Skip to main content

What Can Be Observed Locally?

Round-Based Models for Quantum Distributed Computing

  • Conference paper
Distributed Computing (DISC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5805))

Included in the following conference series:

Abstract

We consider the question of locality in distributed computing in the context of quantum information. Specifically, we focus on the round complexity of quantum distributed algorithms, with no bounds imposed on local computational power or on the bit size of messages. Linial’s \(\mathcal{LOCAL}\) model of a distributed system is augmented through two types of quantum extensions: (1) initialization of the system in a quantum entangled state, and/or (2) application of quantum communication channels. For both types of extensions, we discuss proof-of-concept examples of distributed problems whose round complexity is in fact reduced through genuinely quantum effects. Nevertheless, we show that even such quantum variants of the \(\mathcal{LOCAL}\) model have non-trivial limitations, captured by a very simple (purely probabilistic) notion which we call “physical locality” (\(\varphi\textrm{\upshape -}\mathcal{LOCAL}\)). While this is strictly weaker than the “computational locality” of the classical \(\mathcal{LOCAL}\) model, it nevertheless leads to a generic view-based analysis technique for constructing lower bounds on round complexity. It turns out that the best currently known lower time bounds for many distributed combinatorial optimization problems, such as Maximal Independent Set, bounds cannot be broken by applying quantum processing, in any conceivable way.

Supported by the ANR project “ALADDIN”, by the INRIA équipe-project “CÉPAGE”, and by the KBN Grant 4 T11C 047 25.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Or, M., Hassidim, A.: Fast quantum byzantine agreement. In: 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 481–485. ACM Press, New York (2005)

    Google Scholar 

  2. Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Physical Review A 64(3), 030301 (2001)

    Article  Google Scholar 

  3. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Transactions on Information Theory 44, 2724–2742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Broadbent, A., Tapp, A.: Can quantum mechanics help distributed computing? ACM SIGACT News - Distributed Computing Column 39(3), 67–76 (2008)

    Article  Google Scholar 

  5. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: 30th Annual ACM Symposium on the Theory of Computing (STOC), pp. 63–68 (1998)

    Google Scholar 

  6. Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Physical Review A 56(2), 1201–1204 (1997)

    Article  Google Scholar 

  7. de Wolf, R.: Quantum communication and complexity. Theoretical Computer Science 287(1), 337–353 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. den Nest, M.V., Dür, W., Vidal, G., Briegel, H.: Classical simulation versus universality in measurement-based quantum computation. Physical Review A 75(1), 012337 (2007)

    Article  Google Scholar 

  9. Denchev, V.S., Pandurangan, G.: Distributed quantum computing: A new frontier in distributed systems or science fiction? ACM SIGACT News - Distributed Computing Column 39(3), 77–95 (2008)

    Article  Google Scholar 

  10. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of distributed sparse spanner construction. In: 27th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 273–282. ACM Press, New York (2008)

    Google Scholar 

  11. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A400, 97–117 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Information and Computation 6(2), 173–183 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Physical Review Letters 83(11), 3077–3080 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elkin, M.: A near-optimal fully dynamic distributed algorithm for maintaining sparse spanners. In: 26th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 195–204. ACM Press, New York (2007)

    Google Scholar 

  15. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with advice: Information sensitivity of graph coloring. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication tasks. In: 25th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 179–187. ACM Press, New York (2006)

    Google Scholar 

  17. Gavoille, C., Klasing, R., Kosowski, A., Kuszner, Ł., Navarra, A.: On the complexity of distributed graph coloring with local minimality constraints. Networks (to appear, 2009)

    Google Scholar 

  18. Gavoille, C., Klasing, R., Kosowski, A., Navarra, A.: Brief announcement: On the complexity of distributed greedy coloring. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 482–484. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Gavoille, C., Kosowski, A., Markiewicz, M.: What can be observed locally? Round-based models for quantum distributed computing. Technical report, arXiv: quant-ph/0903.1133 (2009)

    Google Scholar 

  20. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s Theorem. In: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989)

    Google Scholar 

  21. Helm, L.: Brief announcement: Quantum distributed consensus. In: 27th Annual ACM Symposium on Principles of Distributed Computing (PODC), p. 445. ACM Press, New York (2008)

    Google Scholar 

  22. Jaeger, G.: Quantum Information. An Overview. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  23. Kobayashi, H., Matsumoto, K., Tani, S.: Fast exact quantum leader election on anonymous rings. In: 8th Asian Conference on Quantum Information Science (AQIS), August 2008, pp. 157–158 (2008)

    Google Scholar 

  24. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In. In: 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 300–309. ACM Press, New York (2004)

    Google Scholar 

  25. Linial, N.: Distributive graph algorithms - Global solutions from local data. In: 28th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 331–335. IEEE Computer Society Press, Los Alamitos (1987)

    Google Scholar 

  26. Linial, N.: Locality in distributed graphs algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco (1997)

    Google Scholar 

  28. Naor, M.: A lower bound on probabilistic algorithms for distributive ring coloring. SIAM Journal on Discrete Mathematics 4(3), 409–412 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Naor, M., Stockmeyer, L.: What can be computed locally. SIAM Journal on Computing 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nielsen, M.: Conditions for a class of entanglement transformations. Physical Review Letters 83(2), 436–439 (1999)

    Article  Google Scholar 

  31. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  32. Owari, M., Matsumoto, K., Murao, M.: Entanglement convertibility for infinite-dimensional pure bipartite states. Physical Review A 70(5), 1–4 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pal, S.P., Singh, S.K., Kumar, S.: Multi-partite quantum entanglement versus randomization: Fair and unbiased leader election in networks. Technical report, arXiv: quant-ph/0306195v1 (June 2003)

    Google Scholar 

  34. Pan, J.-W., Chen, Z.-B., Żukowski, M., Weinfurter, H., Zeilinger, A.: Multi-photon entanglement and interferometry. Technical report, arXiv: quant-ph/0805.2853v1 (May 2008)

    Google Scholar 

  35. Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 30–41. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  36. Raz, R.: Exponential separation of quantum and classical communication complexity. In: 31st Annual ACM Symposium on the Theory of Computing (STOC), pp. 358–367 (1999)

    Google Scholar 

  37. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Singh, S.K., Kumar, S., Pal, S.P.: Characterizing the combinatorics of distributed EPR pairs for multi-partite entanglement. Technical report, arXiv: quant-ph/0306049v2 (January 2004)

    Google Scholar 

  39. Ta-Shma, A.: Classical versus quantum communication complexity. SIGACT News 30(3), 25–34 (1999)

    Article  Google Scholar 

  40. Tani, S., Kobayashi, H., Matsumoto, K.: Exact quantum algorithms for the leader election problem. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 581–592. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  41. Żukowski, M.: On Bell’s Theorem, quantum communication, and entanglement detection. In: Foundations of Probability and Physics 5 (August 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gavoille, C., Kosowski, A., Markiewicz, M. (2009). What Can Be Observed Locally?. In: Keidar, I. (eds) Distributed Computing. DISC 2009. Lecture Notes in Computer Science, vol 5805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04355-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04355-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04354-3

  • Online ISBN: 978-3-642-04355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics