Skip to main content

Abstract

Materials as constituents of products or components of technical systems rarely exist in isolation and many must cope with exposure in the natural world. This chapter describes methods that simulate how a material is influenced through contact with living systems such as microorganisms and arthropods. Both unwanted and desirable interactions are considered. This biogenic impact on materials is intimately associated with the environment to which the material is exposed (Materials-Environment Interaction, Chap. 15). Factors such as moisture, temperature and availability of food sources all have a significant influence on biological systems. Corrosion (Chap. 12) and wear (Chap. 13) can also be induced or enhanced in the presence of microorganisms. Section 14.1 introduces the categories between desired (biodegradation) and undesired (biodeterioration) biological effects on materials. It also introduces the role of biocides for the protection of materials. Section 14.2 describes the testing of wood as a building material especially against microorganisms and insects. Section 14.3 characterizes the test methodologies for two other groups of organic materials, namely polymers (Sect. 14.3.1) and paper and textiles (Sect. 14.3.2). Section 14.4 deals with the susceptibility of inorganic materials such as metals (Sect. 14.4.1), concrete (Sect. 14.4.2) and ceramics (Sect. 14.4.3) to biogenic impact. Section 14.5 treats the testing methodology concerned with the performance of coatings and coating materials. In many of these tests specific strains of organisms are employed. It is vital that these strains retain their ability to utilize/attack the substrate from which they were isolated, even when kept for many years in the laboratory. Section 14.6 therefore considers the importance of maintaining robust and representative test organisms that are as capable of utilizing a substrate as their counterparts in nature such that realistic predictions of performance can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscope

AFM:

atomic force microscopy

AFNOR:

Association Francaise de Normalisation

ARDRA:

amplified ribosomal DNA restriction analysis

ASTM:

American Society for Testing and Materials

ATP:

adenosine triphosphate

BRENDA:

bacterial restriction endonuclease nucleic acid digest analysis

CD:

circular dichroism

CEN:

European Committee for Standardization

CEN:

European Standard Organization

CNR:

contrast-to-noise ratio

DIN:

Deutsches Institut für Normung

DNA:

deoxyribonucleic acid

DOC:

dissolved organic carbon

EDX:

energy dispersive x-ray

EPS:

equivalent penetrameter sensitivity

EU:

European Union

FISH:

fluorescence in situ hybridization

GC:

gas chromatography

IBRG:

International Biodeterioration Research Group

ICR:

ion cyclotron resonance

ISO:

International Organization for Standardization

JIS:

Japanese Institute of Standards

MIC:

microbially induced corrosion

MITI:

Ministry of International Trade and Industry

MOE:

modulus of elasticity

MUVU:

mobile UV unit

PAS:

positron annihilation spectroscopy

PCR:

polymerase chain reaction

PHB:

poly(β-hydroxy butyrate)

PVC:

polyvinyl chloride

RAPD:

random amplified polymorphic DNA

RFLP:

restriction fragment length polymorphism

RH:

relative humidity

RNA:

nuclear reaction analysis

SCLM:

scanning confocal laser microscopy

SEM:

scanning electron microscopy

TR:

technical report

TS:

tensile strength

UV:

ultraviolet

VOC:

volatile organic carbon

rRNA:

ribosomal RNA

References

  1. H.W. Rossmore (Ed.): Handbook of Biocide and Preservative Use (Blackie, London 1995)

    Google Scholar 

  2. A.D. Russell, W.B. Hugo, G.A.J. Ayliffe (Eds.): Principles and Practice of Disinfection, Preservation and Sterilization (Blackwell Science, Oxford 1999) pp. 124–144

    Google Scholar 

  3. W. Paulus: Directory of Microbicides for the Protection of Materials: A Handbook (Kluwer, Dordrecht 2005)

    Book  Google Scholar 

  4. J.S. Webb, M. Nixon, I.M. Eastwood, M. Greenhalgh, G.D. Robson, P.S. Handley: Fungal colonization and biodeterioration of plasticised PVC, Appl. Environ. Microbiol. 66, 3194–3200 (2000)

    Article  Google Scholar 

  5. D.J. Knight, M. Coole (Eds.): The Biocide Business: Regulation, Safety and Applications (Wiley-VCH, Weinheim 2002)

    Google Scholar 

  6. European Community: January 2006 Version of the Manual of Decisions For Implementation of Directive 98/8/EC Concerning the Placing on the Market of Biocidal Products (2006)

    Google Scholar 

  7. S.D. Worley, Y. Chen: Biocidal polystyrene hydantoin particles, US Patent 6548054 (2001)

    Google Scholar 

  8. D. Grosser: Pflanzliche und tierische Bau- und Werkholz-Schädlinge (DRW, Leinfelden 1985), (in German)

    Google Scholar 

  9. J.G. Wilkinson: The deterioration of wood. In: Industrial Timber Preservation, The Rentokil Library, ed. by J.G. Wilkinson (Associated Business, London 1979) pp. 87–125, Chap. 5

    Google Scholar 

  10. S. Anagnost: Light microscopic diagnosis of wood decay, IAWA Journal 19(2), 141–167 (1998)

    Article  Google Scholar 

  11. J.E. Winandy, J.J. Morrell: Relationship between incipient decay, strength and chemical composition of Douglas Fir heartwood, Wood Fibre Sci. 25(3), 278–288 (1993)

    Google Scholar 

  12. J. Bodig: The process of NDE research for wood and wood composites, e-J. Nondestr. Test. 6(3) (2001), www.ndt.net (last accessed March 2001)

  13. R. Ross, R.F. Pellerin: Nondestructive Testing for Assessing Wood Members in Structures: A Review, Gen. Tech. Rep., FPL-GTR-70 (rev.) (US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison 1994) p. 40

    Google Scholar 

  14. M. Grinda: A Field Study on the Suitability of the European Lap-Joint Test, IRGWP 01-20239 (IRG, Stockholm 2001)

    Google Scholar 

  15. T. Nilsson, M.L. Edlund: Laboratory Versus Field Tests for Evaluating Wood Preservatives: A Scientific View, IRGWP 00-20205 (IRG, Stockholm 2000)

    Google Scholar 

  16. CEN/TR 14723: Durability of Wood and Wood-based Products – Field and Accelerated Conditioning Tests (FACT) for Wood Preservative out of Ground Contact (CEN European Committee for Standardization, Brussels 2003)

    Google Scholar 

  17. L. Machek, H. Militz, R. Sierra-Alvarez: The use of an acoustic technique to detect wood decay in laboratory soil-bed tests, Wood Sci. Technol. 34, 467–472 (2001)

    Article  Google Scholar 

  18. S.C. Jones, H.N. Howell: Wood-destroying insects. In: Handbook of Household and Structural Insect Pests, ed. by R.E. Gold, S.C. Jones (Entomological Soc. America, Lanham 2000) pp. 99–127

    Google Scholar 

  19. R. Schmidt, S. Göller, H. Hertel: Computerized detection feeding sounds from wood boring beetle larvae, Material und Organismen 29, 295–304 (1995)

    Google Scholar 

  20. R.A. Haack, T.M. Poland, T.R. Petrice, C. Smith, D. Treece, G. Allgood: Acoustic detection of Anoplophora glabripennis and native woodborers (Coleoptera: Cerambycidae), Gen. Tech. Rep. NE 285, 74–75 (2001)

    Google Scholar 

  21. S.E. Brooks, F.M. Oi, P.G. Koehler: Ability of canine termite detectors to locate live termites and discriminate them from non-termite material, J. Econ. Entomol. 96, 1259–1266 (2003)

    Article  Google Scholar 

  22. J.-D. Gu: Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances, Int. Biodeterior. Biodegrad. 52, 69–91 (2003)

    Article  Google Scholar 

  23. W.H. Stahl, H. Pessen: Funginertness of interally plasticized polymers, Mod. Plast. 54, 111–112 (1954)

    Google Scholar 

  24. S. Berk, H. Ebert, L. Teitell: Utilization of plasticizers and related organic components by fungi, Ind. Eng. Chem. 49(7), 1115–1123 (1957)

    Article  Google Scholar 

  25. M. Pantke: Test methods for evaluation of susceptibility of plasticised PVC and its components to microbial attacking. In: Biodeterioration Investigation Techniques, ed. by H. Waters (Applied Science, London 1977) pp. 51–76

    Google Scholar 

  26. V.T. Breslin: Degradation of starch-plastic composites in a municipal solid waste landfill, J. Environ. Polym. 1(2), 127–141 (1993)

    Google Scholar 

  27. N.S. Allen, M. Edge, T.S. Jewitt, C.V. Horie: Initiation of the degradation of cellulose triacetate base motion picture film, J. Photogr. Sci. 38(2), 54–59 (1990)

    Google Scholar 

  28. W.G. Glasser, B.K. McCartney, G. Samaranayake: Cellulose derivatives with low degree of substitution: 3. The biodegradability of cellulose esters using a simple enzyme assay, Biotechnol. Prog. 10, 214–219 (1994)

    Article  Google Scholar 

  29. Y. Tokiwa, T. Suzuki: Hydrolysis of polyesters by lipase, Nature 270, 76–78 (1977)

    Article  Google Scholar 

  30. E. Marten, R.-J. Müller, W.-D. Deckwer: Studies on the enzymatic hydrolysis of polyesters: I. Low molecular mass model esters and aliphatic polyesters, Polym. Degrad. Stab. 80(3), 485–501 (2003)

    Article  Google Scholar 

  31. E. Marten, R.-J. Müller, W.-D. Deckwer: Studies on the enzymatic hydrolysis of polyesters: II. Aliphatic-aromatic copolyesters, Polym. Degrad. Stabil. 88(3), 371–381 (2005)

    Article  Google Scholar 

  32. A. Linos, M.M. Berekaa, R. Reichelt, U. Keller, J. Schmitt, H.-C. Flemming, R.M. Kroppenstedt, A. Steinbüchel: Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: Microbial strategies and detailed surface analysis, Appl. Environ. Microbiol. 66(4), 1639–1645 (2000)

    Article  Google Scholar 

  33. U. Pagga: Testing biodegradability with standardized methods, Chemosphere 35(12), 2953–2972 (1997)

    Article  Google Scholar 

  34. K.J. Seal, H.O.W. Eggins: The biodeterioration of materials. In: Essays in Applied Microbiology, ed. by J.R. Norris, M.H. Richmond (Wiley, New York 1981)

    Google Scholar 

  35. M. Pantke: Test methods for evaluation of susceptibility of plasticised PVC and its components to microbial attack. In: Biodeterioration Investigation Techniques, ed. by H. Waters (Applied Science, London 1977) pp. 51–76

    Google Scholar 

  36. M. Itävaara, M. Vikman: An overview of methods for biodegradability testing of biopolymers and packaging materials, J. Environ. Polym. Degrad. 4(1), 29–36 (1996)

    Article  Google Scholar 

  37. M. Pantke, K.J. Seal: An interlaboratory investigation into the biodeterioration testing of plastics, with special reference to polyurethanes; Part 2: Soil burial experiments, Mater. Org. 25(2), 88–98 (1990)

    Google Scholar 

  38. U. Pagga, D.B. Beimborn, J. Boelens, B. DeWilde: Determination of the biodegradability of polymeric material in a laboratory controlled composting test, Chemosphere 31(11/12), 4475–4487 (1995)

    Article  Google Scholar 

  39. M. Tosin, F. Degli Innocenti, C. Bastioli: Effect of the composting substrate on biodegradation of solid materials under controlled composting, J. Cond. Environ. Polym. Degrad. 4(1), 55–63 (1996)

    Article  Google Scholar 

  40. A. Ohtaki, N. Sato, K. Nakasaki: Biodegradation of poly(ε-caprolactone) under controlled composting conditions, Polym. Degrad. Stabil. 61(3), 499–505 (1998)

    Article  Google Scholar 

  41. J. Tuominen, J. Kylmä, A. Kapanen, O. Venelampi, M. Itävaara, J. Seppälä: Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact, Biomacromolecules 3(3), 445–455 (2002)

    Article  Google Scholar 

  42. F. Degli Innocenti, M. Tosin, C. Bastioli: Evaluation of the biodegradation of starch and cellulose under controlled composting conditions, J. Environ. Polym. Degrad. 6(4), 197–202 (1998)

    Article  Google Scholar 

  43. S.M. McCartin, B. Press, D. Eberiel, S.P. McCarthy: Simulated landfill study on the accelerated biodegradability of plastics materials, Am. Chem. Soc. Polym. Prepr. 31(1), 439–440 (1990)

    Google Scholar 

  44. G.P. Smith, B. Press, D. Eberiel, S.P. McCarthy, R.A. Gross, D.L. Kaplan: An accelerated in laboratory test to evaluate the degradation of plastics in landfill environments, Polym. Mater. Sci. Eng. 63, 862–866 (1990)

    Google Scholar 

  45. S.P. McCarthy, M. Gada, G.P. Smith, V. Tolland, B. Press, D. Eberiel, C. Bruell, R.A. Gross: The accelerated biodegradability of plastic materials in simulated compost and landfill environments, Annu. Tech. Conf. Soc. Plast. Eng. 50(1), 816–818 (1992)

    Google Scholar 

  46. P. Püchner, W.R. Müller, D. Bartke: Assessing the biodegradation potential of polymers in screening- and long-term test systems, J. Environ. Polym. Degrad. 3(3), 133–143 (1995)

    Article  Google Scholar 

  47. T. Walter, J. Augusta, R.-J. Müller, H. Widdecke, J. Klein: Enzymatic degradation of a model polyester by lipase, Enzym. Microbiol. Technol. 17, 218–224 (1995)

    Article  Google Scholar 

  48. M. Vikman, M. Itävaara, K. Poutanen: Measurement of the biodegradation of starch based materials by enzymatic methods and composting, J. Environ. Polym. Degrad. 3(1), 23–29 (1995)

    Article  Google Scholar 

  49. Z. Gan, J.F. Fung, X. Jing, C. Wu, W.M. Kulicke: A novel laser light scattering study of enzymatic biodegradation of poly(caprolactone) nanoparticles, Polymer 40(8), 1961–1967 (1999)

    Article  Google Scholar 

  50. K. Welzel, R.-J. Müller, W.-D. Deckwer: Enzymatischer Abbau von Polyester-Nanopartikeln, Chem. Ing. Tech. 74(10), 1496–1500 (2002), (in German)

    Article  Google Scholar 

  51. E. Ikada: Electron microscope observation of biodegradation of polymers, J. Environ. Polym. Degrad. 7(4), 197–201 (1999)

    Article  Google Scholar 

  52. D. Abou-Zeid: Anaerobic biodegradation of natural and synthetic polyesters. Ph.D. Thesis (Technical University Braunschweig, Braunschweig 2001)

    Google Scholar 

  53. Y. Kikkawa, H. Abe, T. Iwata, Y. Inoue, Y. Doi: Crystal morphologies and enzymatic degradation of melt crystallized thin films of random copolyesters of (R) 3-hydroxybutyric acid with (R) 3-hydroxyalkanoic acids, Polym. Degrad. Stabil. 76(3), 467–478 (2002)

    Article  Google Scholar 

  54. B. Erlandsson, S. Karlsson, A.-C. Albertsson: The mode of action of corn starch and a prooxidant system in LDPE: influence of thermooxidation and UV irradation on the molecular weight changes, Polym. Degrad. Stabil. 55, 237–245 (1997)

    Article  Google Scholar 

  55. V.T. Breslin: Degradation of starch plastic composites in a municipal solid waste landfill, J. Environ. Polym. Degrad. 1(2), 127–141 (1993)

    Article  Google Scholar 

  56. H. Tsuji, K. Suzuyoshi: Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater, Polym. Degrad. Stabil. 75(2), 347–355 (2002)

    Article  Google Scholar 

  57. U. Witt, T. Einig, M. Yamamoto, I. Kleeberg, W.-D. Deckwer, R.-J. Müller: Biodegradation of aliphatic-aromatic copolyesters: Evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates, Chemosphere 44(2), 289–299 (2001)

    Article  Google Scholar 

  58. J. Hoffmann, I. Reznicekova, S. Vanökovä, J. Kupec: Manometric determination of biological degradability of substances poorly soluble in aqueous environments, Int. Biodeterior. Biodegrad. 39(4), 327–332 (1997)

    Article  Google Scholar 

  59. U. Pagga, A. Schäfer, R.-J. Müller, M. Pantke: Determination of the aerobic biodegradability of polymeric material in aquatic batch tests, Chemosphere 42(3), 319–331 (2001)

    Article  Google Scholar 

  60. A. Calmon, L. Dusserre Bresson, V. Bellon Maurel, P. Feuilloley, F. Silvestre: An automated test for measuring polymer biodegradation, Chemosphere 41(5), 645–651 (2000)

    Article  Google Scholar 

  61. W.R. Müller: Sauerstoff und Kohlendioxid gleichzeitig messen, LaborPraxis Sept., 94–98 (1999), (in German)

    Google Scholar 

  62. R. Solaro, A. Corti, E. Chiellini: A new respirometric test simulating soil burial conditions for the evaluation of polymer biodegradation, J. Environ. Polym. Degrad. 5(4), 203–208 (1998)

    Article  Google Scholar 

  63. M. Itävaara, M. Vikman: A simple screening test for studying the biodegradability of insoluble polymers, Chemosphere 31(11/12), 4359–4373 (1995)

    Article  Google Scholar 

  64. K. Richterich, H. Berger, J. Steber: The ‘two phase closed bottle test’ a suitable method for the determination of ‘ready biodegradability’ of poorly soluble compounds, Chemosphere 37(2), 319–326 (1998)

    Article  Google Scholar 

  65. G. Bellina, M. Tosin, G. Floridi, F. Degli Innocenti: Activated vermiculite, a solid bed for testing biodegradability under composting conditions, Polym. Degrad. Stabil. 66(1), 65–79 (1999)

    Article  Google Scholar 

  66. G. Bellina, M. Tosin, F. Degli Innocenti: The test method of composting in vermiculite is unaffected by the priming effect, Polym. Degrad. Stabil. 69, 113–120 (2000)

    Article  Google Scholar 

  67. A.M. Buswell, H.F. Müller: Mechanism of methane fermentation, Ind. Eng. Chem. 44(3), 550–552 (1952)

    Article  Google Scholar 

  68. D.-M. Abou-Zeid, R.-J. Müller, W.-D. Deckwer: Degradation of natural and synthetic polyesters under anaerobic conditions, J. Biotechnol. 86(2), 113–126 (2001)

    Article  Google Scholar 

  69. D.-M. Abou-Zeid, R.-J. Müller, W.-D. Deckwer: Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms, Biomacromolecules 5(5), 1687–1697 (2004)

    Article  Google Scholar 

  70. S. Gartiser, M. Wallrabenstein, G. Stiene: Assessment of several test methods for the determination of the anaerobic biodegradability of polymers, J. Environ. Polym. Degrad. 6(3), 159–173 (1998)

    Article  Google Scholar 

  71. A. Reischwitz, E. Stoppok, K. Buchholz: Anaerobic degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), Biodegradation 8, 313–319 (1998)

    Article  Google Scholar 

  72. K. Budwill, P.M. Fedorak, W.J. Page: Anaerobic microbial degradation of poly(3-hydroxyalkanoates) with various terminal electron acceptors, J. Environ. Polym. Degrad. 4(2), 91–102 (1996)

    Article  Google Scholar 

  73. A.-C. Albertsson: Biodegradation of synthetic polymers II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi, J. Appl. Polym. Sci. 22, 3419–3433 (1978)

    Article  Google Scholar 

  74. M. Tuomela, A. Hatakka, S. Raiskila, M. Vikman, M. Itävaara: Biodegradation of radiolabelled synthetic lignin (14C DHP) and mechanical pulp in a compost environment, Appl. Microbiol. Biotechnol. 55(4), 492–499 (2001)

    Article  Google Scholar 

  75. H. Nishida, Y. Tokiwa: Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments, J. Environ. Polym. Degrad. 1(3), 227–233 (1993)

    Article  Google Scholar 

  76. J. Augusta, R.-J. Müller, H. Widdecke: A rapid evaluation plate test for the biodegradability of plastics, Appl. Microbiol. Biotechnol. 39, 673–678 (1993)

    Article  Google Scholar 

  77. Y. Tokiwa, T. Ando, T. Suzuki, T. Takeda: Biodegradation of synthetic polymers containing ester bonds, Polym. Mater. Sci. Eng. 62, 988–992 (1990)

    Google Scholar 

  78. K.E. Jäger, A. Steinbüchel, D. Jendrossek: Substrate specificities of bacterial polyhydroxyalkanoate depolymerase and lipases: Bacterial lipases hydrolyze poly(T-hydroxyalkanoates), Appl. Environ. Microbiol. 61(8), 3113–3118 (1995)

    Google Scholar 

  79. A. Calmon Decriaud, V. Bellon Maurel, F. Silvestre: Standard methods for testing the aerobic biodegradation of polymeric materials. Review and perspectives, Adv. Polym. Sci. 135, 207–226 (1998)

    Article  Google Scholar 

  80. H. Sawada: ISO standard activities in standardization of biodegradability of plastics development of test methods and definitions, Polym. Degrad. Stabil. 59(1-3), 365–370 (1998)

    Article  Google Scholar 

  81. M. Avella, E. Bonadies, E. Martuscelli, R. Rimedio: European current standardization for plastic packaging recoverable through composting and biodegradation, Polym. Test. 20(5), 517–521 (2001)

    Article  Google Scholar 

  82. F. Degli Innocenti, C. Bastioli: Definition of compostability criteria for packaging: Initiatives in Italy, J. Environ. Polym. Degrad. 5(4), 183–189 (1997)

    Google Scholar 

  83. J.D. Gu, S. Coulter, D. Eberiel, S.P. McCarthy, R.A. Gross: A respirometric method to measure mineralization of polymeric materials in a matured compost environment, J. Environ. Polym. Degrad. 1(4), 293–299 (1993)

    Article  Google Scholar 

  84. A. Starnecker, M. Menner: Assessment of biodegradability of plastics under simulated composting conditions in a laboratory test system, Int. Biodeterior. Biodegrad. 37, 85–92 (1996)

    Article  Google Scholar 

  85. M. Van der Zee, J.H. Stoutjesdijk, H. Feil, J. Feijen: Relevance of aquatic biodegradation tests for predicting degradation of polymeric materials during biological solid waste treatment, Chemosphere 36(3), 461–473 (1998)

    Article  Google Scholar 

  86. U. Pagga: Compostable packaging materials test methods and limit values for biodegradation, Appl. Microbiol. Biotechnol. 51(2), 125–133 (1999)

    Article  Google Scholar 

  87. M. Itävaara, M. Vikman, O. Venelampi: Windrow composting of biodegradable packaging materials, Compost Sci. Util. 5(2), 84–92 (1997)

    Article  Google Scholar 

  88. M.H. Dang, F. Birchler, E. Wintermantel: Toxocity screening of biodegradable polymers II. Evaluation of cell culture test with medium extract, J. Environ. Polym. Degrad. 5(1), 49–56 (1997)

    Google Scholar 

  89. F. Degli Innocenti, G. Bellia, M. Tosina, A. Kapanen, M. Itävaara: Detection of toxicity released by biodegradable plastics after composting in activated vermiculite, Polym. Degrad. Stabil. 73(1), 101–106 (2001)

    Article  Google Scholar 

  90. M. Day, K. Shaw, D. Cooney: Biodegradability: an assessment of commercial polymers according to the Canadian method for anaerobic conditions, J. Environ. Polym. Degrad. 2, 121–127 (1994)

    Article  Google Scholar 

  91. N.E. Sharabi, R. von Bartha: Testing of some assumptions about biodegradability in soil as measured by carbon dioxide evolution, Appl. Environ. Microbiol. 59(4), 1201–1205 (1993)

    Google Scholar 

  92. Y. Yakabe, N. Kazuo, T. Hara, Y. Fujin: Factors affecting the biodegradability of biodegradable polyesters in soil, Chemosphere 25(12), 1879–1888 (1992)

    Article  Google Scholar 

  93. A. Calmon, S. Guillaume, V. Bellon Maurel, P. Feuilloley, F. Silvestre: Evaluation of material biodegradability in real conditions. Development of a burial test and an analysis methodology based on numerical vision, J. Environ. Polym. Degrad. 7(3), 157–166 (1999)

    Article  Google Scholar 

  94. K.L.G. Ho, L. Pometto: Temperature effects on soil mineralization of polylactic acid plastic in laboratory respirometers, J. Environ. Polym. Degrad. 7(2), 101–108 (1999)

    Article  Google Scholar 

  95. H. Nishide, K. Toyota, M. Kimura: Effects of soil temperature and anaerobiosis on degradation of biodegradable plastics in soil and their degrading microorganisms, Soil Sci. Nutr. 45(4), 963–972 (1999)

    Article  Google Scholar 

  96. S. Grima, V. Bellon Maurel, P. Feuilloley, F. Silvestre: Aerobic biodegradation of polymers in solid state conditions: A review of environmental and physicochemical parameter settings in laboratory, J. Environ. Polym. Degrad. 8(4), 183–195 (2000)

    Article  Google Scholar 

  97. E. Abrams: Microbiological Deterioration of Organic Material: Its Prevention and Methods of Test, NBS Publ., Vol. 188 (NBS, Washington 1948)

    Google Scholar 

  98. J. La Brijn, H.R. Kauffman: Fungal testing of textiles: A summary of the cooperative experiments carried out by the working group on textiles of the International Biodeterioration Research Group (IBRG). In: Biodeterioration of Materials, Vol. 2, ed. by A.H. Walters, E.H. Heuck Van de Plas (Applied Science, London 1972)

    Google Scholar 

  99. J.S. Webb, M. Nixon, I.M. Eastwood, M. Greenhalgh, G.D. Robson, P.S. Handley: Fungal colonization and biodeterioration of plasticised PVC, Appl. Environ. Microbiol. 66, 3194–3200 (2000)

    Article  Google Scholar 

  100. M. Stranger-Johannessen: The role of microorganisms in the formation of pitch deposits in pulp and paper mills, Biotechnol. Adv. 2(2), 319–327 (1984)

    Article  Google Scholar 

  101. H.R. Arai: Microbiological studies on the conservation of paper and related cultural properties (Part 1): Isolation of fungi from the foxing on paper, Sci. Conserv. 23, 33–39 (1984)

    Google Scholar 

  102. W. K. Wilson: Environmental guidelines for the storage of paper records, NISO-TR01-1995 (1995)

    Google Scholar 

  103. W. Paulus: Directory of Microbicides for the Protection of Materials: A Handbook (Kluwer, Dordrecht 2005)

    Book  Google Scholar 

  104. European Community: Doc-Biocides-2002/04-Rev3 Guidance document agreed between the Commission services and the competent authorities of the Member States for the Biocidal Products Directive 98/8/EC – Guidance Notes on Treated Articles (2004)

    Google Scholar 

  105. W. Hewitt, S. Vincent: Theory and Practice of Microbiological Assay (Academic, New York 1989)

    Google Scholar 

  106. P. Raschle: Personal communication (2004)

    Google Scholar 

  107. Svensk Standard SS 876 00 19 Sjukvårdstextil – Bakteriepenetration – Våt (Bacterial Penetration Test) (1994)

    Google Scholar 

  108. EDANA Test Method 190.1-02 Dry Bacterial Penetration (2002)

    Google Scholar 

  109. EDANA Test Method 200.1-02 Wet Bacterial Penetration (2002)

    Google Scholar 

  110. W.E. Krumbein, B.D. Dyer: This planet is alive. Weathering and biology, a multi-facetted problem. In: The Chemistry of Weathering, ed. by J.M. Drever (Reidel, Dordrecht 1985) pp. 143–160

    Chapter  Google Scholar 

  111. C. Gehrmann, W.E. Krumbein, K. Petersen: Lichen weathering activities on mineral and rock surfaces, Stud. Geobot. 8, 33–45 (1988)

    Google Scholar 

  112. C. Gehrmann, K. Petersen, W.E. Krumbein: Silicole and calcicole lichens on jewish tombstones – interaction with the environment and biocorrosion, VI. Int. Congr. Deterior. Conserv. Stone (Nicholas Kopernikus Univ., Torun 1988) pp. 33–38

    Google Scholar 

  113. A. Villa: Desherbement des surfaces recouvertes de mosaiques a ciel ouvert, Atti I Congresso sulla Conservazione dei Mosaici (ICROM, Roma 1977) pp. 45–49, (in French)

    Google Scholar 

  114. H.L. Ehrlich: Geomicrobiology (Dekker, New York 1990)

    Google Scholar 

  115. F.E.W. Eckhardt: Solubilization, transport and deposition of mineral cations bymicroorganisms. Efficient rock weathering agents. In: Chemistry of Weathering, ed. by J.I. Drever (Reidel, New York 1985) pp. 161–173

    Chapter  Google Scholar 

  116. W.E. Krumbein, K. Jens: Biogenic rock varnishes of the Negev Desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi, Oecologia 50, 25–38 (1981)

    Article  Google Scholar 

  117. C. Jaton, G. Orial: Processus microbiologiques des altérations des briques, Atti Convegno “Il mattone di” (Fondazione Cini, Venezia 1979) pp. 163–170, (in French)

    Google Scholar 

  118. A. Koestler, E. Charola, M. Wypyski: Microbiologically induced deterioration of dolomitic and calcitic stone as viewed by scanning electron microscopy, Proc. Vth Int. Congr. Deterior. Conserv. Stone (Presses Polytechniques Romandes, Lausanne 1985) pp. 617–626

    Google Scholar 

  119. W.E. Krumbein: Role des microrganismes dans la genese, la diagenese et la degradation des roches en place, Rev. Ecol. Biol. Sol 9, 283–319 (1972), (in French)

    Google Scholar 

  120. W.E. Krumbein, J. Pochon: Ecologie bacterienne des pierres alterres des monuments, Ann. Inst. Pasteur 107, 724–732 (1964), (in French)

    Google Scholar 

  121. M. Thiebaud, J. Lajudie: Associations bacteriennes et alterations biologiques des monuments en pierre calcaire, Ann. Inst. Pasteur 105, 353–358 (1963), (in French)

    Google Scholar 

  122. H. Kaltwasser: Destruction of concrete by nitrification, J. Appl. Microbiol. 3, 185–192 (1976)

    Google Scholar 

  123. J. Kauffmann: Roles des bacteries nitrificantes dans lʼalteration des pierres calcaires des monuments, C. R. Acad. Sci. 34, 2995 (1952), (in French)

    Google Scholar 

  124. J. Kauffmann: Corrosion et protection des pierres calcaires des monuments, Corros. Anticorros. 8, 87–95 (1960), (in French)

    Google Scholar 

  125. E. Bock, W. Sand, M. Meincke, B. Wolters, B. Ahlers, C. Meyer, F. Sameluck: Biologically induced corrosion of natural stones. Strong contamination of monuments with nitrifying organisms. In: Biodeterioration, ed. by D.R. Hughton, R.N. Smith, H.O.W. Eggings (Elsevier, London 1987) pp. 436–440

    Google Scholar 

  126. W.E. Krumbein: Patina and cultural heritage – a geomicrobiologistʼs perspective. In: Cultural Heritage Research: A Pan European Challenge. European Communities, ed. by R. Kozlowski (Academy of Science, Krakow 2003) p. 415

    Google Scholar 

  127. S.G. Paine, F.V. Lingood, F. Schimmer, T.C. Thrupp: The relationship of micro-organisms to the decay of stone, Philos. Trans. R. Soc. B 222, 97–127 (1933)

    Article  Google Scholar 

  128. W.E. Krumbein: Zur Frage der Gesteinsverwitterung. Über geochemische und mikrobiologische Bereiche der exogenen Dynamik. Ph.D. Thesis (Univ. Würzburg, Würzburg 1966) p. 149, (in German)

    Google Scholar 

  129. F.E.W. Eckhardt: Microbial degradation of silicates – Release of cations from aluminosilicate minerals by yeasts and filamentous fungi. In: Biodeterioration, ed. by T.A. Oxley, G. Becker, D. Allsopp (Pitman, The Biodeterioration Society, London 1978) pp. 107–116

    Google Scholar 

  130. W.E. Krumbein: Zur Frage der biologischen Verwitterung: Einfluß der Mikroflora auf die Bausteinverwitterung und ihre Abhängigkeit von edaphischen Faktoren, Z. Allg. Mikrobiol. 8, 107–117 (1968), (in German)

    Article  Google Scholar 

  131. W.E. Krumbein: Über den Einfluß von Mikroorganismen auf die Bausteinverwitterung – eine ökologische Studie, Dtsch. Kunst Denkmalpfl. 31, 54–71 (1973), (in German)

    Google Scholar 

  132. D.M. Webley, M.E.K. Henderson, I.F. Taylor: The microbiology of rocks and weathered stones, J. Soil Sci. 14, 102–112 (1963)

    Article  Google Scholar 

  133. W. E. Krumbein: Private communication (2004)

    Google Scholar 

  134. T. Warscheid: Untersuchungen zur Biodeterioration von Sandsteinen unter besonderer Berücksichtigung der chemoorganotrophen Bakterien. Ph.D. Thesis (Univ. Oldenburg, Oldenburg 1990) p. 147, (in German)

    Google Scholar 

  135. A. Vuorinen, S. Mantere-Almonen, R. Uusinoka, P. Alhonen: Bacterial weathering of Rapabiu granite, Geomicrobiol. J. 2, 317–325 (1981)

    Article  Google Scholar 

  136. F. Lewis, E. May, B. Daley, A.F. Bravery: The role of heterotrophic bacteria in the decay of sandstone from ancient monuments, Biodeterior. Constr. Mater. Proc. Summer Meet. Biodeterior. Soc. (Biodeterioration Society, Delft 1987) pp. 45–53

    Google Scholar 

  137. A.A. Gorbushina, W.E. Krumbein, M. Volkmann: Rock surfaces as life indicators: New ways to demonstrate lifes and traces of former life, Astrobiology 2, 203–213 (2002)

    Article  Google Scholar 

  138. S.T. Williams: Streptomycetes in biodeterioration. Their relevance, detection and identification, Int. Biodeterior. 21, 201–209 (1985)

    Google Scholar 

  139. B. Chamier: Über den Einfluß von Actinomyceten auf die Materialzerstörung. M.Sc. Thesis (Univ. Oldenburg, Oldenburg 1991) p. 113, (in German)

    Google Scholar 

  140. J.M.B. Coppock, E.D. Cookson: The effect of humidity on mould growth constructional materials, J. Sci. Food Agric. 2, 534–537 (1952)

    Article  Google Scholar 

  141. M.E.K. Henderson, R.B. Duff: The release of metallic and silicate ions from minerals, rocks and solis by fungal activity, J. Soil Sci. 14, 236–246 (1963)

    Article  Google Scholar 

  142. H.-C. Flemming: Biofilme und ihre Bedeutung für die mikrobielle Materialzerstörung. In: Mikrobielle Materialzerstörung, ed. by H. Brill (Fischer, Stuttgart 1995) pp. 24–47, (in German)

    Google Scholar 

  143. H.-C. Flemming: Auswirkungen mikrobieller Materialzerstörung. In: Mikrobielle Materialzerstörung, ed. by H. Brill (Fischer, Stuttgart 1995) pp. 15–23

    Google Scholar 

  144. H.-C. Flemming: Mikrobielle Korrosion von Beton. In: Zementgebundene Beschichtungen in Trinkwasserbehältern, ed. by H. Wittmann, A. Gerdes (Aedificatio, Freiburg 1996) pp. 53–65, (in German)

    Google Scholar 

  145. W.E. Krumbein: Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung), Geol. Rundsch. 58, 333–363 (1969), (in German)

    Article  Google Scholar 

  146. G. Grote: Mikrobieller Mangan- und Eisentransfer an Rock Varnish und Petroglyphen arider Gebiete. Ph.D. Thesis (Univ. Oldenburg, Oldenburg 1991) p. 335, (in German)

    Google Scholar 

  147. W.E. Krumbein: Mikrobiologische Prozesse und Baumaterialveränderung, 2. Int. Kolloqu. Werkstoffwiss. Bausanier., ed. by F.H. Wittmann (Technische Akademie, Esslingen 1986) pp. 45–62, (in German)

    Google Scholar 

  148. A. Gorbushina, W.E. Krumbein, L. Panina, S. Soukharjevsk, U. Wollenzien: On the role of black fungi in color change and biodeterioration of antique marbles, Geomicrobiol. J. 11, 205–221 (1993)

    Article  Google Scholar 

  149. W.E. Krumbein, J. Pochon, M.A. Chalvignac: Recherches biologiques sur le Mondmilch, C. R. Acad. Sci. 258, 5113–5114 (1964), (in French)

    Google Scholar 

  150. D. Jones, M.J. Wilson: Chemical activities of lichens on mineral surfaces – A review, Int. Biodeterior. Bull. 21, 99–104 (1985)

    Google Scholar 

  151. A. Danin, R. Gerson, J. Garty: Weathering patterns on hard limestone and dolomite by endolithic lichens and cyanobacteria: supporting evidence for eolian contribution to Terra Rossa Soil, Soil Sci. 136, 213–217 (1983)

    Article  Google Scholar 

  152. D. Allsopp, K.S. Seal: Introduction to Biodeterioration (Arnold, London 1986)

    Google Scholar 

  153. T.E. Ford, J.S. Maki, R. Mitchell: Involvement of bacterial exopolymers in biodeterioration of metals. In: Biodeterioration, Vol. 7, ed. by D.R. Hughton, R.N. Smith, H.O.W. Eggings (Elsevier, London 1987) pp. 378–384

    Google Scholar 

  154. J.W. Costerton, G.G. Geesey, P.A. Jones: Bacterial biofilms in relation to internal corrosion monitoring and biocide strategies, Mater. Perform. 12, 49–53 (1988)

    Google Scholar 

  155. W. Kerner-Gang: Zur Frage der Entstehung von Schimmelpilzspuren auf optischen Gläsern, Mater. Org. 3, 1–17 (1968), (in German)

    Google Scholar 

  156. W. Kerner-Gang: Evaluation techniques for resistance of optical lenses to fungal attack. In: Biodeterioration Investigation Techniques, ed. by A.H. Walters (Appl. Sci., London 1977) pp. 105–114

    Google Scholar 

  157. R. Newton, S. Davison: Conservation of Glass (Butterworth, London 1989)

    Google Scholar 

  158. E. Mellor: Les lichen vitricole et la deterioration des vitraux dʼeglise. Ph.D. Thesis (Paris 1922), (in French)

    Google Scholar 

  159. E. Mellor: Lichens and their action on the glass and leadings of church windows, Nature (London) 112, 299–300 (1923)

    Article  Google Scholar 

  160. N.H. Tennent: Fungal growth on medieval glass, J. Br. Soc. Master Glass Paint. 17, 64–68 (1981)

    Google Scholar 

  161. G. Callot, M. Maurette, L. Pottier, A. Dubois: Biogenic etching of microfractures in amorphous and crystalline silicates, Nature (London) 328, 147–149 (1987)

    Article  Google Scholar 

  162. R.J. Koestler, D.R. Houghton, B. Flannigan, H.W. Rossmore: International Biodeterioration Special Issue: Biodeterioration of Cultural Property (Elsevier, Barking 1991), 340 pp. including a bibliography by R. J. Koestler and J. Vedral

    Google Scholar 

  163. C. Saiz-Jimenez (Ed.): Molecular Biology and Cultural Heritage (Swets Zeitlinger, Lisse 2003), 278 pp.

    Google Scholar 

  164. N. Valentin, M. Lidstrom, F. Preusser: Microbial control by low oxygen and low relative humidity environment, Stud. Conserv. 35, 222–230 (1990)

    Article  Google Scholar 

  165. J. Pochon, P. Tardieux: Techniques dʼanalyse de microbiologie du Sol (Ed. La Tourelle, St. Mandé 1962) p. 104, (in French)

    Google Scholar 

  166. J.M. Van Der Molen, J. Garty, B.W. Aardema, W.E. Krumbein: Growth control of algae and Cyanobacteria on historical monuments by a mobile UV unit (MUVU), Stud. Conserv. 25, 71–77 (1980)

    Article  Google Scholar 

  167. G. Caneva, O. Salvadori: Biodeterioration of stone. In: The Deterioration and Conservation of Stone, ed. by L. Lazzarini, R. Pieper (Unesco, Paris 1989) pp. 182–243

    Google Scholar 

  168. A. Downey: The use of biocides in paint preservation. In: Handbook of Biocide and Preservative Use, ed. by W. Paulus (Blackie, London 1995)

    Google Scholar 

  169. W. Paulus: Directory of Microbicides for the Protection of Materials. A Handbook (Kluwer, Dordrecht 2005)

    Book  Google Scholar 

  170. B. Flanningan, E.M. McCabe, F. McGarry: Allergenic and toxigenic micro-organisms in houses. In: Pathogens in the Environment, ed. by B. Austin (Blackwell, Oxford 1991)

    Google Scholar 

  171. G.T. Hill, N.A. Mitkowski, L. Aldrich-Wolfe, L.R. Emele, D.D. Jurkonie, A. Ficke, S. Maldonado-Ramirez, S.T. Lynch, E.B. Nelson: Methods for assessing the composition and deversity of soil microbial communities, Appl. Soil Ecol. 15, 25–36 (2000)

    Article  Google Scholar 

  172. M. Viaud, A. Pasquier, Y. Brygoo: Diversity of soil fungi studied by PCR-RFLP of ITS, Mycol. Res. 104, 1027–1032 (2000)

    Article  Google Scholar 

  173. J.W. Lengeler, G. Drews, H.G. Schlegel (Eds.): Biology of the Prokaryotes (Thieme, Stuttgart 1999) pp. 695–700

    Google Scholar 

  174. O. Schmidt, U. Moreth: Identification of the dry rot fungus, Serpula lacrymans, and the wild Merulius, S. himantioides, by amplified ribosomal DNA restriction analysis (ARDRA), Holzforschung 53, 123–128 (1999)

    Article  Google Scholar 

  175. J. Jellison, C. Jasalavich: A review of selected methods for the detection of degradative fungi, Int. Biodeterior. Biodegrad. 46, 241–244 (2000)

    Article  Google Scholar 

  176. K. Winkowski: Efficacy of in can preservatives, Eur. Coat. J. 1-2, 87–90 (2001)

    Google Scholar 

  177. B. Schmidt, J. Lunnenberg, P.D. Askew: Documents of the Project Sub-Group on Preservation of Tinter Pastes (International Biodeterioration Research Group 2005)

    Google Scholar 

  178. P.D. Askew: Antibacterial coatings: Fact or fiction?, Proc. Coat. Compliance Community Care, PRA Int. Symp. 18, Brussels (2001)

    Google Scholar 

  179. P.D. Askew: Relating Performance to Claims for Antimicrobial Coatings, Additives in Coatings – Innovation in Formulation, Frankfurt, Germany / Surface Coatings International (2008)

    Google Scholar 

  180. P.D. Askew: Hygienic coatings – Defining the terms and supporting the claims, Proc. Third Glob. Conf. Hyg. Coat. Surf., Paris (2005)

    Google Scholar 

  181. European Community: Doc-Biocides-2002/04-Rev3 Guidance document agreed between the Commission services and the competent authorities of the Member States for the Biocidal Products Directive 98/8/EC – Guidance Notes on Treated Articles (2004)

    Google Scholar 

  182. W. Hewitt, S. Vincent: Theory and Practice of Microbiological Assay (Academic, New York 1989)

    Google Scholar 

  183. JIS: Antimicrobial products – Test for antimicrobial activity and efficacy, Jpn. Ind. Standard JIS Z 2801: 2000 (E) (2000)

    Google Scholar 

  184. S. McEldowney, M. Fletcher: The effect of temperature and relative humidity on the survival of bacteria attached to dry solid surfaces, Lett. Appl. Microbiol. 7, 83–86 (1988)

    Article  Google Scholar 

  185. A. Jawad, H. Seifert, A.M. Snelling, J. Heritage, P.M. Hawkey: Survival of Acinetobacter baumannii on dry surfaces: Comparison of outbreak and sporadic isolates, J. Clin. Microbiol. 36, 1938–1941 (1998)

    Google Scholar 

  186. L. Boulangé-Petermann, E. Robine, S. Ritoux, B. Cromières: Hygienic assessment of polymeric coatings by physico-chemical and microbiological approaches, J. Adhes. Sci. Tech. 18(2), 213–225 (2004)

    Article  Google Scholar 

  187. S.K. Haack, H. Garchow, D.A. Odelson, L.J. Forney, M.J. Klug: Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities, Appl. Environ. Microbiol. 60, 2483–2493 (1994)

    Google Scholar 

  188. A. Konopka, L. Oliver, R.F. Turco Jr.: The use of carbon substrate utilization patterns in environmental and ecological microbiology, Microbiol. Ecol. 3(5), 103–115 (1998)

    Article  Google Scholar 

  189. T.J. White, T. Bruns, S. Lee, J. Taylor: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols, ed. by M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White (Academic, San Diego 1990) pp. 315–322

    Google Scholar 

  190. M. Gardes, T.D. Bruns: ITS primers with enhanced specificity for basidiomycetes – Application to the identification of mycorrhizae and rusts, Mol. Ecol. 2, 113–118 (1993)

    Article  Google Scholar 

  191. K. Göller, D. Rudolph: The need for unequivocally defined reference fungi – Genomic variation in two strains named as Coniophora puteana BAM Ebw. 15, Holzforschung 57, 456–458 (2003)

    Article  Google Scholar 

  192. B.D. Hames, S.J. Higgings (Eds.): Gene Probes 1. A Practical Approach (Oxford Univ. Press, Oxford 1995)

    Google Scholar 

  193. R. Amann, W. Ludwig: Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology, FEMS Microbiol. Rev. 24, 555–565 (2000)

    Article  Google Scholar 

  194. M.T. Suzuki, S.J. Giovanni: Bias caused by template annealing in the amplification mixtures of 16S rRNA genes by PCR, Appl. Environ. Microbiol. 62, 625–630 (1996)

    Google Scholar 

  195. F. van Winzingerode, U.B. Gobel, E. Stackebrandt: Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis, FEMS Microbiol. Rev. 21, 213–229 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ina Stephan Dr. , Peter D. Askew , Anna A. Gorbushina , Manfred Grinda Dipl. , Horst Hertel Ph.D. , Wolfgang E. Krumbein Prof. , Rolf-Joachim Müller Dr. , Michael Pantke Dipl. , Rüdiger (Rudy) Plarre , Guenter Schmitt Prof. or Karin Schwibbert Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this chapter

Cite this chapter

Stephan, I. et al. (2011). Biogenic Impact on Materials. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Metrology and Testing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16641-9_14

Download citation

Publish with us

Policies and ethics