Skip to main content

Biogenesis of Plant MicroRNAs

  • Chapter
  • First Online:
Non Coding RNAs in Plants

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

MicroRNAs (miRNAs) are small RNAs of ∼21 nt that regulate multiple biological pathways in complex organisms. They are defined by their specific biogenesis that involves the precise excision from an imperfect fold-back precursor. In plants, the ribonuclease III DICER-LIKE1 (DCL1) assisted by accessory proteins cleaves the precursor to release the miRNA. In general, the processing complex recognizes a 15-nt lower stem located below the miRNA in the precursors to produce the first cleavage, which is then followed by a second cut that releases the small RNA. Plant precursors are, however, very variable in size and shape, and not all of them are processed in the same way. The conserved miR319/159 precursors are cleaved in a loop-to-base direction by several successive DCL1 cuts. The situation seems to be even more complex if newly evolved miRNAs are also taken into account. The emerging picture suggests a high plasticity of the miRNA processing machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addo-Quaye C, Eshoo TW, Bartel DP et al (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  PubMed  CAS  Google Scholar 

  • Addo-Quaye C, Snyder JA, Park YB et al (2009) Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15:2112–2121

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM et al (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290

    Article  PubMed  CAS  Google Scholar 

  • Arazi T, Talmor-Neiman M, Stav R et al (2005) Cloning and characterization of micro-RNAs from moss. Plant J 43:837–848

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ (2008) Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim Biophys Acta 1779:725–734

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  PubMed  CAS  Google Scholar 

  • Bologna NG, Mateos JL, Bresso EG et al (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28:3646–3656

    Article  PubMed  CAS  Google Scholar 

  • Bouche N, Lauressergues D, Gasciolli V et al (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356

    Article  PubMed  CAS  Google Scholar 

  • Boutet S, Vazquez F, Liu J et al (2003) Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol 13:843–848

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  Google Scholar 

  • Cuperus JT, Montgomery TA, Fahlgren N et al (2010) Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc Natl Acad Sci USA 107:466–471

    Article  PubMed  CAS  Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J et al (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71

    Article  PubMed  CAS  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105:9970–9975

    Article  PubMed  CAS  Google Scholar 

  • Eamens AL, Smith NA, Curtin SJ et al (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15(12):2219–2235

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2:e219

    Article  PubMed  Google Scholar 

  • Fahlgren N, Jogdeo S, Kasschau KD et al (2010) MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 22:1074–1089

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17:818–823

    Article  PubMed  CAS  Google Scholar 

  • Fujioka Y, Utsumi M, Ohba Y et al (2007) Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis. Plant Cell Physiol 48:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Gasciolli V, Mallory AC, Bartel DP et al (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500

    Article  PubMed  CAS  Google Scholar 

  • German MA, Pillay M, Jeong DH et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  PubMed  CAS  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  PubMed  CAS  Google Scholar 

  • Gregory BD, O’Malley RC, Lister R et al (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14:854–866

    Article  PubMed  CAS  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L et al (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lee Y, Yeom KH et al (2004a) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    Article  PubMed  CAS  Google Scholar 

  • Han MH, Goud S, Song L et al (2004b) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA 101(4):1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lee Y, Yeom KH et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  PubMed  CAS  Google Scholar 

  • Henderson IR, Zhang X, Lu C et al (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38:721–725

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Ji L, Huang Q et al (2009) Structural insights into mechanisms of the small RNA ­methyltransferase HEN1. Nature 461:823–827

    Article  PubMed  CAS  Google Scholar 

  • Johnson C, Kasprzewska A, Tennessen K et al (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19:1429–1440

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212

    Article  PubMed  CAS  Google Scholar 

  • Laubinger S, Sachsenberg T, Zeller G et al (2008) Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:8795–8800

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang Z, Yu B et al (2005a) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li W, Jin YX (2005b) Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin (Shanghai) 37:75–87

    Article  Google Scholar 

  • Li YF, Zheng Y, Addo-Quaye C et al (2010) Transcriptome-wide identification of microRNA targets in rice. Plant J 62:742–759

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Xie Z, Kasschau KD et al (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  PubMed  CAS  Google Scholar 

  • Lobbes D, Rallapalli G, Schmidt DD et al (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2366

    PubMed  CAS  Google Scholar 

  • Lu C, Kulkarni K, Souret FF et al (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16:1276–1288

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Jeong DH, Kulkarni K et al (2008) Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA 105:4951–4956

    Article  PubMed  CAS  Google Scholar 

  • Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Coruh C, Axtell MJ (2010) Arabidopsis lyrata small RNAs: transient MIRNA and small interfering RNA loci within the Arabidopsis genus. Plant Cell 22:1090–1103

    Article  PubMed  CAS  Google Scholar 

  • Mateos JL, Bologna NG, Chorostecki U et al (2010) Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr Biol 20:49–54

    Article  PubMed  CAS  Google Scholar 

  • Matranga C, Tomari Y, Shin C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B et al (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  PubMed  CAS  Google Scholar 

  • Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  PubMed  CAS  Google Scholar 

  • Mica E, Piccolo V, Delledonne M et al (2010) Correction: high throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics 11:109

    Article  PubMed  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT et al (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    Article  PubMed  CAS  Google Scholar 

  • Morris ER, Chevalier D, Walker JC (2006) DAWDLE, a forkhead-associated domain gene, regulates multiple aspects of plant development. Plant Physiol 141:932–941

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  PubMed  CAS  Google Scholar 

  • Papp I, Mette MF, Aufsatz W et al (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132:1382–1390

    Article  PubMed  CAS  Google Scholar 

  • Park W, Li J, Song R et al (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A et al (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102:3691–3696

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428

    Article  PubMed  CAS  Google Scholar 

  • Qin H, Chen F, Huan X et al (2010) Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. RNA 16:474–481

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J et al (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran V, Chen X (2008) Small RNA metabolism in Arabidopsis. Trends Plant Sci 13:368–374

    Article  PubMed  CAS  Google Scholar 

  • Rand TA, Petersen S, Du F et al (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  PubMed  CAS  Google Scholar 

  • Rasia RM, Mateos J, Bologna NG et al (2010) Structure and RNA interactions of the plant microRNA processing-associated protein HYL1. Biochemistry 49:8237–8239

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW et al (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Ishizuka A, Siomi H et al (2005) Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 3:e235

    Article  PubMed  Google Scholar 

  • Schauer SE, Jacobsen SE, Meinke DW et al (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7:487–491

    Article  PubMed  CAS  Google Scholar 

  • Song L, Han MH, Lesicka J et al (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci USA 104:5437–5442

    Article  PubMed  CAS  Google Scholar 

  • Song L, Axtell MJ, Fedoroff NV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20:37–41

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Iwasaki S, Watanabe T et al (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500

    Article  PubMed  CAS  Google Scholar 

  • Talmor-Neiman M, Stav R, Frank W et al (2006) Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss. Plant J 47:25–37

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP et al (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  PubMed  CAS  Google Scholar 

  • Vazquez F, Gasciolli V, Crete P et al (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    PubMed  CAS  Google Scholar 

  • Vazquez F, Blevins T, Ailhas J et al (2008) Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res 36:6429–6438

    Article  PubMed  CAS  Google Scholar 

  • Vazquez F, Legrand S, Windels D (2010) The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci 15:337–345

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  PubMed  CAS  Google Scholar 

  • Warthmann N, Das S, Lanz C et al (2008) Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae. Mol Biol Evol 25:892–902

    Article  PubMed  CAS  Google Scholar 

  • Wei B, Cai T, Zhang R et al (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9:499–511

    Article  PubMed  CAS  Google Scholar 

  • Werner S, Wollmann H, Schneeberger K et al (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr Biol 20:42–48

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Yu L, Cao W et al (2007) The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. Plant Cell 19:914–925

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Zhang Q, Zhou H et al (2009) Rice MicroRNA effector complexes and targets. Plant Cell 21:3421–3435

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Zhou H, Zhang Q et al (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Allen E, Fahlgren N et al (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138:2145–2154

    Article  PubMed  CAS  Google Scholar 

  • Xie F, Frazier TP, Zhang B (2010) Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta 232:417–434

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Liu Z, Lu F et al (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850

    Article  PubMed  CAS  Google Scholar 

  • Yang SW, Chen HY, Yang J et al (2010) Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 18:594–605

    Article  PubMed  CAS  Google Scholar 

  • Yi R, Qin Y, Macara IG et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Bi L, Zheng B et al (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 105:10073–10078

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Cullen BR (2005) Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 280:27595–27603

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24(1):138–148

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kolb FA, Brondani V et al (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21:5875–5885

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cannon CH et al (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Chia JM, Kumari S et al (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716

    Article  PubMed  Google Scholar 

  • Zhou X, Ruan J, Wang G et al (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3(3):e37

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by fellowships from CONICET to JM and NB; JP is a CONICET researcher and received grants from HFSP, ANPCyT, and HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier F. Palatnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mateos, J.L., Bologna, N.G., Palatnik, J.F. (2011). Biogenesis of Plant MicroRNAs. In: Erdmann, V., Barciszewski, J. (eds) Non Coding RNAs in Plants. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19454-2_16

Download citation

Publish with us

Policies and ethics