Skip to main content

Scalable Quantum Consensus for Crash Failures

  • Conference paper
Distributed Computing (DISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6343))

Included in the following conference series:

Abstract

We present a scalable quantum algorithm to solve binary consensus in a system of n crash-prone quantum processes. The algorithm works in \({\mathcal O}(\text{polylog }n)\) time sending \({\mathcal O}(n \text{ polylog } n)\) qubits against the adaptive adversary. The time performance of this algorithm is asymptotically better than a lower bound \(\Omega(\sqrt{n/\log n})\) on time of classical randomized algorithms against adaptive adversaries. Known classical randomized algorithms having each process send \({\mathcal O}(\text{polylog } n)\) messages work only for oblivious adversaries. Our quantum algorithm has a better time performance than deterministic solutions, which have to work in Ω(t) time for t < n failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. SIAM Journal on Computing 38(4), 1207–1282 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bar-Joseph, Z., Ben-Or, M.: A tight lower bound for randomized synchronous consensus. In: Proceedings of the 17th ACM Symposium on Principles of Distributed Computing (PODC), pp. 193–199 (1998)

    Google Scholar 

  3. Ben-Or, M., Hassidim, A.: Fast quantum Byzantine agreement. In: Proceedings of the 37th ACM Symposium on Theory of Computing (STOC), pp. 481–485 (2005)

    Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters 69(20), 2881–2884 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Broadbent, A., Tapp, A.: Can quantum mechanics help distributed computing? SIGACT News 39(3), 67–76 (2008)

    Article  Google Scholar 

  6. Buhrman, H., Röhrig, H.: Distributed quantum computing. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 1–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Chlebus, B.S., Kowalski, D.R.: Time and communication efficient consensus for crash failures. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 314–328. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Chlebus, B.S., Kowalski, D.R.: Locally scalable randomized consensus for synchronous crash failures. In: Proceedings of the 21st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 290–299 (2009)

    Google Scholar 

  9. Chlebus, B.S., Kowalski, D.R., Strojnowski, M.: Fast scalable deterministic consensus for crash failures. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing (PODC), pp. 111–120 (2009)

    Google Scholar 

  10. Chor, B., Merritt, M., Shmoys, D.B.: Simple constant-time consensus protocols in realistic failure models. Journal of the ACM 36(3), 591–614 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Physical Review A 56(2), 1201–1204 (1997)

    Article  Google Scholar 

  12. Cleve, R., van Dam, W., Nielsen, M., Tapp, A.: Quantum entanglement and the communication complexity of the inner product function. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 61–74. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. de Wolf, R.: Quantum communication and complexity. Theoretical Computer Science 287(1), 337–353 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Denchev, V.S., Pandurangan, G.: Distributed quantum computing: a new frontier in distributed systems or science fiction? SIGACT News 39(3), 77–95 (2008)

    Article  Google Scholar 

  15. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement. Journal of the ACM 32(1), 191–204 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gavoille, C., Kosowski, A., Markiewicz, M.: What can be observed locally? Round-based models for quantum distributed computing. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 243–257. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Gilbert, S., Kowalski, D.R.: Distributed agreement with optimal communication complexity. In: Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 965–977 (2010)

    Google Scholar 

  18. Hadzilacos, V., Halpern, J.Y.: Message-optimal protocols for Byzantine agreement. Mathematical Systems Theory 26(1), 41–102 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Problems of Information Transmission 9(3), 177–183 (1973)

    Google Scholar 

  20. Holtby, D., Kapron, B.M., King, V.: Lower bound for scalable Byzantine agreement. Distributed Computing 21(4), 239–248 (2008)

    Article  Google Scholar 

  21. King, V., Saia, J.: From almost everywhere to everywhere: Byzantine agreement with \(\tilde{O}(n^{3/2})\) bits. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 464–478. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable computation in peer-to-peer networks. In: Proceedings of the 47th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 87–98 (2006)

    Google Scholar 

  23. Kobayashi, H., Matsumoto, K., Tani, S.: Fast exact quantum leader election on anonymous rings. In: Proceedings of the 8th Asian Conference on Quantum Information Science (AQIS), pp. 157–158 (2008)

    Google Scholar 

  24. Linial, N.: Distributive graph algorithms - global solutions from local data. In: Proceedings of the 28th Symposium on Foundations of Computer Science (FOCS), pp. 331–335 (1987)

    Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Ta-Shma, A.: Classical versus quantum communication complexity. SIGACT News 30(3), 25–34 (1999)

    Article  Google Scholar 

  27. Ta-Shma, A., Umans, C., Zuckerman, D.: Lossless condensers, unbalanced expanders, and extractors. Combinatorica 27(2), 213–240 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chlebus, B.S., Kowalski, D.R., Strojnowski, M. (2010). Scalable Quantum Consensus for Crash Failures. In: Lynch, N.A., Shvartsman, A.A. (eds) Distributed Computing. DISC 2010. Lecture Notes in Computer Science, vol 6343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15763-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15763-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15762-2

  • Online ISBN: 978-3-642-15763-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics