131–157

    Google Scholar 

  • Bell EA (1981) The physiological role(s) of secondary (natural) products. In: Conn EE (ed) The biochemistry of plant secondary plant product. Academic, New York, pp 1–19

    Google Scholar 

  • Brown HD (1923) Sulfofication in pure and mixed cultures with special reference to sulfate production, hydrogen ion concentration and nitrification. J Am Soc Agron 15:350–382

    Article  CAS  Google Scholar 

  • Bugakova AN, Knorre AF, Lepesheva TM (1981) The effect of sulfur nutrition on the content of certain mineral elements in pea plants. Fiziologiya Rastenii 13:43–46

    CAS  Google Scholar 

  • Chaplot PC, Jain GL, Bansal KN (1991) Effect of phosphorous and sulfur on the oil yield uptake of N, P and S in various seasons. Indian J Trop Agric 9:190–193

    CAS  Google Scholar 

  • Chapman SJ (1990) Thiobacillus population in some agricultural soils. Soil Biol Biochem 22:479–482

    Article  Google Scholar 

  • Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackebrandt E (1996) Oxidation of thiosulfate by a new bacterium Bosea thiooxidans gen. nov., sp. nov. analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Evol Microbiol 46:981–987

    CAS  Google Scholar 

  • Dave SR, Upadhyay NM (1993) Thiosulfate oxidizing organisms from thermal spring. Indian J Microbiol 33:241–244

    Google Scholar 

  • Deb C, Stackebrandt E, Pradella S, Saha A, Roy P (2004) Phylogenetically diverse new sulfur chemolithotrophs of α-Proteobacteria isolated form Indian soils. Curr Microbiol 48:452–455

    Article  PubMed  CAS  Google Scholar 

  • Dhillion NS, Dev G (1978) Effect of elemental sulphur application on the soybean (Glycine max L. Merrill). J Indian Soc Soil Sci 26:55–57

    Google Scholar 

  • Dimkee SK, Dwivedi N, Hariram K (1997) Effect of sulfur and phosphorous nutrition on yield attributes of groundnut (Arachis hypogaea L). Indian J Agron 38:327–328

    Google Scholar 

  • Dubey SD, Mishra PH (1970) Effect of sulphur deficiency on growth, yield and quality of some of the important leguminous crops. J Indian Soc Soil Sci 4:375–378

    Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology. Dekker, New York

    Book  Google Scholar 

  • El-Tarabily KA, Soaud AA, Saleh ME, Matsumoto S (2006) Isolation and characterization of sulfur-oxidising bacteria, including strains of Rhizobium, from calcareous sandy soils and their effect on nutrient uptake and growth of maize (Zea mays). Aust J Agric Res 57:101–111

    Article  CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882

    Article  PubMed  CAS  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259

    Article  PubMed  CAS  Google Scholar 

  • Fujimura YK, Kuraishi H (1980) Characterization of Thiobacillus novellus and its thiosulfate oxidation. J Gen Appl Microbiol 26:357–367

    Article  CAS  Google Scholar 

  • Germida JJ, Lawrence JR, Gupta VSSR (1985) Microbial oxidation of sulfur in Saskatchewan soils. In: Terry JW (ed) Proceedings of the international sulfur 84 conference. The Sulfur Development Institute of Canada, Calgary, pp 703–710

    Google Scholar 

  • Ghani A, Rajan SSS, Lee A (1994) Enhancement of phosphate rock solubility through biological processes. Soil Biol Biochem 26:127–136

    Article  CAS  Google Scholar 

  • Ghosh W, Roy P (2006a) Mesorhizobium thiogangeticum sp. nov., novel sulfur-oxidizing chemolithoautotroph from the rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56:91–97

    Article  PubMed  CAS  Google Scholar 

  • Ghosh W, Roy P (2006b) Ubiquitous presence and activity of sulfur-oxidizing lithoautotrophic microorganisms in the rhizospheres of tropical plants. Curr Sci 91:159–161

    Google Scholar 

  • Ghosh W, Roy P (2007) Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus. FEMS Microbiol Lett 270:124–131

    Article  PubMed  CAS  Google Scholar 

  • Ghosh W, Bagchi A, Mandal S, Dam B, Roy P (2005) Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. Int J Syst Evol Microbiol 55:1779–1787

    Article  PubMed  CAS  Google Scholar 

  • Ghosh W, Mandal S, Roy P (2006) Paracoccus bengalensis sp. nov., a novel sulfur-oxidizing chemolithoautotroph from the rhizospheric soil of an Indian tropical leguminous plant. Syst Appl Microbiol 29:396–403

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli J, Mudd SH, and Datko AH (1980) Sulfur amino acids in plants. In: Miflin BJ and PJ Lea (ed) The Biochemistry of Plants, Vol 5. Academic Press, New York, pp. 453–506

    Google Scholar 

  • Graff A, Stubner S (2003) Isolation and molecular characterization of thiosulfate oxidizing bacteria from an Italian rice field soil. Syst Appl Microbiol 26:445–452

    Article  PubMed  CAS  Google Scholar 

  • Grayston SJ, Germida JJ (1991) Sulfur oxidizing bacteria as plant growth promoting rhizobacteria for canola. Can J Microbiol 37:521–529

    Article  CAS  Google Scholar 

  • Hago TM, Salama MA (1987) The effect of elemental sulfur on shoot dry-weight, nodulation and pod yield on groundnut under irrigation. Exp Agr 23:93–97

    Article  CAS  Google Scholar 

  • Harborne JB (1982) Introduction to ecological biochemistry. Academic, New York, p 278

    Google Scholar 

  • Harwood JL (1980) Sulfolipids. In: Stumpt PK (ed) The biochemistry of plants. Lipids structure and function. Academic, New York, pp 301–320

    Google Scholar 

  • Histuda K, Yamada M, Klepker D (2005) Sulfur requirement of eight crops at early stages of growth. Agron J 97:155–159

    Google Scholar 

  • Islam MM, Ponnamperuma FN (1982) Soil and plant tests for available sulfur in wetland rice soils. Plant Soil 68:97–113

    Article  CAS  Google Scholar 

  • Ito T, Sugita K, Okabe S (2004) Isolation characterization and in situ detection of a novel chemolithotrophic sulfur oxidizing bacterium in wastewater biofilm growing under microaerophilic conditions. Appl Environ Microbiol 70:3122–3129

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Sugita K, Yumoto I, Nodasaka Y, Okabe S (2005) Thivirga sulfuroxydans gen. nov., a chemolithoautrophic sulfur-oxidizing bacterium isolated from a microaerobic waste-water biofilm. Int J Syst Evol Microbiol 55:1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Joffee JS (1922) Biochemical oxidation of sulfur and its significance to agriculture. NJ Agric Exp Sta Bull 374:82–90

    Google Scholar 

  • Kabesh MO, Behairy TG, Saber MSM (1989) Utilization of biofertilizers in field crop production. Effect of elemental sulfur application in the presence and absence of two biofertilizers on growth and yield of maize. Egypt J Agron 14:95–102

    Google Scholar 

  • Kelly DP, Harrison AP (1988) Genus Thiobacillus beijerink. In: Staley GT, Pfenning N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkinson, Baltimore, pp 1842–1871

    Google Scholar 

  • Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71:95–107

    Article  PubMed  CAS  Google Scholar 

  • Kleinhenz V (1999) Sulfur and chloride in the soil plant system. K+S Group, Kassel International Potash Institute, Basel

    Google Scholar 

  • Larsen PO (1981) Glucosinolates. In: Conn EE (ed) The biochemistry of plants secondary products. Academic, New York, pp 502–525

    Google Scholar 

  • Lee JS, Ham SH (1986) An investigation on allyl sulfide contents in Korean local garlic cultivars. Hort Abstr 4:42–43

    Google Scholar 

  • Legha PK, Giri G (1999) Influence of nitrogen and sulfur on growth, yield and oil content of sunflower (Helianthus annus) grown in spring season. Indian J Agron 44:408–412

    CAS  Google Scholar 

  • Liu Z (1986) Preliminary study of soil sulfur and sulfur fertilizer efficiency in China. In: Sulfur in agricultural soils. Proceedings of international symposium, Dhaka, 20–22 Apr, pp 371–388

    Google Scholar 

  • London J, Rittenberg SC (1966) Effects of organic matter on the growth of Thiobacillus intermedius. J Bacteriol 91:1062–1069

    PubMed  CAS  Google Scholar 

  • Matin A, Schleiss M, Perez RC (1980) Regulation of glucose transport and metabolism in Thiobacillus novellus. J Bacteriol 142:639–644

    PubMed  CAS  Google Scholar 

  • Mohan K, Sharma HC (1992) Effect of nitrogen and sulfur on growth, yield attributes, seed and oil yield of Indian mustard (Brassica) in seed. Indian J Agron 37:748–754

    CAS  Google Scholar 

  • Moreira C, Rainey FA, Nobre MF, Da Silva MT, Da Costa MS (2000) Tepidomonas ignava gen. nov., sp., a new chemolithotrophic and thermophilic member of β-Proteobacteria. Int J Syst Evol Microbiol 50:735–742

    Article  PubMed  CAS  Google Scholar 

  • Morrison RJ, Naidu R, Singh U (1987) Sulfur fertilizer requirements of Papua New Guinea and the South Pacific. In: Proceedings of the symposium on fertilizer sulfur requirements and sources in developing countries of Asia and the Pacific, Bangkok, 26–30 Jan. Fertilizer Advisory, Development and Information Network for Asia and the Pacific (FADINAP), Bangkok, pp 57–66

    Google Scholar 

  • Muralidharan P, Jose AI (1993) Effect of application of magnesium and sulfur on the growth, yield and uptake in rice. J Trop Agr 31:24–28

    CAS  Google Scholar 

  • Padden N, Rainey FA, Kelly DP, Wood AP (1997) Xanthobacter tagetidis sp. nov., an organism associated with Tagetes species and able to grow on substituted thiophenes. Int J Syst Bacteriol 47:394–401

    Article  PubMed  CAS  Google Scholar 

  • Padden AN, Kelly DP, Wood AP (1998) Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch Microbiol 169:249–256

    Article  PubMed  CAS  Google Scholar 

  • Pasricha NS, Aulakh MS (1990) Effect of phosphorus–sulfur interrelationship on their availability from fertilizer and soil to soybean (Glycine max) and linseed (Linum usitatissimum L.). In: Proceedings of the Middle East symposium, Cairo, 12–16 Feb, pp 277–279

    Google Scholar 

  • Pathiratna LSS, Waidyanatha US, Peries OS (1989) The effect of apatite and elemental sulfur mixtures on growth and P content of Centrosema pubescens. Fertil Res 21:37–43

    Article  CAS  Google Scholar 

  • Peccia J, Merchand EA, Silverstein J, Hernandez M (2000) Development and application of small sub-unit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidophilium. Appl Environ Microbiol 66:3065–3072

    Article  PubMed  CAS  Google Scholar 

  • Pronk JT, Meulenberg R, Hazeu W, Bos P, Kuenen JG (1990) Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75:293–306

    Article  CAS  Google Scholar 

  • Raghuwanshi RKS, Sinha NK, Agarwal SK (1997) Effect of sulfur and zinc in Soy bean (Glycin max), wheat (Triticum aestivum) cropping sequence. Indian J Agron 42:29–32

    CAS  Google Scholar 

  • Rathore PS, Manohar SS (1989) Effect of sulfur and nitrogen on quality parameters of mustard. Fmg Syst 5:29–32

    Google Scholar 

  • Riley NG, Zhao FJ, McGrath SP (2000) Availability of different forms of sulphur fertilizers to wheat and oilseed rape. Plant Soil 222:139–147

    Article  CAS  Google Scholar 

  • Romano AH, Van Vranken NJ, Preisand P, Brustolon M (1975) Regulation of the Thiobacillus intermedius glucose uptake system by thiosulfate. J Bacteriol 121:577–582

    PubMed  CAS  Google Scholar 

  • Ruby EG, Wirsen CO, Jannasch HW (1981) Chemolithotrophic sulfur oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl Environ Microbiol 42:317–327

    PubMed  CAS  Google Scholar 

  • Rupela OP, Tauro P (1973) Isolation and characterization of Thiobacillus from alkali soils. Soil Biol Biochem 5:891–897

    Article  CAS  Google Scholar 

  • Ryu HW, Moon HS, Lee EY, Cho KS, Choi H (2003) Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET. J Environ Qual 32:751–759

    PubMed  CAS  Google Scholar 

  • Scherer HW (2001) Sulphur in crop production. Eur J Agron 14:81–111

    Article  CAS  Google Scholar 

  • Shin JS (1987) Sulfur in Korean agriculture. In: Proceedings of the symposium on fertilizer sulfur requirements and sources in developing countries of Asia and the Pacific, Bangkok, 26–30 Jan. Fertilizer Advisory, Development and Information Network for Asia and the Pacific (FADINAP), Bangkok, pp 76–82

    Google Scholar 

  • Shooner R, Tyagi RD (1995) Microbial ecology of simultaneous thermophilic microbial leaching and digestion of sewage sludge. Can J Microbiol 41:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Shukla UC, Prasad KG (1979) Sulfur zinc interaction in groundnut. J Indian Soc Soil Sci 27:60–64

    CAS  Google Scholar 

  • Singh YP, Aggarwal RL (1998) Effect of sulfur and leaves on yield, nutrient uptake and quality of black gram (Phaseolus mungo). Indian J Agron 43:448–452

    CAS  Google Scholar 

  • Singh M, Singh N (1977) Effect of sulfur and selenium on sulfur containing amino acids and quality in Raya (Brassica juncea Coss) in normal and sodic soil. Indian J Plant Physiol 20:56–62

    CAS  Google Scholar 

  • Singh D, Singh V (1995) Effect of potassium and sulfur on growth characters, yield attributes and yield of soybean (Glycine max). Indian J Agron 40:223–227

    CAS  Google Scholar 

  • Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235:283–303

    Article  PubMed  CAS  Google Scholar 

  • Smith TA (1985) Polyamines. Annu Rev Plant Physiol 36:117–143

    Article  CAS  Google Scholar 

  • Sorokin DY, Kuenen JG (2005) Haloalkaliphilic sulfur oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Robertson LA, Kuenen JG (1996) Sulfur cycling in Catenococcus thiocyclus. FEMS Microbiol Ecol 19:117–125

    Article  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Muyzer G (2005a) Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the black sea. Syst Appl Microbiol 28:679–687

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Spiridonova EM, Rainey FA, Muyzer G (2005b) Thioclava pacifica gen. nov. sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacteria from a near-shore sulfidic hydrothermal area. Int J Syst Evol Microbiol 55:1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Stamford NP, Silva AJN, Freitas ADS, Filho A (2002) Effect of sulphur inoculated with Thiobacillus on soil salinity and growth of tropical tree legumes. Bioresour Technol 81:53–59

    Article  PubMed  CAS  Google Scholar 

  • Stamford NP, Freitas ADS, Ferraz DS, Montenegro A, Santos CERS (2003a) Nitrogen fixation and growth of cowpea (Vigna unguiculata) and yam bean (Pachyrhizus erosus) in sodic soil as affected by gypsum and sulphur inoculated with Thiobacillus and rhizobial inoculation. Trop Grasslands 37:11–19

    Google Scholar 

  • Stamford NP, Santos PR, Moura AMMF, Santos CERS, Freitas ADS (2003b) Biofertilizers with natural phosphate sulfur and Acidithiobacillus in a soil with low available-P. Sci Agric 607:63–773

    Google Scholar 

  • Stamford NP, Ribeiro MR, Cunha KPV, Freitas ADS, Santos CERS, Dias SHL (2007a) Effectiveness of sulfur with Acidithiobacillus and gypsum in chemical attributes of a Brazilian sodic soil. World J Microbiol Biotechnol 23:1433–1439

    Article  CAS  Google Scholar 

  • Stamford NP, Santos PR, Santos CERS, Freitas ADS, Dias SHL, Lira MA Jr (2007b) Agronomic effectiveness of biofertilizers with phosphate rock sulfur and Acidithiobacillus for Yam bean grown on Brazilian tableland acidic soil. Bioresour Technol 98:1311–1318

    Article  PubMed  CAS  Google Scholar 

  • Stamford NP, Santos CERS, Silva S Jr, Lira MA Jr, Figueiredo MVB (2008a) Effect of rhizobia and rock biofertilizers with Acidithiobacillus on cowpea nodulation and nutrients uptake in a tableland soil. World J Microbiol Biotechnol 24:1857–1875

    Article  CAS  Google Scholar 

  • Stamford NP, Lima RA, Lira MA Jr, Santos CERS (2008b) Effectiveness of phosphate and potash rocks with Acidithiobacillus on sugarcane yield and their effects on soil chemical attributes. World J Microbiol Biotechnol 24:2061–2066

    Article  CAS  Google Scholar 

  • Starkey RL (1935) Isolation of some bacteria which oxidize thiosulfate. Soil Sci 39:197–219

    Article  CAS  Google Scholar 

  • Stevenson FJ (1986) Cycles of soil. Wiley, New York

    Google Scholar 

  • Takano B, Koshida M, Fujiwara Y, Sugimori K, Takayanagi S (1997) Influence of sulfur oxidizing bacteria on the budget of sulfate in Yuma Crater Lake, Kusatsu-Shirane volcano Japan. Biochemistry 38:227–253

    CAS  Google Scholar 

  • Tandon HLS (1991) Sulfur research and agricultural production in India. The Sulfur Institute, Washington, DC

    Google Scholar 

  • Teske A, Brinkhoff T, Muyzer G, Moser DO, Rethmeier J, Jannasch HW (2000) Diversity of thiosulfate oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol 66:3125–3133

    Article  PubMed  CAS  Google Scholar 

  • Tiwari KM (1997) Sulfur in balanced fertilization in northern India. In: Proceedings of the TSI/PM/IFA. Symposium on sulfur in balanced fertilization, New Delhi, 13–14 Feb, pp SI-1/1–SI-1/15

    Google Scholar 

  • Tuttle JH (1980) Organic carbon utilization by resting cells of thiosulfate oxidizing marine heterotrophs. Appl Environ Microbiol 40:516–521

    PubMed  CAS  Google Scholar 

  • Vlasceanu L, Popa R, Kinkle B (1997) Characterization of Thiobacillus thioparus and its distribution in chemoautotrophically based ground water ecosystem. Appl Environ Microbiol 63:3123–3127

    PubMed  CAS  Google Scholar 

  • Vonuexkull HR (1986) Sulfur interaction with other plant nutrients. In: Sulfur in agricultural soils. Proceedings of international symposium, Dhaka, 20–22 Apr, pp 212–242

    Google Scholar 

  • Wainright M (1984) Sulfur oxidation in soils. Adv Agron 37:349–396

    Article  Google Scholar 

  • Waksman SA, Joffe JS (1922) The chemistry of the oxidation of sulfur by microorganisms to sulfuric acid and transformation of insoluble phosphates into soluble forms. J Biol Chem 50:35–45

    CAS  Google Scholar 

  • Wood AP (1988) Chemolithotrophy. In: Anthony C (ed) Bacterial energy transduction. Academic, London, pp 183–230

    Google Scholar 

  • Wood AP, Kelly DP (1980) Regulation of glucose catabolism in Thiobacillus A2 grown in the chemostat under dual limitation by succinate and glucose. Arch Microbiol 128:91–97

    Article  CAS  Google Scholar 

  • Wood AP, Kelly DP, McDonald IR, Jordan SL, Morgan TD, Khan S, Murrell JC, Borodina E (1998) A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth of thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol 169:148–158

    Article  PubMed  CAS  Google Scholar 

  • Yim WJ, Anandham R, Indira Gandhi P, Hong IS, Islam MR, Trivedi P, Madhaiyan M, Han GH, Sa TM (2008) Ubiquitous presence and activity of thiosulfate oxidizing bacteria in rhizosphere of economically important crop plants of Korea. Korean J Soil Sci Fert 41:9–17

    CAS  Google Scholar 

  • Zhu B, Alva AK (1993) Trace metal and cation transport in a sandy soil with various amendments. Soil Sci Soc Am J 57:723–727

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Tamil Nadu Agricultural University, India and Korea Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong-Min Sa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anandham, R., Gandhi, P.I., SenthilKumar, M., Sridar, R., Nalayini, P., Sa, TM. (2011). Sulfur-oxidizing Bacteria: A Novel Bioinoculant for Sulfur Nutrition and Crop Production. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Nutrient Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21061-7_5

Download citation

Publish with us

Policies and ethics