Skip to main content

Gene Silencing in Plants: Transgenes as Targets and Effectors

  • Chapter
  • First Online:
Genetic Modification of Plants

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 64))

Abstract

Plant transformation is a versatile method to introduce or alter a trait-of-interest through expression of a transgene or through transgene-induced mutation and/or expression changes of endogenes. Transgenes in plants, however, are subject to gene-silencing effects that are an obstacle to stable and heritable expression of transgene-encoded traits. In an exciting twist, natural gene-silencing processes have been harnessed by researchers to achieve highly specific and targeted down-regulation of endogenous or pathogen-derived genes for functional studies, crop protection and crop improvement. Part 1 of this chapter attempts to give an overview of the mechanistic pillars of gene silencing in plants. Part 2 summarizes the factors that may cause unintended silencing of transgene expression, with practical advice on how to minimize the risk of transgene silencing. Part 3 addresses the intentional use of gene silencing for biotechnological applications in transgenic plants, with particular emphasis on RNA interference approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Allen GC, Spiker S, Thompson WF (2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol 43:361–376

    Article  PubMed  CAS  Google Scholar 

  • Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JA, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Assaad FF, Tucker KL, Signer ER (1993) Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol 22:1067–1085

    Article  PubMed  CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Balint-Kurti PJ, Harpster MH, Palys JM, Oeller PW, Gutterson N (2003) Inverted repeat of a heterologous 3'-untranslated region for high-efficiency, high-throughput gene silencing. Plant J 33:793–800

    Article  PubMed  CAS  Google Scholar 

  • Bucher E, Lohuis D, van Poppel PMJA, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    Article  PubMed  CAS  Google Scholar 

  • Butaye KM, Goderis IJ, Wouters PF, Pues JM, Delaure SL, Broekaert WF, Depicker A, Cammue BP, De Bolle MF (2004) Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J 39:440–449

    Article  PubMed  CAS  Google Scholar 

  • Butaye KMJ, Cammue BPA, Delaure SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  • Campbell MA, Fitzgerald HA, Ronald PC (2002) Engineering pathogen resistance in crop plants. Transgenic Res 11:599–613.

    Article  PubMed  CAS  Google Scholar 

  • Candela H, Hake S (2008) The art and design of genetic screens: maize. Nat Rev Genet 9:192–203

    PubMed  CAS  Google Scholar 

  • Chan SW (2008) Inputs and outputs for chromatin-targeted RNAi. Trends Plant Sci 13:383–389

    Article  PubMed  CAS  Google Scholar 

  • Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    Article  PubMed  CAS  Google Scholar 

  • Chellappan P, Vanitharani R, Ogbe F, Fauquet CM (2005) Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol 138:1828–1841

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694

    Article  PubMed  CAS  Google Scholar 

  • Dafny-Yelin M, Chung SM, Frankman EL, Tzfira T (2007) pSAT RNA interference vectors: a modular series for multiple gene down-regulation in plants. Plant Physiol 145:1272–1281

    Article  PubMed  CAS  Google Scholar 

  • Davuluri GR, Tuinen A, Mustilli AC, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Pennings HMJ, Bowler C (2004) Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J 40:344–354

    Article  PubMed  CAS  Google Scholar 

  • Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  PubMed  CAS  Google Scholar 

  • Daxinger L, Kanno T, Bucher E, van der Winden J, Naumann U, Matzke AJ, Matzke M (2008) A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO J 28:48–57

    Article  PubMed  CAS  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  PubMed  CAS  Google Scholar 

  • De Bolle MFC, Butaye KMJ, Coucke WJW, Goderis IJWM, Wouters PFJ, van Boxel N, Broekaert WF, Cammue BPA (2003) Analysis of the influence of promoter elements and a matrix attachment region on the inter-individual variation of transgene expression in populations of Arabidopsis thaliana. Plant Sci 165:169–179

    Article  CAS  Google Scholar 

  • De Bolle MF, Butaye KM, Goderis IJ, Wouters PF, Jacobs A, Delaure SL, Depicker A, Cammue BP (2007) The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants. Plant Mol Biol 63:533–543

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, Windels P, De LM, Depicker A (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable beta-glucuronidase accumulation levels. Cell Mol Life Sci 61:2632–2645

    Article  PubMed  CAS  Google Scholar 

  • De Haan P, Gielen JJ, Prins M, Wijkamp IG, Van SA, Peters D, van Grinsven MQ, Goldbach R (1992) Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Biotechnology 10:1133–1137

    Article  PubMed  Google Scholar 

  • De Wilde C, Podevin N, Windels P, Depicker A (2001) Silencing of antibody genes in plants with single-copy transgene inserts as a result of gene dosage effects. Mol Genet Genomics 265:647–653

    Article  PubMed  Google Scholar 

  • Dennis ES, Peacock WJ (2007) Epigenetic regulation of flowering. Curr Opin Plant Biol 10:520–527

    Article  PubMed  CAS  Google Scholar 

  • Di Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V (2005) Hairpin RNA-mediated silencing of plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res 14:989–994

    Article  PubMed  CAS  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  PubMed  CAS  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008a) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  PubMed  CAS  Google Scholar 

  • Eamens A, Vaistij FE, Jones L (2008b) NRPD1a and NRPD1b are required to maintain post-transcriptional RNA silencing and RNA-directed DNA methylation in Arabidopsis. Plant J 55:596–606

    Article  PubMed  CAS  Google Scholar 

  • Eike MC, Mercy IS, Aalen RB (2005) Transgene silencing may be mediated by aberrant sense promoter sequence transcripts generated from cryptic promoters. Cell Mol Life Sci 62:3080–3091

    Article  PubMed  CAS  Google Scholar 

  • Elmayan T, Vaucheret H (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J 9:787–797

    Article  CAS  Google Scholar 

  • Elmayan T, Balzergue S, Beon F, Bourdon V, Daubremet J, Guenet Y, Mourrain P, Palauqui JC, Vernhettes S, Vialle T, Wostrikoff K, Vaucheret H (1998) Arabidopsis mutants impaired in cosuppression. Plant Cell 10:1747–1758

    PubMed  CAS  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98:13437–13442

    Article  PubMed  CAS  Google Scholar 

  • Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR (2007) Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525–1533

    Article  PubMed  CAS  Google Scholar 

  • Finnegan EJ, Sheldon CC, Jardinaud F, Peacock WJ, Dennis ES (2004) A cluster of Arabidopsis genes with a coordinate response to an environmental stimulus. Curr Biol 14:911–916

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Kuhlmann M, Pecinka A, Schmidt R, Mette MF (2008) Local DNA features affect RNA-directed transcriptional gene silencing and DNA methylation. Plant J 53:1–10

    Article  PubMed  CAS  Google Scholar 

  • Fojtova M, Bleys A, Bedrichova J, Van HH, Krizova K, Depicker A, Kovarik A (2006) The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res 34:2280–2293

    Article  PubMed  CAS  Google Scholar 

  • Francis KE, Spiker S (2005) Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J 41:464–477

    Article  PubMed  CAS  Google Scholar 

  • Fusaro AF, Matthew L, Smith NA, Curtin SJ, Dic-Hagan J, Ellacott GA, Watson JM, Wang MB, Brosnan C, Carroll BJ, Waterhouse PM (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175

    Article  PubMed  CAS  Google Scholar 

  • Gendler K, Paulsen T, Napoli C (2008) ChromDB: the chromatin database. Nucleic Acids Res 36:D298–D302

    Article  PubMed  CAS  Google Scholar 

  • Girard A, Hannon GJ (2008) Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol 18:136–148

    Article  PubMed  CAS  Google Scholar 

  • Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Ann Bot 96:1143–1164

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  CAS  Google Scholar 

  • Hebert CG, Valdes JJ, Bentley WE (2008) Beyond silencing -- engineering applications of RNA interference and antisense technology for altering cellular phenotype. Curr Opin Biotechnol 19:500–505

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Waterhouse PM (2005) Constructs and methods for hairpin RNA-mediated gene silencing in plants. RNA Interfer 392:24–35

    Article  CAS  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SL, Kpodar P, DeLong CM (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864

    Article  PubMed  CAS  Google Scholar 

  • Hollick JB (2008) Sensing the epigenome. Trends Plant Sci 13:398–404

    Article  PubMed  CAS  Google Scholar 

  • Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5:605–614

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Han Y, Wiig A, McMillan J, Jones T, Talton W, Dong J, Offenheiser M, Ren P, Ascenzi R, Hill S, Zhen R, Chaudhuri S (2006) Engineering resistance against plant-parasitic nematodes. J Nematol 38:275

    Google Scholar 

  • Huettel B, Kanno T, Daxinger L, Bucher E, van der Winden J, Matzke AJM, Matzke M (2007) RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants. Biochim Biophys Acta -- Gene Struct Express 1769:358–374

    Article  CAS  Google Scholar 

  • Jakowitsch J, Papp I, Moscone EA, van der Winden J, Matzke M, Matzke AJM (1999) Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J 17:131–140

    Article  PubMed  CAS  Google Scholar 

  • Jan FJ, Fagoaga C, Pang SZ, Gonsalves D (2000) A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J Gen Virol 81:2103–2109

    PubMed  CAS  Google Scholar 

  • Jiang D, Yang W, He Y, Amasino RM (2007) Arabidopsis relatives of the human lysine-specific demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19:2975–2987

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Vacic V, Girke T, Lonardi S, Zhu JK (2008) Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol 9:6

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Gilbert DE, Grady KL, Jorgensen RA (1987) T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207:478–485

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen RA (2003) Sense cosuppression in plants: past, present, and future. In: Hannon GJ (ed) RNAi: a guide to gene silencing. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 5–21

    Google Scholar 

  • Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen RA, Doetsch N, Muller A, Que Q, Gendler K, Napoli CA (2007) A paragenetic perspective on integration of RNA silencing into the epigenome and its role in the biology of higher plants. Cold Spring Harbor Symp Quant Biol 71:481–485

    Article  Google Scholar 

  • Jung KH, An G, Ronald PC (2008) Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet 9:91–101

    PubMed  CAS  Google Scholar 

  • Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, Daxinger L, Kreil DP, Matzke M, Matzke AJM (2005) Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37:761–765

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu JK, Staskawicz BJ, Jin H (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 103:18002–18007

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Takashima K, Kakutani T (2004) Epigenetic control of CACTA transposon mobility in Arabidopsis thaliana. Genetics 168:961–969

    Article  PubMed  CAS  Google Scholar 

  • Kim SI, Veena V, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Miura A, Choi YH, Kinoshita Y, Cao XF, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523

    Article  PubMed  CAS  Google Scholar 

  • Levin JS, Thompson WF, Csinos AS, Stephenson MG, Weissinger AK (2005) Matrix attachment regions increase the efficiency and stability of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco. Transgenic Res 14:193–206

    Article  PubMed  CAS  Google Scholar 

  • Lindbo JA, Dougherty WG (2005) Plant pathology and RNAi: a brief history. Annu Rev Phytopathol 43:191–204

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, May B, Yordan C, Singer T, Martienssen R (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol 1:E67

    Article  PubMed  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  PubMed  CAS  Google Scholar 

  • Lunerova-Bedrichova J, Bleys A, Fojtova M, Khaitova L, Depicker A, Kovarik A (2008) Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. Plant J 54:1049–1062

    Article  PubMed  CAS  Google Scholar 

  • Luo KM, Harding SA, Tsai CJ (2008) A modified T-vector for simplified assembly of hairpin RNAi constructs. Biotechnol Lett 30:1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Mitra A (2002) Intrinsic direct repeats generate consistent post-transcriptional gene silencing in tobacco. Plant J 31:37–49

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Elmayan T, Vaucheret H (2008) MicroRNA maturation and action -- the expanding roles of ARGONAUTEs. Curr Opin Plant Biol 11:560–566

    Article  PubMed  CAS  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Primig M, Trnovsky J, Matzke AJ (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8:643–649

    PubMed  CAS  Google Scholar 

  • Matzke MA, Aufsatz W, Kanno T, Mette MF, Matzke AJ (2002) Homology-dependent gene silencing and host defense in plants. Adv Genet 46:235–275

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Kanno T, Huettel B, Daxinger L, Matzke AJM (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512–519

    Article  PubMed  CAS  Google Scholar 

  • McGinnis K, Chandler V, Cone K, Kaeppler H, Kaeppler S, Kerschen A, Pikaard C, Richards E, Sidorenko L, Smith T, Springer N, Wulan T (2005) Transgene-induced RNA interference as a tool for plant functional genomics. RNA Interfer 392:1–24

    Article  CAS  Google Scholar 

  • Mette MF, van der Winden J, Matzke MA, Matzke AJ (1999) Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J 18:241–248

    Article  PubMed  CAS  Google Scholar 

  • Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19: 5194–5201

    Article  PubMed  CAS  Google Scholar 

  • Meyer S, Nowak K, Sharma VK, Schulze J, Mendel RR, Hansch R (2004) Vectors for RNAi technology in poplar. Plant Biol 6:100–103

    Article  PubMed  CAS  Google Scholar 

  • Meza TJ, Stangeland B, Mercy IS, Skarn M, Nymoen DA, Berg A, Butenko MA, Hakelien AM, Haslekas C, Meza-Zepeda LA, Aalen RB (2002) Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res 30:4556–4566

    Article  PubMed  CAS  Google Scholar 

  • Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490–495

    Article  PubMed  CAS  Google Scholar 

  • Mlotshwa S, Pruss GJ, Vance V (2008) Small RNAs in viral infection and host defense. Trends Plant Sci 13:375–382

    Article  PubMed  CAS  Google Scholar 

  • Mlynarova L, Loonen A, Heldens J, Jansen RC, Keizer P, Stiekema WJ, Nap JP (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6:417–426

    PubMed  CAS  Google Scholar 

  • Mlynarova L, Jansen RC, Conner AJ, Stiekema WJ, Nap JP (1995) The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7:599–609

    PubMed  CAS  Google Scholar 

  • Mourrain P, van Blokland R, Kooter JM, Vaucheret H (2007) A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production. Planta 225:365–379

    Article  PubMed  CAS  Google Scholar 

  • Muller AE (2006) Applications of RNA interference in transgenic plants. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 1:1–13

    Google Scholar 

  • Muller AE, Wassenegger M (2004) Control and silencing of transgene expression. In: Christou PKH (ed) Handbook of plant biotechnology. Wiley, Chichester, pp 291–330

    Google Scholar 

  • Muskens MW, Vissers AP, Mol JN, Kooter JM (2000) Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol 43:243–260

    Article  PubMed  CAS  Google Scholar 

  • Nagaya S, Kato K, Ninomiya Y, Horie R, Sekine M, Yoshida K, Shinmyo A (2005) Expression of randomly integrated single complete copy transgenes does not vary in Arabidopsis thaliana. Plant Cell Physiol 46:438–444

    Article  PubMed  CAS  Google Scholar 

  • Obbard DJ, Gordon KH, Buck AH, Jiggins FM (2009) The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 364:99–115

    Article  PubMed  CAS  Google Scholar 

  • Ogita S, Yamaguchi Y, Koizumi N, Sano H (2003) Supression of theobromine synthase gene by RNAi in coffee plants. Plant Cell Physiol 44:S88

    Google Scholar 

  • Ogita S, Uefuji H, Morimoto M, Sano H (2004) Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54:931–941

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39:682–696

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  PubMed  CAS  Google Scholar 

  • Petersen K, Leah R, Knudsen S, Cameron-Mills V (2002) Matrix attachment regions (MARs) enhance transformation frequencies and reduce variance of transgene expression in barley. Plant Mol Biol 49:45–58

    Article  PubMed  CAS  Google Scholar 

  • Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645–652

    Article  PubMed  CAS  Google Scholar 

  • Pikaard CS, Haag JR, Ream T, Wierzbicki AT (2008) Roles of RNA polymerase IV in gene silencing. Trends Plant Sci 13:390–397

    Article  PubMed  CAS  Google Scholar 

  • Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Article  PubMed  CAS  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    PubMed  CAS  Google Scholar 

  • Que Q, Wang HY, English JJ, Jorgensen RA (1997) The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9:1357–1368

    PubMed  CAS  Google Scholar 

  • Ramachandran V, Chen X (2008) Small RNA metabolism in Arabidopsis. Trends Plant Sci 13:368–374

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Yan H, Swords K, Richael C, Ye JS (2008) Low-acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853

    Article  PubMed  CAS  Google Scholar 

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Song RT, Messing J (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397

    PubMed  CAS  Google Scholar 

  • Sels J, Delaure SL, Aerts AM, Proost P, Cammue BPA, De Bolle MFC (2007) Use of a PTGS-MAR expression system for efficient in planta production of bioactive Arabidopsis thaliana plant defensins. Transgenic Res 16:531–538

    Article  PubMed  CAS  Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324

    Article  PubMed  CAS  Google Scholar 

  • Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Gene expression -- total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Soppe WJ, Jacobsen SE, Onso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V, Riza-Nieto M, Wilson AJ (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2:169–179

    Article  PubMed  CAS  Google Scholar 

  • Sung S, Amasino RM (2005) Remembering winter: toward a molecular understanding of vernalization. Annu Rev Plant Biol 56:491–508

    Article  PubMed  CAS  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059

    Article  PubMed  CAS  Google Scholar 

  • Swiezewski S, Crevillen P, Liu F, Ecker JR, Jerzmanowski A, Dean C (2007) Small RNA-mediated chromatin silencing directed to the 3' region of the Arabidopsis gene encoding the developmental regulator, FLC. Proc Natl Acad Sci USA 104:3633–3638

    Article  CAS  Google Scholar 

  • Taliansky M, Kim SH, Mayo MA, Kalinina NO, Fraser G, McGeachy KD, Barker H (2004) Escape of a plant virus from amplicon-mediated RNA silencing is associated with biotic or abiotic stress. Plant J 39:194–205

    Article  PubMed  CAS  Google Scholar 

  • Tang GL, Galili G, Zhuang X (2007) RNAi and microRNA: breakthrough technologies for the improvement of plant nutritional value and metabolic engineering. Metabolomics 3:357–369

    Article  CAS  Google Scholar 

  • Townsend BJ, Llewellyn DJ (2007) Reduced terpene levels in cottonseed add food to fiber. Trends Biotechnol 25:239–241

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, White C (2005) Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol 23:567–569

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H (1993) Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant -- 90 bp of homology in the promoter sequence are sufficient for trans-inactivation. C R Acad Sci -- Life Sci 316:1471–1483

    CAS  Google Scholar 

  • Vaucheret H, Elmayan T, Mourrain P, Palauqui JC (1996) Analysis of a tobacco transgene locus that triggers both transcriptional and post-transcriptional silencing. V.E. Russo, R.A. Martienssen, and A.D. Riggs (eds) Cold Spring Harbor Laboratory, pp. 403–414

    Google Scholar 

  • Voinnet O (2008) Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13:317–328

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Chua NH, Wang XJ (2006) Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol 7:R92

    Article  PubMed  CAS  Google Scholar 

  • Wang MB, Waterhouse PM (2000) High-efficiency silencing of a beta-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. Plant Mol Biol 43:67–82

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Gaasterland T, Chua NH (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6:R30

    Article  PubMed  CAS  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3:e1829

    Article  PubMed  CAS  Google Scholar 

  • Wassenegger M, Krczal G (2006) Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci 11:142–151

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham HW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Wielopolska A, Townley H, Moore I, Waterhouse P, Helliwell C (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnol J 3:583–590

    Article  PubMed  CAS  Google Scholar 

  • Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635–648

    Article  PubMed  CAS  Google Scholar 

  • Wu XL, Hou WC, Wang MM, Zhu XP, Li F, Zhang JD, Li XZ, Guo XQ (2008) RNA silencing-mediated resistance is related to biotic/abiotic stresses and cellular RdRp expression in transgenic tobacco plants. BMB Rep 41:376–381

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Zhu D, Zhao Q, Ao G, Ma C, Yu J (2009) RNA silencing mediated by direct repeats in maize: a potential tool for functional genomics. Mol Biotechnol 41:213–223

    Article  PubMed  CAS  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Chretien R, Ye J, Rommens CM (2006) New construct approaches for efficient gene silencing in plants. Plant Physiol 141:1508–1518

    Article  PubMed  CAS  Google Scholar 

  • Zhai J, Liu J, Liu B, Li P, Meyers BC, Chen X, Cao X (2008) Small RNA-directed epigenetic natural variation in Arabidopsis thaliana. PLoS Genet 4:e1000056

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lu L, Ji L, Yang G, Zheng C (2009) Functional characterization of a tobacco matrix attachment region-mediated enhancement of transgene expression. Transgenic Res 18:377–385

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D (2008) The evolving functions of DNA methylation. Curr Opin Plant Biol 11:554–559

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas E. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, A.E. (2010). Gene Silencing in Plants: Transgenes as Targets and Effectors. In: Kempken, F., Jung, C. (eds) Genetic Modification of Plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_5

Download citation

Publish with us

Policies and ethics