Skip to main content
Log in

Anaerobic microbial degradation of poly (3-hydroxyalkanoates) with various terminal electron acceptors

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

The microbial degradation of poly (3-hydroxyalkanoates) (PHAs) under anaerobic conditions with various terminal electron acceptors was examined. Nitrate-reducing consortia were established using activated sludge, and PHAs were shown to be biodegradable under these conditions. A positive correlation between carbon dioxide production and nitrate reduction was demonstrated. Nitrous oxide accumulated as the main N-containing product of nitrate reduction. The amount of PHAs in activated sludge cultures decreased approximately 20% within 40 days of incubation. Attempts were made to establish iron- and sulfate-reducing consortia from spring water, yet it could not be demonstrated that the mixed cultures were capable of degrading PHAs. Pure cultures of iron- and sulfate-reducing bacteria could not utilize PHAs as sole carbon sources. Methanogenic environments sampled included pond sediment and rumen fluid. PHAs were fermented to methane and carbon dioxide after 10 weeks by a sediment consortium, with 43 to 57% of the substrate carbon transformed to methane. Although it could not be demonstrated that PHAs were biodegraded by a rumen fluid consortium, a facultative anaerobic bacterium, identified as aStaphylococcus sp., that could grow on PHAs was isolated from rumen fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Steinbüchel (1991) in D. Byrom (Ed.),Biomaterials: Novel Materials from Biological Sources, Stockton Press, Macmillan, and ICI Biological Products, pp. 125–213.

    Google Scholar 

  2. H. Brandl, R. A. Gross, R. W. Lenz, and R. C. Fuller (1990)Adv. Biochem. Eng. Biotechnol. 41, 77–93.

    PubMed  Google Scholar 

  3. A. J. Anderson and E. A. Dawes (1990)Microbiol. Rev. 54, 450–472.

    PubMed  Google Scholar 

  4. J. K. Rogers (1992)Modern Plast. 69, 17.

    Google Scholar 

  5. F. P. Delafield, M. Doudoroff, N. J. Palleroni, C. J. Lusty, and R. Contopoulos (1965)J. Bacteriol. 90, 1455–1466.

    PubMed  Google Scholar 

  6. K. Mukai, K. Yamada, and Y. Doi (1992)Int. J. Biol. Macromol. 14, 235–239.

    PubMed  Google Scholar 

  7. K. Yamada, K. Mukai, and Y. Doi (1993)Int. J. Biol. Macromol. 15, 215–220.

    PubMed  Google Scholar 

  8. A. Schirmer, D. Jendrossek, and H. G. Schlegel (1993)Appl. Environ. Microbiol. 59, 1220–1227.

    PubMed  Google Scholar 

  9. T. Tanio, T. Fukui, Y. Shirakura, T. Saito, K. Tomita, T. Kaho, and S. Masamune (1982)Eur. J. Biochem. 124, 71–77.

    PubMed  Google Scholar 

  10. Y. Shirakura, T. Fukui, T. Saito, Y. Okamoto, T. Narikawa, K. Koide, K. Tomita, T. Takemasa, and S. Masamune (1986)Biochim. Biophys. Acta 880, 46–53.

    PubMed  Google Scholar 

  11. T. Fukui, T. Narikawa, K. Miwa, Y. Shirakura, T. Saito, and K. Tomita (1988)Biochim. Biophys. Acta 952, 164–171.

    PubMed  Google Scholar 

  12. T. Saito, K. Suzuki, J. Yamamoto, T. Fukui, K. Miwa, K. Tomita, S. Nakanishi, S. Odani, J. I. Suzuki, and K. Ishikawa (1989)J. Bacteriol. 171, 184–189.

    PubMed  Google Scholar 

  13. T. Saito, A. Iwata, and T. Watanabe (1993)J. Environ. Polym. Degrad. 1, 99–105.

    Google Scholar 

  14. J. Zhang, T. Saito, A. Ichikawa, and T. Fukui (1992)Chem. Pharm. Bull. 40, 713–717.

    Google Scholar 

  15. D. Jendrossek, I. Knoke, R. B. Habibian, A. Steinbüchel, and H. G. Schlegel (1993)J. Environ. Polym. Degrad. 1, 53–63.

    Google Scholar 

  16. K. Mukai, K. Yamada, and Y. Doi (1993)Polym. Degrad. Stabil. 41, 85–91.

    Google Scholar 

  17. K. Mukai, K. Yamada, and Y. Doi (1993)Int. J. Biol. Macromol. 15, 361–366.

    PubMed  Google Scholar 

  18. Y. Doi, Y. Kanesawa, and M. Kunioka (1990)Macromolecules 23, 26–31.

    Google Scholar 

  19. Y. Kumagai, Y. Kanesawa, and Y. Doi (1992)Makromol. Chem. 193, 53–57.

    Google Scholar 

  20. H. Nishida and Y. Tokiwa (1993)J. Environ. Polym. Degrad. 1, 65–80.

    Google Scholar 

  21. J. Mergaert, A. Webb, C. Anderson, A. Wouters, and J. Swings (1993)Appl. Environ. Microbiol. 59, 3233–3238.

    PubMed  Google Scholar 

  22. L. Lopez-Llorca, M. F. Colom Valiente, and A. Gascon (1993)Micron 24, 23–29.

    Google Scholar 

  23. B. H. Briese, D. Jendrossek, and H. G. Schlegel (1994)FEMS Microbiol. Lett. 117, 107–112.

    PubMed  Google Scholar 

  24. D. F. Gilmore, S. Antoun, R. W. Lenz, and R. C. Fuller (1993)J. Environ. Polym. Degrad. 1, 269–274.

    Google Scholar 

  25. D. F. Gilmore, S. Antoun, R. W. Lenz, S. Goodwin, R. Austin, and R. C. Fuller (1992)J. Indust. Microbiol. 10, 199–206.

    Google Scholar 

  26. M. Matavulj and H. P. Molitoris (1992)FEMS Microbiol. Rev. 103, 323–332.

    Google Scholar 

  27. J. Mergaert, C. Anderson, A. Wouters, J. Swings, and K. Kersters (1992)FEMS Microbiol. Rev. 103, 317–322.

    Google Scholar 

  28. Y. Doi, Y. Kanesawa, N. Tanahashi, and Y. Kumagai (1992)Polym. Degrad. Stabil. 36, 173–177.

    Google Scholar 

  29. L. Lopez-Llorca, M. F. Colom Valiente, and M. J. Carcases (1994)Micron 25, 45–51.

    Google Scholar 

  30. H. Brandl and P. Püchner (1990) in E. A. Dawes (Ed.),Novel Biodegradable Microbial Polymers, Kluwer Academic, Dordrecht, The Netherlands, pp. 421–422.

    Google Scholar 

  31. M. Matavulj, S. T. Moss, and H. P. Molitoris (1993) in H. G. Schlegel and A. Steinbüchel (Eds.),Proceedings of the International Symposium on Bacterial Polyhydroxyalkanoates, Goltze-Druck, Göttingen, Germany, pp. 465–466.

    Google Scholar 

  32. P. H. Janssen and C. G. Harfoot (1990)Arch. Microbiol. 154, 253–259.

    Google Scholar 

  33. J. Urmeneta, J. Mas-Castellá, and R. Guerrero (1995)Appl. Environ. Microbiol. 61, 2046–2048.

    Google Scholar 

  34. A. C. Palmisano, D. A. Maruscik, and S. S. Schwab (1993)J. Gen. Microbiol. 139, 387–391.

    Google Scholar 

  35. K. Budwill, P. M. Fedorak, and W. J. Page (1992)Appl. Environ. Microbiol. 58, 1398–1401.

    Google Scholar 

  36. W. J. Page and O. Knosp (1989)Appl. Microbiol. Biotechnol. 55, 1334–1339.

    Google Scholar 

  37. W. J. Page, J. Manchak, and B. Rudy (1992)Appl. Environ. Microbiol. 58, 2866–2873.

    PubMed  Google Scholar 

  38. J. H. Law and R. A. Slepecky (1961)J. Bacteriol. 82, 33–36.

    PubMed  Google Scholar 

  39. I. D. Bossert, M. D. Rivera, and L. Y. Young (1986)FEMS Microbiol. Ecol. 38, 313–319.

    Google Scholar 

  40. P. M. Fedorak and D. Grbić-Galić (1991)Appl. Environ. Microbiol. 57, 932–940.

    Google Scholar 

  41. M. D. Collins and F. Widdel (1986)Syst. Appl. Microbiol. 8, 8–18.

    Google Scholar 

  42. J. R. Postgate (1979)The Sulphate-Reducing Bacteria, Cambridge University Press, Cambridge.

    Google Scholar 

  43. D. R. Lovley, E. J. P. Phillips, and D. J. Lonergan (1989)Appl. Environ. Microbiol. 55, 700–706.

    Google Scholar 

  44. D. R. Lovley and E. J. P. Phillips (1988)Appl. Environ. Microbiol. 54, 1472–1480.

    Google Scholar 

  45. D. R. Lovley and E. J. P. Phillips (1986)Appl. Environ. Microbiol. 51, 683–689.

    Google Scholar 

  46. E. E. Roden and D. R. Lovley (1993)Appl. Environ. Microbiol. 59, 734–742.

    Google Scholar 

  47. C. O. Obuekwe, D. W. S. Westlake, and F. D. Cook (1981)Can. J. Microbiol. 27, 692–697.

    PubMed  Google Scholar 

  48. P. M. Fedorak and S. E. Hrudey (1984)Water Res. 18, 361–367.

    Google Scholar 

  49. P. M. Fedorak and S. E. Hrudey (1983)Environ. Technol. Lett. 4, 425–432.

    Google Scholar 

  50. B. A. Ramsay, J. A. Ramsay, and D. G. Cooper (1989)Appl. Environ. Microbiol. 55, 584–589.

    Google Scholar 

  51. C. W. Dunnett (1955)Am. Stat. Assoc. J. 50, 1096–1121.

    Google Scholar 

  52. R. G. D. Steel and J. H. Torrie (1980)Principles and Procedures of Statistics. A Biometric Approach, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  53. J. M. Tiedje (1988) in A. J. B. Zehnder (Ed.),Biology of Anaerobic Microorganisms, John Wiley & Sons, New York, pp. 179–244.

    Google Scholar 

  54. T. J. Dichristina and E. F. Delong (1994)J. Bacteriol. 176, 1468–1474.

    PubMed  Google Scholar 

  55. D. R. Lovley, S. J. Giovannoni, D. C. White, J. E. Champine, E. J. P. Phillips, Y. A. Gorby, and S. Goodwin (1993)Arch. Microbiol. 159, 336–344.

    PubMed  Google Scholar 

  56. E. A. Dawes and P. J. Senior (1973)Adv. Microb. Physiol. 10, 135–266.

    PubMed  Google Scholar 

  57. F. Widdel (1988) in A. J. B. Zehnder (Ed.),Biology of Anaerobic Microorganisms, Wiley, New York, pp. 469–586.

    Google Scholar 

  58. P. M. Fedorak, K. M. Semple, and D. W. S. Westlake (1987)J. Microbiol. Methods 7, 19–27.

    Google Scholar 

  59. T. J. Galvin (1990) in S. A. Barenberg, J. L. Brash, R. Narayan, and A. E. Redpath (Eds.),Degradable Materials: Perspectives, Issues and Opportunities, CRC Press, Boca Raton, FL, pp. 39–43.

    Google Scholar 

  60. A. M. Buswell and H. F. Mueller (1952)Ind. Eng. Chem. 44, 550–552.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budwill, K., Fedorak, P.M. & Page, W.J. Anaerobic microbial degradation of poly (3-hydroxyalkanoates) with various terminal electron acceptors. J Environ Polym Degr 4, 91–102 (1996). https://doi.org/10.1007/BF02074870

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02074870

Key words

Navigation