Skip to main content
Log in

Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxydans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classification of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. kururiensis subsp. nov.

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A thiosulfate-oxidizing facultative chemolithoautotrophic Burkholderia sp. strain ATSB13T was previously isolated from rhizosphere soil of tobacco plant. Strain ATSB13T was aerobic, Gram-staining-negative, rod shaped and motile by means of sub-terminal flagellum. Strain ATSB13T exhibited mixotrophic growth in a medium containing thiosulfate plus acetate. A phylogenetic study based on 16S rRNA gene sequence analysis indicated that strain ATSB13T was most closely related to Burkholderia kururiensis KP23T (98.7%), Burkholderia tuberum STM678T (96.5%) and Burkholderia phymatum STM815T (96.4%). Chemotaxonomic data [G+C 64.0 mol%, major fatty acids, C18:1 ω7c (28.22%), C16:1 ω7c/15 iso 2OH (15.15%), and C16:0 (14.91%) and Q-8 as predominant respiratory ubiquinone] supported the affiliation of the strain ATSB13T within the genus Burkholderia. Though the strain ATSB13T shared high 16S rRNA gene sequence similarity with the type strain of B. kururiensis but considerably distant from the latter in terms of several phenotypic and chemotaxonomic characteristics. DNA–DNA hybridization between strain ATSB13T and B. kururiensis KP23T was 100%, and hence, it is inferred that strain ATSB13T is a member of B. kururiensis. On the basis of data obtained from this study, we propose that B. kururiensis be subdivided into B. kururiensis subsp. kururiensis subsp. nov. (type strain KP23T = JCM 10599T = DSM 13646T) and B. kururiensis subsp. thiooxydans subsp. nov. (type strain ATSB13T = KACC 12758T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anandham R, Indira Gandhi P, Madhaiyan M, Kim KA, Yim WJ, Saravanan VS, Chung JB, Sa TM (2007) Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Can J Microbiol 53:869–876

    Article  CAS  PubMed  Google Scholar 

  • Anandham R, Indira Gandhi P, Madhaiyan M, Sa TM (2008a) Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. J Basic Microbiol 48:439–447

    Article  CAS  PubMed  Google Scholar 

  • Anandham R, Indira Gandhi P, Madhaiyan M, Ryu HY, Jee HJ, Sa TM (2008b) Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Res Microbiol 159:579–589

    Article  CAS  PubMed  Google Scholar 

  • Brenner DJ, Krieg NR, Staley JT (2005) The Proteobacteria. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Springer, New York, pp 575–623

    Google Scholar 

  • Christensen H, Angen Ø, Mutters R, Olsen JE, Bisgaard M (2000) DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102

    CAS  PubMed  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Falsen E, Hoste B, Ohlén M, Goris J, Govan JRW, Gillis M, Vandamme P (2000) Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov., and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 50:887–899

    CAS  PubMed  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Estrada-de los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798

    Article  CAS  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Friedrich CG, Mitrenga G (1981) Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Lett 10:209–212

    Article  CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Gottschal JC, Kuenen JG (1980) Mixotrophic growth of Thiobacillus A2 on acetate and thiosulfate as growth limiting substrates in the chemostat. Arch Microbiol 126:33–42

    Article  CAS  Google Scholar 

  • Groth I, Schumann P, Weiss N, Martin K, Rainey FA (1996) Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239

    CAS  PubMed  Google Scholar 

  • Hensen D, Sperling D, Trüper HG, Brune DC, Dahl C (2006) Thiosulfate oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. Mol Microbiol 62:794–810

    Article  CAS  PubMed  Google Scholar 

  • Holmes B, Costas M, Ganner M, On SL, Stevens M (1994) Evaluation of Biolog system for identification of some gram-negative bacteria of clinical importance. J Clin Microbiol 32:1970–1975

    CAS  PubMed  Google Scholar 

  • Jensen KT, Frederiksen W, Hickman-Brenner FW, Steigerwalt AG, Riddle CF, Brenner DJ (1992) Recognition of Morganella subspecies, with proposal of Morganella morganii subsp. morganii subsp. nov. and Morganella morganii subsp. sibonii subsp. nov. Int J Syst Bacteriol 42:613–620

    CAS  PubMed  Google Scholar 

  • Jung SJ, Jang KH, Shin EH, Park SK, Park CH (2005) Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J Microbiol Biotechnol 15:716–721

    CAS  Google Scholar 

  • Katayama Y, Uchino Y, Wood AP, Kelly DP (2006) Confirmation of Thiomonas delicata (formerly Thiomonas delicatus) as a distinct species of the genus Thiomonas Moreira and Amils 1997 with comments on some species currently assigned to genus. Int J Syst Evol Microbiol 56:2553–2557

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin, pp 193–217

    Google Scholar 

  • Kelly DP, Wood AP (1994) Synthesis and determination of thiosulfate and polythionates. Methods Enzymol 243:475–501

    Article  CAS  Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    PubMed  Google Scholar 

  • Kelly DP, Mc Donald IR, Wood AP (2000) Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α-subclass of the Proteobacteria. Int J Syst Evol Microbiol 50:1797–1802

    CAS  PubMed  Google Scholar 

  • Kolmert Å, Wikström P, Hallberg KB (2000) A fast and simple turbidometric method for the determination of sulfate-reducing bacterial cultures. J Microbiol Methods 41:179–184

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lahiri C, Mandal S, Ghosh W, Dam B, Roy P (2006) A novel gene cluster soxSRT is essential for the chemolithotrophic oxidation of thiosulfate and tetrathionate by Pseudaminobacter salicylatoxidans KCT001. Curr Microbiol 52:267–273

    Article  CAS  PubMed  Google Scholar 

  • Li W, Roberts DP, Meyer SLF, Lohrke S, Lumdsen RD, Hebbar KP (2002) Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot 21:129–135

    Article  Google Scholar 

  • Lowry OH, Rosebrough A, Farr AL, Randal RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Matin A (1978) Organic nutrition of chemolithotrophic bacteria. Ann Rev Microbiol 32:433–468

    Article  CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39:159–167

    Article  CAS  Google Scholar 

  • Meyer B, Imhoff JF, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB among sulfur-oxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9:2957–2977

    Article  CAS  PubMed  Google Scholar 

  • Moore DD (1995) Preparation and analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11

    Google Scholar 

  • Moreira D, Amils R (1997) Phylogeny of Thiobacillus cuprinus and other mixotrophic Thiobacilli: Proposal for Thiomonas gen. nov. Int Syst Bacteriol 47:522–528

    Article  CAS  Google Scholar 

  • Mukhopadhyaya PN, Deb C, Lahiri C, Roy P (2000) A soxA gene encoding a diheme cytochrome c and a sox locus, essential for sulfur oxidation in new sulfur lithotrophic bacterium. J Bacteriol 182:4278–4287

    Article  CAS  PubMed  Google Scholar 

  • Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. CABIOS 10:41–48

    CAS  PubMed  Google Scholar 

  • Paarup M, Friedrich MW, Tindall BJ, Finster K (2006) Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum. Antonie van Leeuwenhoek 89:55–69

    Article  CAS  PubMed  Google Scholar 

  • Padden AN, Kelly DP, Wood AP (1998) Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch Microbiol 169:249–256

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI

  • Spring S, Kämper P, Schleifer HS (2001) Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 51:1463–1470

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov. nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    Article  PubMed  Google Scholar 

  • Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S, Ophel-Keller K, Balandreau J (1998) Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Evol Microbiol 48:549–563

    Article  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Wittke R, Ludwig W, Peiffer S, Kleiner D (1997) Isolation and characterization of Burkholderia norimbergensis sp. nov., a mildly alkaliphilic sulfur oxidizer. Syst Appl Microbiol 20:549–553

    CAS  Google Scholar 

  • Zhang H, Hanada S, Shigematsu T, Shibuya K, Kamagata Y, Kanagawa T, Kurane R (2000) Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RA thanks Rural Development Administration (RDA), Republic of Korea for awarding post doctoral fellowship. This study was supported by National Academy of Agricultural Science, RDA, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rangasamy Anandham or Tong Min Sa.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anandham, R., Indira Gandhi, P., Kwon, S.W. et al. Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxydans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classification of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. kururiensis subsp. nov.. Arch Microbiol 191, 885–894 (2009). https://doi.org/10.1007/s00203-009-0517-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0517-4

Keywords

Navigation