Skip to main content

The Ins and Outs of Adipose Tissue

  • Chapter
  • First Online:
Cellular Lipid Metabolism

Abstract

The aim of this chapter is to discuss what mechanisms are available to rapidly modulate fatty acid uptake/mobilization in adipose tissue. The major pathway for net uptake is lipoprotein lipase (LPL)-mediated hydrolysis of lipoprotein lipids. There are several mechanisms for control and they all serve to suppress LPL activity on a time-scale of hours in the setting of essentially unchanged LPL mRNA and mass. A protein complex that specifically binds to LPL mRNA can block synthesis of new enzyme. The Ca2+ milieu, and perhaps other conditions in the ER, can partition more of the enzyme towards intracellular degradation and less for export. After secretion from the adipocytes, active LPL can be converted into inactive monomers through interaction with angiopoietin-like proteins. At the vascular endothelium, product control may balance LPL action. If fatty acids accumulate at sites of lipolysis they eliminate the effect of apolipoprotein CII, which is a necessary activator for LPL. Intracellular lipolysis is initiated by adipose tissue triglyceride lipase (ATGL) which hydrolyzes triglycerides to diglycerides. These can either be re-esterified by a diacylglycerol acyl transferase (DGAT) enzyme or further hydrolyzed by hormone-sensitive lipase (HSL). The system is controlled by phosphorylation mediated by protein kinase A, and perhaps other protein kinases, as well as protein phosphatases. The prime target is perilipin, a lipid droplet protein which in its unphosphorylated form suppresses the activity of both ATGL and HSL. The two lipase systems are modulated by different mechanisms and on different time-scales. Both systems seem to operate at levels that generate an excess of fatty acids. The overriding control of how much gets deposited in the tissue as triglyceride and how much spills over into blood as albumin-bound fatty acids (NEFA) is exerted by the rate of glyceride synthesis. Recent studies show that glycerol-3-phosphate for this is generated mainly through glyceroneogenesis from citric acid cycle intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Angptl:

angiopoietin-like protein

Apo:

apolipoprotein

AKAP:

A kinase-binding protein

AQP:

aquaporin

ATGL:

Adipose triglyceride lipase

CETP:

cholesteryl ester transfer protein

CGI-58:

comparative gene identification 58

cld:

combined lipase deficiency

CoA:

coenzyme A

DGAT:

diacylglycerol acyl transferase

DG:

diglyceride

EM:

electron microscopy

ER:

endoplasmatic reticulum

FATP:

fatty acid transport protein

GPI:

glycerolphosphatidylinositol

GPIHBP:

glycerolphosphatidylinositol-linked high-density binding protein

HDL:

high-density lipoprotein

HSL:

hormone-sensitive lipase

HSPG:

heparan sulfate proteoglycan

LDL:

low-density lipoprotein

Lmf:

lipase maturation factor

LPL:

lipoprotein lipase

LPS:

lipopolysaccharide

LRP:

low-density lipoprotein receptor-related protein

MAGH:

monoacylglycerol hydrolase

MG:

monoglyceride

MGAT:

monoacylglycerol acyl transferase

NEFA:

non-esterified fatty acids (also called albumin-bound free fatty acids)

PTH:

parathyroid hormone

PKA:

protein kinase A

RAP:

receptor-associated protein

SR-B1:

scavenger receptor type B1

SREBP:

steroid regulatory element binding protein

TG:

triglyceride

UTR:

untranslated region

VLDL:

very low-density lipoprotein

References

  • Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409:729–733

    Article  PubMed  CAS  Google Scholar 

  • An D, Pulinilkunnil T, Qi D, Ghosh S, Abrahani A, Rodrigues B (2005) The metabolic “switch” AMPK regulates cardiac heparin-releasable lipoprotein lipase. Am J Physiol Endocrinol Metab 288:E246–E253

    Article  PubMed  CAS  Google Scholar 

  • Arner P, Langin D (2007) The role of neutral lipases in human adipose tissue lipolysis. Curr Opin Lipidol 18:246–250

    Article  PubMed  CAS  Google Scholar 

  • Ashby P, Robinson DS (1980) Effects of insulin, glucocorticoids and adrenaline on the activity of rat adipose-tissue lipoprotein lipids. Biochem J 188:185–192

    PubMed  CAS  Google Scholar 

  • Augustus A, Yagyu H, Haemmerle G, Bensadoun A, Vikramadithyan RK, Park SY, Kim JK, Zechner R, Goldberg IJ (2004) Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. J Biol Chem 279:25050–25057

    Article  PubMed  CAS  Google Scholar 

  • Auwerx J, Deeb S, Brunzell JD, Peng R, Chait A (1988) Transcriptional activation of the lipoprotein lipase and apolipoprotein E genes accompanies differentiation in some human macrophage-like cell lines. Biochemistry 27:2651–2655

    Article  PubMed  CAS  Google Scholar 

  • Auwerx J, Schoonjans K, Fruchart JC, Staels B (1996) Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR. Atherosclerosis 124[Suppl]:S29–S37

    Article  PubMed  CAS  Google Scholar 

  • Babaev VR, Patel MB, Semenkovich CF, Fazio S, Linton MF (2000) Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice. J Biol Chem 275:26293–26299

    Article  PubMed  CAS  Google Scholar 

  • Ball KL, Speake BK, Robinson DS (1986) Effects of adrenaline on the turnover of lipoprotein lipase in rat adipose tissue. Biochim Biophys Acta 877:399–405

    PubMed  CAS  Google Scholar 

  • Beckstead JA, Oda MN, Martin DD, Forte TM, Bielicki JK, Berger T, Luty R, Kay CM, Ryan RO (2003) Structure–function studies of human apolipoprotein A-V: a regulator of plasma lipid homeostasis. Biochemistry 42:9416–9423

    Article  PubMed  CAS  Google Scholar 

  • Beisiegel U, Weber W, Bengtsson-Olivecrona G (1991) Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci USA 88:8342–8346

    Article  PubMed  CAS  Google Scholar 

  • Belfrage P, Elovson J, Olivecrona T (1965) Radioactivity in blood and liver partial glycerides, and liver phospholipids after intravenous administration to carbohydrate-fed rats of chyle containing double-labeled triglycerides. Biochim Biophys Acta 106:45–55

    PubMed  CAS  Google Scholar 

  • Ben-Zeev O, Doolittle MH, Davis RC, Elovson J, Schotz MC (1992) Maturation of lipoprotein lipase. Expression of full catalytic activity requires glucose trimming but not translocation to the cis-Golgi compartment. J Biol Chem 267:6219–6227

    PubMed  CAS  Google Scholar 

  • Ben-Zeev O, Stahnke G, Liu G, Davis RC, Doolittle MH (1994) Lipoprotein lipase and hepatic lipase: the role of asparagine-linked glycosylation in the expression of a functional enzyme. J Lipid Res 35:1511–1523

    PubMed  CAS  Google Scholar 

  • Ben-Zeev O, Mao HZ, Doolittle MH (2002) Maturation of lipoprotein lipase in the endoplasmic reticulum. Concurrent formation of functional dimers and inactive aggregates. J Biol Chem 277:10727–10738

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson G, Olivecrona T (1979a) Apolipoprotein CII enhances hydrolysis of monoglycerides by lipoprotein lipase, but the effect is abolished by fatty acids. FEBS Lett 106:345–348

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson G, Olivecrona T (1979b) Binding of deoxycholate to lipoprotein lipase. Biochim Biophys Acta 575:471–474

    PubMed  CAS  Google Scholar 

  • Bengtsson G, Olivecrona T (1980a) The hepatic heparin releasable lipase binds to high density lipoproteins. FEBS Lett 119:290–292

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson G, Olivecrona T (1980b) Lipoprotein lipase. Mechanism of product inhibition. Eur J Biochem 106:557–562

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson G, Olivecrona T (1980c) Lipoprotein lipase: some effects of activator proteins. Eur J Biochem 106:549–555

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson G, Olivecrona T (1981) Heparin-bound lipoprotein lipase is catalytically active and can be stimulated by apolipoprotein CII. FEBS Lett 128:9–12

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson G, Olivecrona T, Hook M, Riesenfeld J, Lindahl U (1980) Interaction of lipoprotein lipase with native and modified heparin-like polysaccharides. Biochem J 189:625–633

    PubMed  CAS  Google Scholar 

  • Bengtsson-Olivecrona G, Olivecrona T, Jornvall H (1986) Lipoprotein lipases from cow, guinea-pig and man. Structural characterization and identification of protease-sensitive internal regions. Eur J Biochem 161:281–288

    Article  PubMed  CAS  Google Scholar 

  • Berbee JF, van der Hoogt CC, Sundararaman D, Havekes LM, Rensen PC (2005) Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL. J Lipid Res 46:297–306

    Article  PubMed  CAS  Google Scholar 

  • Berbee JF, van der Hoogt CC, Kleemann R, Schippers EF, Kitchens RL, van Dissel JT, Bakker-Woudenberg IA, Havekes LM, Rensen PC (2006) Apolipoprotein CI stimulates the response to lipopolysaccharide and reduces mortality in gram-negative sepsis. Faseb J 20:2162–2164

    Article  PubMed  CAS  Google Scholar 

  • Bergo M, Olivecrona G, Olivecrona T (1996) Forms of lipoprotein lipase in rat tissues: in adipose tissue the proportion of inactive lipase increases on fasting. Biochem J 313:893–898

    PubMed  Google Scholar 

  • Bergo M, Wu G, Ruge T, Olivecrona T (2002) Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on. J Biol Chem 277:11927–11932

    Article  PubMed  CAS  Google Scholar 

  • Berryman DE, Bensadoun A (1995) Heparan sulfate proteoglycans are primarily responsible for the maintenance of enzyme activity, binding, and degradation of lipoprotein lipase in Chinese hamster ovary cells. J Biol Chem 270:24525–24531

    Article  PubMed  CAS  Google Scholar 

  • Bey L, Hamilton MT (2003) Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. J Physiol 551:673–682

    Article  PubMed  CAS  Google Scholar 

  • Bickerton AS, Roberts R, Fielding BA, Hodson L, Blaak EE, Wagenmakers AJ, Gilbert M, Karpe F, Frayn KN (2007) Preferential uptake of dietary Fatty acids in adipose tissue and muscle in the postprandial period. Diabetes 56:168–176

    Article  PubMed  CAS  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Bishop JR, Stanford KI, Esko JD (2008) Heparan sulfate proteoglycans and triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol 19:307–313

    Article  PubMed  CAS  Google Scholar 

  • Blanchette-Mackie EJ, Masuno H, Dwyer NK, Olivecrona T, Scow RO (1989) Lipoprotein lipase in myocytes and capillary endothelium of heart: immunocytochemical study. Am J Physiol 256:E818–E828

    Google Scholar 

  • Borensztajn J, Robinson DS (1970) The effect of fasting on the utilization of chylomicron triglyceride fatty acids in relation to clearing factor lipase. (lipoprotein lipase) releasable by heparin in the perfused rat heart. J Lipid Res 11:111–117

    PubMed  CAS  Google Scholar 

  • Borgstrom B, Erlanson-Albertsson C, Wieloch T (1979) Pancreatic colipase: chemistry and physiology. J Lipid Res 20:805–816

    PubMed  CAS  Google Scholar 

  • Bragdon JH, Gordon RS Jr (1958) Tissue distribution of C14 after the intravenous injection of labeled chylomicrons and unesterified fatty acids in the rat. J Clin Invest 37:574–578

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559

    Article  PubMed  CAS  Google Scholar 

  • Brun LD, Gagne C, Julien P, Tremblay A, Moorjani S, Bouchard C, Lupien PJ (1989) Familial lipoprotein lipase-activity deficiency: study of total body fatness and subcutaneous fat tissue distribution. Metabolism 38:1005–1009

    Article  PubMed  CAS  Google Scholar 

  • Carneheim C, Nedergaard J, Cannon B (1988) Cold-induced beta-adrenergic recruitment of lipoprotein lipase in brown fat is due to increased transcription. Am J Physiol 254:E155–E161

    PubMed  CAS  Google Scholar 

  • Casaroli-Marano RP, Garcia R, Vilella E, Olivecrona G, Reina M, Vilaro S (1998) Binding and intracellular trafficking of lipoprotein lipase and triacylglycerol-rich lipoproteins by liver cells. J Lipid Res 39:789–806

    PubMed  CAS  Google Scholar 

  • Cazes A, Galaup A, Chomel C, Bignon M, Brechot N, Le Jan S, Weber H, Corvol P, Muller L, Germain S, Monnot C (2006) Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton. Circ Res 99:1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Chajek-Shaul T, Friedman G, Stein O, Olivecrona T, Stein Y (1982) Binding of lipoprotein lipase to the cell surface is essential for the transmembrane transport of chylomicron cholesteryl ester. Biochim Biophys Acta 712:200–210

    PubMed  CAS  Google Scholar 

  • Chajek-Shaul T, Friedman G, Knobler H, Stein O, Etienne J, Stein Y (1985) Importance of the different steps of glycosylation for the activity and secretion of lipoprotein lipase in rat preadipocytes studied with monensin and tunicamycin. Biochim Biophys Acta 837:123–134

    PubMed  CAS  Google Scholar 

  • Chajek-Shaul T, Friedman G, Ziv E, Bar-On H, Bengtsson-Olivecrona G (1988) Fate of lipoprotein lipase taken up by the rat liver. Evidence for a conformational change with loss of catalytic activity. Biochim Biophys Acta 963:183–191

    PubMed  CAS  Google Scholar 

  • Chen HC, Stone SJ, Zhou P, Buhman KK, Farese RV Jr (2002) Dissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme a:diacylglycerol acyltransferase 1 in white adipose tissue. Diabetes 51:3189–3195

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, Leonardson A, Castellini LW, Wang S, Champy MF, Zhang B, Emilsson V, Doss S, Ghazalpour A, Horvath S, Drake TA, Lusis AJ, Schadt EE (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435

    Article  PubMed  CAS  Google Scholar 

  • Chong MF, Fielding BA, Frayn KN (2007) Metabolic interaction of dietary sugars and plasma lipids with a focus on mechanisms and de novo lipogenesis. Proc Nutr Soc 66:52–59

    Article  PubMed  CAS  Google Scholar 

  • Christophersen B, Nordstoga K, Shen Y, Olivecrona T, Olivecrona G (1997) Lipoprotein lipase deficiency with pancreatitis in mink: biochemical characterization and pathology. J Lipid Res 38:837–846

    PubMed  CAS  Google Scholar 

  • Chung BH, Palgunachari MN, Mishra VK, Chang CH, Segrest JP, Anantharamaiah GM (1996) Probing structure and function of VLDL by synthetic amphipathic helical peptides. J Lipid Res 37:1099–1112

    PubMed  CAS  Google Scholar 

  • Cruz WS, Kwon G, Marshall CA, McDaniel ML, Semenkovich CF (2001) Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and beta-cell dysfunction. J Biol Chem 276:12162–12168

    Google Scholar 

  • Cryer A, Foster B, Wing DR, Robinson DS (1973) The effect of cycloheximide on adipose-tissue clearing-factor lipase. Biochem J 132:833–836

    PubMed  CAS  Google Scholar 

  • Cryer A, Riley SE, Williams ER, Robinson DS (1976) Effect of nutritional status on rat adipose tissue, muscle and post-heparin plasma clearing factor lipase activities: their relationship to triglyceride fatty acid uptake by fat-cells and to plasma insulin concentrations. Clin Sci Mol Med 50:213–221

    PubMed  CAS  Google Scholar 

  • Cunningham VJ, Robinson DS (1969) Clearing-factor lipase in adipose tissue. Distinction of different states of the enzyme and the possible role of the fat cell in the maintenance of tissue activity. Biochem J 112:203–209

    PubMed  CAS  Google Scholar 

  • Dani C, Amri EZ, Bertrand B, Enerback S, Bjursell G, Grimaldi P, Ailhaud G (1990) Expression and regulation of pOb24 and lipoprotein lipase genes during adipose conversion. J Cell Biochem 43:103–110

    Article  PubMed  CAS  Google Scholar 

  • Davies BS, Waki H, Beigneux AP, Farber E, Weinstein MM, Wilpitz DC, Tai LJ, Evans RM, Fong LG, Tontonoz P, Young SG (2008) The expression of GPIHBP1, an endothelial cell binding site for lipoprotein lipase and chylomicrons, is induced by PPARγ. Mol Endocrinol 22:2496–2504

    Article  PubMed  CAS  Google Scholar 

  • Davis RC, Wong H, Nikazy J, Wang K, Han Q, Schotz MC (1992) Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzyme-specific properties. J Biol Chem 267:21499–21504

    PubMed  CAS  Google Scholar 

  • Deckelbaum RJ, Ramakrishnan R, Eisenberg S, Olivecrona T, Bengtsson-Olivecrona G (1992) Triacylglycerol and phospholipid hydrolysis in human plasma lipoproteins: role of lipoprotein and hepatic lipase. Biochemistry 31:8544–8551

    Article  PubMed  CAS  Google Scholar 

  • Dichlberger A, Cogburn LA, Nimpf J, Schneider WJ (2007) Avian apolipoprotein A-V binds to LDL receptor gene family members. J Lipid Res 48:1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Doolittle MH, Ben-Zeev O, Elovson J, Martin D, Kirchgessner TG (1990) The response of lipoprotein lipase to feeding and fasting. Evidence for posttranslational regulation. J Biol Chem 265:4570–4577

    PubMed  CAS  Google Scholar 

  • Dorfmeister B, Zeng WW, Dichlberger A, Nilsson SK, Schaap FG, Hubacek JA, Merkel M, Cooper JA, Lookene A, Putt W, Whittall R, Lee PJ, Lins L, Delsaux N, Nierman M, Kuivenhoven JA, Kastelein JJ, Vrablik M, Olivecrona G, Schneider WJ, Heeren J, Humphries SE, Talmud PJ (2008) Effects of six APOA5 variants, identified in patients with severe hypertriglyceridemia, on in vitro lipoprotein lipase activity and receptor binding. Arterioscler Thromb Vasc Biol 28:1866–1871

    Article  PubMed  CAS  Google Scholar 

  • Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149:942–949

    Article  PubMed  CAS  Google Scholar 

  • Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101

    Article  PubMed  CAS  Google Scholar 

  • Edwards IJ, Goldberg IJ, Parks JS, Xu H, Wagner WD (1993) Lipoprotein lipase enhances the interaction of low density lipoproteins with artery-derived extracellular matrix proteoglycans. J Lipid Res 34:1155–1163

    PubMed  CAS  Google Scholar 

  • Eiselein L, Wilson DW, Lame MW, Rutledge JC (2007) Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis. Am J Physiol Heart Circ Physiol 292:H2745–H2753

    Article  CAS  Google Scholar 

  • Eisenberg S, Sehayek E, Olivecrona T, Vlodavsky I (1992) Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix. J Clin Invest 90:2013–2021

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    Article  PubMed  CAS  Google Scholar 

  • Enerback S, Gimble JM (1993) Lipoprotein lipase gene expression: physiological regulators at the transcriptional and post-transcriptional level. Biochim Biophys Acta 1169:107–125

    PubMed  CAS  Google Scholar 

  • Fain JN, Buehrer B, Bahouth SW, Tichansky DS, Madan AK (2008) Comparison of messenger RNA distribution for 60 proteins in fat cells vs the nonfat cells of human omental adipose tissue. Metabolism 57:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Faustinella F, Smith LC, Chan L (1992) Functional topology of a surface loop shielding the catalytic center in lipoprotein lipase. Biochemistry 31:7219–7223

    Article  PubMed  CAS  Google Scholar 

  • Felts JM, Itakura H, Crane RT (1975) The mechanism of assimilation of constituents of chylomicrons, very low density lipoproteins and remnants – a new theory. Biochem Biophys Res Commun 66:1467–1475

    Article  PubMed  CAS  Google Scholar 

  • Fernandez C, Hansson O, Nevsten P, Holm C, Klint C (2008a) Hormone-sensitive lipase is necessary for normal mobilization of lipids during submaximal exercise. Am J Physiol Endocrinol Metab 295:E179–E186

    Article  CAS  Google Scholar 

  • Fernandez C, Lindholm M, Krogh M, Lucas S, Larsson S, Osmark P, Berger K, Boren J, Fielding B, Frayn K, Holm C (2008b) Disturbed cholesterol homeostasis in hormone-sensitive lipase-null mice. Am J Physiol Endocrinol Metab 295:E820–E831

    Article  CAS  Google Scholar 

  • Fernandez-Borja M, Bellido D, Vilella E, Olivecrona G, Vilaro S (1996) Lipoprotein lipase-mediated uptake of lipoprotein in human fibroblasts: evidence for an LDL receptor-independent internalization pathway. J Lipid Res 37:464–481

    PubMed  CAS  Google Scholar 

  • Fielding BA, Frayn KN (1998) Lipoprotein lipase and the disposition of dietary fatty acids. Br J Nutr 80:495–502

    PubMed  CAS  Google Scholar 

  • Fielding BA, Humphreys SM, Allman RF, Frayn KN (1993) Mono-, di- and triacylglycerol concentrations in human plasma: effects of heparin injection and of a high-fat meal. Clin Chim Acta 216:167–173

    Article  PubMed  CAS  Google Scholar 

  • Fielding CJ (1978) Metabolism of cholesterol-rich chylomicroms. Mechanism of binding and uptake of cholesteryl esters by the vascular bed of the perfused rat heart. J Clin Invest 62:141–151

    Article  PubMed  CAS  Google Scholar 

  • Fojo SS, Brewer HB (1992) Hypertriglyceridaemia due to genetic defects in lipoprotein lipase and apolipoprotein C-II. J Intern Med 231:669–677

    Article  PubMed  CAS  Google Scholar 

  • Franckhauser S, Munoz S, Pujol A, Casellas A, Riu E, Otaegui P, Su B, Bosch F (2002) Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes 51:624–630

    Article  PubMed  CAS  Google Scholar 

  • Frayn KN (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 45:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Fredenrich A (1998) Role of apolipoprotein CIII in triglyceride-rich lipoprotein metabolism. Diabetes Metab 24:490–495

    PubMed  CAS  Google Scholar 

  • Friedman G, Chajek-Shaul T, Stein O, Olivecrona T, Stein Y (1981) The role of lipoprotein lipase in the assimilation of cholesteryl linoleyl ether by cultured cells incubated with labeled chylomicrons. Biochim Biophys Acta 666:156–164

    PubMed  CAS  Google Scholar 

  • Friedman G, Chajek-Shaul T, Olivecrona T, Stein O, Stein Y (1982) Fate of milk 125I-labelled lipoprotein lipase in cells in culture. Comparison of lipoprotein lipase- and non-lipoprotein lipase-synthesizing cells. Biochim Biophys Acta 711:114–122

    PubMed  CAS  Google Scholar 

  • Gangabadage CS, Zdunek J, Tessari M, Nilsson S, Olivecrona G, Wijmenga SS (2008) Structure and dynamics of human apolipoprotein CIII. J Biol Chem 283:17416–17427

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez C, Marotta M, Moore-Carrasco R, Guitart M, Camps M, Busquets S, Montell E, Gomez-Foix AM (2005) Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. Am J Physiol Cell Physiol 288:C1264–C1272

    Article  CAS  Google Scholar 

  • Gimeno RE (2007) Fatty acid transport proteins. Curr Opin Lipidol 18:271–276

    Article  PubMed  CAS  Google Scholar 

  • Gliemann J (1998) Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands. Biol Chem 379:951–964

    PubMed  CAS  Google Scholar 

  • Gonzales AM, Orlando RA (2007) Role of adipocyte-derived lipoprotein lipase in adipocyte hypertrophy. Nutr Metab (Lond) 4:22

    Article  CAS  Google Scholar 

  • Goudriaan JR, Espirito Santo SM, Voshol PJ, Teusink B, van Dijk KW, van Vlijmen BJ, Romijn JA, Havekes LM, Rensen PC (2004) The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis. J Lipid Res 45:1475–1481

    Article  PubMed  CAS  Google Scholar 

  • Goudriaan JR, den Boer MA, Rensen PC, Febbraio M, Kuipers F, Romijn JA, Havekes LM, Voshol PJ (2005) CD36 deficiency in mice impairs lipoprotein lipase-mediated triglyceride clearance. J Lipid Res 46:2175–2181

    Article  PubMed  CAS  Google Scholar 

  • Granneman JG, Moore HP (2008) Location, location: protein trafficking and lipolysis in adipocytes. Trends Endocrinol Metab 19:3–9

    Article  PubMed  CAS  Google Scholar 

  • Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266:11341–11346

    PubMed  CAS  Google Scholar 

  • Haemmerle G, Zimmermann R, Strauss JG, Kratky D, Riederer M, Knipping G, Zechner R (2002) Hormone-sensitive lipase deficiency in mice changes the plasma lipid profile by affecting the tissue-specific expression pattern of lipoprotein lipase in adipose tissue and muscle. J Biol Chem 277:12946–12952

    Article  PubMed  CAS  Google Scholar 

  • Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737

    Article  PubMed  CAS  Google Scholar 

  • Hahne P, Krempler F, Schaap FG, Soyal SM, Hoffinger H, Miller K, Oberkofler H, Strobl W, Patsch W (2008) Determinants of plasma apolipoprotein A-V and APOA5 gene transcripts in humans. J Intern Med 264:452–462

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JA (2007) New insights into the roles of proteins and lipids in membrane transport of fatty acids. Prostaglandins Leukot Essent Fatty Acids 77:355–361

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JA, Miller KW, Small DM (1983) Solubilization of triolein and cholesteryl oleate in egg phosphatidylcholine vesicles. J Biol Chem 258:12821–12826

    PubMed  CAS  Google Scholar 

  • Hartman AD (1977) Lipoprotein lipase distribution in rat adipose tissues: effect on chylomicron uptake. Am J Physiol 232:E316–E323

    Google Scholar 

  • Heeren J, Niemeier A, Merkel M, Beisiegel U (2002) Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich lipoproteins and mediates their hepatic clearance in vivo. J Mol Med 80:576–584

    Article  PubMed  CAS  Google Scholar 

  • Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, Kishida K, Inoue K, Kuriyama H, Nakamura T, Fushiki T, Kihara S, Shimomura I (2005) Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci USA 102:10993–10998

    Article  PubMed  CAS  Google Scholar 

  • Holzl B, Iglseder B, Sandhofer A, Malaimare L, Lang J, Paulweber B, Sandhofer F (2002) Insulin sensitivity is impaired in heterozygous carriers of lipoprotein lipase deficiency. Diabetologia 45:378–384

    Article  PubMed  CAS  Google Scholar 

  • Hultin M, Bengtsson-Olivecrona G, Olivecrona T (1992) Release of lipoprotein lipase to plasma by triacylglycerol emulsions. Comparison to the effect of heparin. Biochim Biophys Acta 1125:97–103

    PubMed  CAS  Google Scholar 

  • Hultin M, Savonen R, Olivecrona T (1996) Chylomicron metabolism in rats: lipolysis, recirculation of triglyceride-derived fatty acids in plasma FFA, and fate of core lipids as analyzed by compartmental modelling. J Lipid Res 37:1022–1036

    PubMed  CAS  Google Scholar 

  • Ibrahimi A, Abumrad NA (2002) Role of CD36 in membrane transport of long-chain fatty acids. Curr Opin Clin Nutr Metab Care 5:139–145

    Article  PubMed  CAS  Google Scholar 

  • Isola LM, Zhou SL, Kiang CL, Stump DD, Bradbury MW, Berk PD (1995) 3T3 fibroblasts transfected with a cDNA for mitochondrial aspartate aminotransferase express plasma membrane fatty acid-binding protein and saturable fatty acid uptake. Proc Natl Acad Sci USA 92:9866–9870

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL (1990) Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249:790–793

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen L, Madsen P, Jacobsen C, Nielsen MS, Gliemann J, Petersen CM (2001) Activation and functional characterization of the mosaic receptor SorLA/LR11. J Biol Chem 276:22788–22796

    Article  PubMed  CAS  Google Scholar 

  • Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS (2007) Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol 293:G1–G4

    Article  CAS  Google Scholar 

  • Jensen DR, Gavigan S, Sawicki V, Witsell DL, Eckel RH, Neville MC (1994) Regulation of lipoprotein lipase activity and mRNA in the mammary gland of the lactating mouse. Biochem J 298:321–327

    PubMed  CAS  Google Scholar 

  • Jong MC, Hofker MH, Havekes LM (1999) Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 19:472–484

    Article  PubMed  CAS  Google Scholar 

  • Kalant D, Cianflone K (2004) Regulation of fatty acid transport. Curr Opin Lipidol 15:309-314.

    Article  PubMed  CAS  Google Scholar 

  • Kalant D., Phelis S., Fielding B.A., Frayn K.N., Cianflone K., Sniderman A.D (2000) Increased postprandial fatty acid trapping in subcutaneous adipose tissue in obese women. J Lipid Res 41:1963-1968.

    PubMed  CAS  Google Scholar 

  • Kalant D, MacLaren R, Cui W, Samanta R, Monk PN, Laporte SA, Cianflone K (2005) C5L2 is a functional receptor for acylation-stimulating protein. J Biol Chem 280:23936–23944

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Contreras JA, Hellman U, Tornqvist H, Holm C (1997) cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem 272:27218–27223

    Article  PubMed  CAS  Google Scholar 

  • Karpe F, Olivecrona T, Hamsten A, Hultin M (1997) Chylomicron/chylomicron remnant turnover in humans: evidence for margination of chylomicrons and poor conversion of larger to smaller chylomicron remnants. J Lipid Res 38:949–961

    PubMed  CAS  Google Scholar 

  • Karpe F, Olivecrona T, Olivecrona G, Samra JS, Summers LK, Humphreys SM, Frayn KN (1998) Lipoprotein lipase transport in plasma: role of muscle and adipose tissues in regulation of plasma lipoprotein lipase concentrations. J Lipid Res 39:2387–2393

    PubMed  CAS  Google Scholar 

  • Kinnunen PK, Jackson RL, Smith LC, Gotto AM Jr, Sparrow JT (1977) Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II. Proc Natl Acad Sci USA 74:4848–4851

    Article  PubMed  CAS  Google Scholar 

  • Kirchgessner TG, Svenson KL, Lusis AJ, Schotz MC (1987) The sequence of cDNA encoding lipoprotein lipase. A member of a lipase gene family. J Biol Chem 262:8463–8466

    PubMed  CAS  Google Scholar 

  • Kishida K, Shimomura I, Kondo H, Kuriyama H, Makino Y, Nishizawa H, Maeda N, Matsuda M, Ouchi N, Kihara S, Kurachi Y, Funahashi T, Matsuzawa Y (2001) Genomic structure and insulin-mediated repression of the aquaporin adipose. (AQPap), adipose-specific glycerol channel. J Biol Chem 276:36251–36260

    Article  PubMed  CAS  Google Scholar 

  • Kluger M, Heeren J, Merkel M (2008) Apoprotein A-V: an important regulator of triglyceride metabolism. J Inherit Metab Dis 31:281–288

    Article  CAS  Google Scholar 

  • Kobayashi Y, Nakajima T, Inoue I (2002) Molecular modeling of the dimeric structure of human lipoprotein lipase and functional studies of the carboxyl-terminal domain. Eur J Biochem 269:4701–4710

    Article  PubMed  CAS  Google Scholar 

  • Kolovou GD, Kostakou PM, Anagnostopoulou KK, Cokkinos DV (2008) Therapeutic effects of fibrates in postprandial lipemia. Am J Cardiovasc Drugs 8:243–255

    Article  PubMed  CAS  Google Scholar 

  • Kraemer FB (2007) Adrenal cholesterol utilization. Mol Cell Endocrinol 265/266:42–45

    Article  CAS  Google Scholar 

  • Kratky D, Zimmermann R, Wagner EM, Strauss JG, Jin W, Kostner GM, Haemmerle G, Rader DJ, Zechner R (2005) Endothelial lipase provides an alternative pathway for FFA uptake in lipoprotein lipase-deficient mouse adipose tissue. J Clin Invest 115:161–167

    PubMed  CAS  Google Scholar 

  • Lake AC, Sun Y, Li JL, Kim JE, Johnson JW, Li D, Revett T, Shih HH, Liu W, Paulsen JE, Gimeno RE (2005) Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. J Lipid Res 46:2477–2487

    Article  PubMed  CAS  Google Scholar 

  • Laplante M, Festuccia WT, Soucy G, Blanchard PG, Renaud A, Berger JP, Olivecrona G, Deshaies Y. (2008) Tissue-specific postprandial clearance is the major determinant of PPARγ-induced triglyceride lowering in the rat. Am J Physiol Regul Integr Comp Physiol. DOI:10.1152/ajpregu.90552.2008

    Google Scholar 

  • Larnkjaer A, Nykjaer A, Olivecrona G, Thogersen H, Ostergaard PB (1995) Structure of heparin fragments with high affinity for lipoprotein lipase and inhibition of lipoprotein lipase binding to alpha 2-macroglobulin-receptor/low-density-lipoprotein-receptor-related protein by heparin fragments. Biochem J 307:205–214

    PubMed  CAS  Google Scholar 

  • LaRosa JC, Levy RI, Herbert P, Lux SE, Fredrickson DS (1970) A specific apoprotein activator for lipoprotein lipase. Biochem Biophys Res Commun 41:57–62

    Article  PubMed  CAS  Google Scholar 

  • Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss JG, Gorkiewicz G, Zechner R (2006) Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin–Dorfman syndrome. Cell Metab 3:309–319

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Walsh JD, Mikhailenko I, Yu P, Migliorini M, Wu Y, Krueger S, Curtis JE, Harris B, Lockett S, Blacklow SC, Strickland DK, Wang YX (2006) RAP uses a histidine switch to regulate its interaction with LRP in the ER and Golgi. Mol Cell 22:423–430

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Goldberg IJ (2007) Lipoprotein lipase-derived fatty acids: physiology and dysfunction. Curr Hypertens Rep 9:462–466

    Article  PubMed  CAS  Google Scholar 

  • Lee JJ, Smith PJ, Fried SK (1998) Mechanisms of decreased lipoprotein lipase activity in adipocytes of starved rats depend on duration of starvation. J Nutr 128:940–946

    PubMed  CAS  Google Scholar 

  • Levak-Frank S, Weinstock PH, Hayek T, Verdery R, Hofmann W, Ramakrishnan R, Sattler W, Breslow JL, Zechner R (1997) Induced mutant mice expressing lipoprotein lipase exclusively in muscle have subnormal triglycerides yet reduced high density lipoprotein cholesterol levels in plasma. J Biol Chem 272:17182–17190

    Article  PubMed  CAS  Google Scholar 

  • Levak-Frank S, Hofmann W, Weinstock PH, Radner H, Sattler W, Breslow JL, Zechner R (1999) Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle, but not in skeletal muscle and adipose tissue, have normal plasma triglyceride and high-density lipoprotein-cholesterol levels. Proc Natl Acad Sci USA 96:3165–3170

    Article  PubMed  CAS  Google Scholar 

  • Li C (2006) Genetics and regulation of angiopoietin-like proteins 3 and 4. Curr Opin Lipidol 17:152–156

    Article  PubMed  CAS  Google Scholar 

  • Ling C, Svensson L, Oden B, Weijdegard B, Eden B, Eden S, Billig H (2003) Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J Clin Endocrinol Metab 88:1804–1808

    Article  PubMed  CAS  Google Scholar 

  • Liu GQ, Olivecrona T (1991) Pulse-chase study on lipoprotein lipase in perfused guinea pig heart. Am J Physiol 261:H2044–H2050

    Google Scholar 

  • Lookene A, Chevreuil O, Ostergaard P, Olivecrona G (1996) Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization, and kinetics. Biochemistry 35:12155–12163

    Article  PubMed  CAS  Google Scholar 

  • Lookene A, Nielsen MS, Gliemann J, Olivecrona G (2000) Contribution of the carboxy-terminal domain of lipoprotein lipase to interaction with heparin and lipoproteins. Biochem Biophys Res Commun 271:15–21

    Article  PubMed  CAS  Google Scholar 

  • Lookene A, Zhang L, Hultin M, Olivecrona G (2004) Rapid subunit exchange in dimeric lipoprotein lipase and properties of the inactive monomer. J Biol Chem 279:49964–49972

    Article  PubMed  CAS  Google Scholar 

  • Lookene A, Beckstead JA, Nilsson S, Olivecrona G, Ryan RO (2005) Apolipoprotein A-V–heparin interactions: implications for plasma lipoprotein metabolism. J Biol Chem 280:25383–25387

    Article  PubMed  CAS  Google Scholar 

  • Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43:2007–2016

    Article  PubMed  CAS  Google Scholar 

  • MacArthur JM, Bishop JR, Stanford KI, Wang L, Bensadoun A, Witztum JL, Esko JD (2007) Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Invest 117:153–164

    Article  PubMed  CAS  Google Scholar 

  • Makoveichuk E, Castel S, Vilaro S, Olivecrona G (2004) Lipoprotein lipase-dependent binding and uptake of low density lipoproteins by THP-1 monocytes and macrophages: possible involvement of lipid rafts. Biochim Biophys Acta 1686:37–49

    PubMed  CAS  Google Scholar 

  • Martin-Hidalgo A, Holm C, Belfrage P, Schotz MC, Herrera E (1994) Lipoprotein lipase and hormone-sensitive lipase activity and mRNA in rat adipose tissue during pregnancy. Am J Physiol 266:E930–E935

    Google Scholar 

  • Masuno H, Blanchette-Mackie EJ, Chernick SS, Scow RO (1990) Synthesis of inactive nonsecretable high mannose-type lipoprotein lipase by cultured brown adipocytes of combined lipase-deficient cld/cld mice. J Biol Chem 265:1628–1638

    PubMed  CAS  Google Scholar 

  • Masuno H, Schultz CJ, Park JW, Blanchette-Mackie EJ, Mateo C, Scow RO (1991) Glycosylation, activity and secretion of lipoprotein lipase in cultured brown adipocytes of newborn mice. Effect of tunicamycin, monensin, 1-deoxymannojirimycin and swainsonine. Biochem J 277:801–809

    PubMed  CAS  Google Scholar 

  • Mead JR, Cryer A, Ramji DP (1999) Lipoprotein lipase, a key role in atherosclerosis. FEBS Lett 462:1–6

    Article  PubMed  CAS  Google Scholar 

  • Mead JR, Irvine SA, Ramji DP (2002) Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med 80:753–769

    Article  PubMed  CAS  Google Scholar 

  • Meegalla RL, Billheimer JT, Cheng D (2002) Concerted elevation of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin. Biochem Biophys Res Commun 298:317–323

    Article  PubMed  CAS  Google Scholar 

  • Merkel M, Weinstock PH, Chajek-Shaul T, Radner H, Yin B, Breslow JL, Goldberg IJ (1998) Lipoprotein lipase expression exclusively in liver. A mouse model for metabolism in the neonatal period and during cachexia. J Clin Invest 102:893–901

    Article  PubMed  CAS  Google Scholar 

  • Merkel M, Eckel RH, Goldberg IJ (2002a) Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 43:1997–2006

    Article  PubMed  CAS  Google Scholar 

  • Merkel M, Heeren J, Dudeck W, Rinninger F, Radner H, Breslow JL, Goldberg IJ, Zechner R, Greten H (2002b) Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. J Biol Chem 277:7405–7411

    Article  PubMed  CAS  Google Scholar 

  • Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, Laatsch A, Heeren J (2005) Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem 280:21553–21560

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Perfield JW 2nd, Souza SC, Shen WJ, Zhang HH, Stancheva ZS, Kraemer FB, Obin MS, Greenberg AS (2007) Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem 282:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Morley N, Kuksis A (1972) Positional specificity of lipoprotein lipase. J Biol Chem 247:6389–6393

    PubMed  CAS  Google Scholar 

  • Morley N, Kuksis A, Hoffman AG, Kakis G (1977) Preferential in vivo accumulation of sn-2,3-diacylglycerols in postheparin plasma of rats. Can J Biochem 55:1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Narayanaswami V, Maiorano JN, Dhanasekaran P, Ryan RO, Phillips MC, Lund-Katz S, Davidson WS (2004) Helix orientation of the functional domains in apolipoprotein e in discoidal high density lipoprotein particles. J Biol Chem 279:14273–14279

    Article  PubMed  CAS  Google Scholar 

  • Neuger L, Ruge T, Makoveichuk E, Vlodavsky I, Olivecrona G (2001) Effects of the heparin-mimicking compound RG-13577 on lipoprotein lipase and on lipase mediated binding of LDL to cells. Atherosclerosis 157:13–21

    Article  PubMed  CAS  Google Scholar 

  • Neuger L, Vilaro S, Lopez-Iglesias C, Gupta J, Olivecrona T, Olivecrona G (2004) Effects of heparin on the uptake of lipoprotein lipase in rat liver. BMC Physiol 4:13

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MS, Jacobsen C, Olivecrona G, Gliemann J, Petersen CM (1999) Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. J Biol Chem 274:8832–8836

    Article  PubMed  CAS  Google Scholar 

  • Nilsson SK, Lookene A, Beckstead JA, Gliemann J, Ryan RO, Olivecrona G (2007) Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry 46:3896–3904

    Article  PubMed  CAS  Google Scholar 

  • Nilsson SK, Christensen S, Raarup MK, Ryan RO, Nielsen MS, Olivecrona G (2008) Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families. J Biol Chem 283:25920–25927

    Article  PubMed  CAS  Google Scholar 

  • Nilsson-Ehle P, Egelrud T, Belfrage P, Olivecrona T, Borgstrom B (1973) Positional specificity of purified milk lipoprotein lipase. J Biol Chem 248:6734–6737

    PubMed  CAS  Google Scholar 

  • Nordenstrom J, Thorne A, Aberg W, Carneheim C, Olivecrona T (2006) The hypertriglyceridemic clamp technique. Studies using long-chain and structured triglyceride emulsions in healthy subjects. Metabolism 55:1443–1450

    Article  PubMed  CAS  Google Scholar 

  • Nye C, Kim J, Kalhan SC, Hanson RW (2008a) Reassessing triglyceride synthesis in adipose tissue. Trends Endocrinol Metab 193:56–361

    Google Scholar 

  • Nye CK, Hanson RW, Kalhan SC (2008b) Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. J Biol Chem 283:27565–27574

    Article  PubMed  CAS  Google Scholar 

  • Nykjaer A, Bengtsson-Olivecrona G, Lookene A, Moestrup SK, Petersen CM, Weber W, Beisiegel U, Gliemann J (1993) The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase. J Biol Chem 268:15048–15055

    PubMed  CAS  Google Scholar 

  • Nykjaer A, Nielsen M, Lookene A, Meyer N, Roigaard H, Etzerodt M, Beisiegel U, Olivecrona G, Gliemann J (1994) A carboxyl-terminal fragment of lipoprotein lipase binds to the low density lipoprotein receptor-related protein and inhibits lipase-mediated uptake of lipoprotein in cells. J Biol Chem 269:31747–31755

    PubMed  CAS  Google Scholar 

  • Obunike JC, Sivaram P, Paka L, Low MG, Goldberg IJ (1996) Lipoprotein lipase degradation by adipocytes: receptor-associated protein (RAP)-sensitive and proteoglycan-mediated pathways. J Lipid Res 37:2439–2449

    PubMed  CAS  Google Scholar 

  • Obunike JC, Lutz EP, Li Z, Paka L, Katopodis T, Strickland DK, Kozarsky KF, Pillarisetti S, Goldberg IJ (2001) Transcytosis of lipoprotein lipase across cultured endothelial cells requires both heparan sulfate proteoglycans and the very low density lipoprotein receptor. J Biol Chem 276:8934–8941

    Article  PubMed  CAS  Google Scholar 

  • Olivecrona G, Beisiegel U (1997) Lipid binding of apolipoprotein CII is required for stimulation of lipoprotein lipase activity against apolipoprotein CII-deficient chylomicrons. Arterioscler Thromb Vasc Biol 17:1545–1549

    Article  PubMed  CAS  Google Scholar 

  • Olivecrona G, Hultin M, Savonen R, Skottova N, Lookene A, Tugrul Y, Olivecrona T (1995) Transport of lipoprotein in plasma and lipoprotein metabolism. In: Woodford FP. (ed) Atherosclerosis X. Elsevier, Amsterdam, pp 250–263

    Google Scholar 

  • Olivecrona T, Bengtsson G (1978) Heparin and lipoprotein lipase – how specific is the interaction. In: Carlson LA, (eds) International conference on atherosclerosis. Raven, New York, pp 153–157

    Google Scholar 

  • Olivecrona T, Olivecrona G (1999) Lipoprotein lipase and hepatic lipase in lipoprotein metabolism. In: Betteridge DJ, Illingworth DR, Shepherd J. (eds) Lipoproteins in health and disease. Arnold, London, pp 223–246

    Google Scholar 

  • Olivecrona T, Bengtsson G, Marklund SE, Lindahl U, Hook M (1977) Heparin–lipoprotein lipase interactions. Fed Proc 36:60–65

    PubMed  CAS  Google Scholar 

  • Olivecrona T, Chernick SS, Bengtsson-Olivecrona G, Paterniti JR Jr, Brown WV, Scow RO (1985) Combined lipase deficiency (cld/cld) in mice. Demonstration that an inactive form of lipoprotein lipase is synthesized. J Biol Chem 260:2552–2557

    PubMed  CAS  Google Scholar 

  • Olivecrona T, Chernick SS, Bengtsson-Olivecrona G, Garrison M, Scow RO (1987) Synthesis and secretion of lipoprotein lipase in 3T3-L1 adipocytes. Demonstration of inactive forms of lipase in cells. J Biol Chem 262:10748–10759

    PubMed  CAS  Google Scholar 

  • Olswang Y, Cohen H, Papo O, Cassuto H, Croniger CM, Hakimi P, Tilghman SM, Hanson RW, Reshef L (2002) A mutation in the peroxisome proliferator-activated receptor gamma-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Proc Natl Acad Sci USA 99:625–630

    Article  PubMed  CAS  Google Scholar 

  • Ong JM, Kern PA (1989a) Effect of feeding and obesity on lipoprotein lipase activity, immunoreactive protein, and messenger RNA levels in human adipose tissue. J Clin Invest 84:305–311

    Article  PubMed  CAS  Google Scholar 

  • Ong JM, Kern PA (1989b) The role of glucose and glycosylation in the regulation of lipoprotein lipase synthesis and secretion in rat adipocytes. J Biol Chem 264:3177–3182

    PubMed  CAS  Google Scholar 

  • Ong JM, Kirchgessner TG, Schotz MC, Kern PA (1988) Insulin increases the synthetic rate and messenger RNA level of lipoprotein lipase in isolated rat adipocytes. J Biol Chem 263:12933–12938

    PubMed  CAS  Google Scholar 

  • Ong JM, Saffari B, Simsolo RB, Kern PA (1992a) Epinephrine inhibits lipoprotein lipase gene expression in rat adipocytes through multiple steps in posttranscriptional processing. Mol Endocrinol 6:61–69

    Article  PubMed  CAS  Google Scholar 

  • Ong JM, Simsolo RB, Saffari B, Kern PA (1992b) The regulation of lipoprotein lipase gene expression by dexamethasone in isolated rat adipocytes. Endocrinology 130:2310–2316

    Article  PubMed  CAS  Google Scholar 

  • Osborne JC Jr, Bengtsson-Olivecrona G, Lee NS, Olivecrona T (1985) Studies on inactivation of lipoprotein lipase: role of the dimer to monomer dissociation. Biochemistry 24:5606–5611

    Article  PubMed  CAS  Google Scholar 

  • Osibow K, Frank S, Malli R, Zechner R, Graier WF (2006) Mitochondria maintain maturation and secretion of lipoprotein lipase in the endoplasmic reticulum. Biochem J 396:173–182

    Article  PubMed  CAS  Google Scholar 

  • Ost A, Ortegren U, Gustavsson J, Nystrom FH, Stralfors P (2005) Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes. J Biol Chem 280:5–8

    PubMed  Google Scholar 

  • Osterlund T, Beussman DJ, Julenius K, Poon PH, Linse S, Shabanowitz J, Hunt DF, Schotz MC, Derewenda ZS, Holm C (1999) Domain identification of hormone-sensitive lipase by circular dichroism and fluorescence spectroscopy, limited proteolysis, and mass spectrometry. J Biol Chem 274:15382–15388

    Article  PubMed  CAS  Google Scholar 

  • Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB, Tsutsumi O, Yamada N (2000) Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA 97:787–792

    Article  PubMed  CAS  Google Scholar 

  • Otarod JK, Goldberg IJ (2004) Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr Atheroscler Rep 6:335–342

    Article  PubMed  Google Scholar 

  • Page S, Judson A, Melford K, Bensadoun A (2006) Interaction of lipoprotein lipase and receptor-associated protein. J Biol Chem 281:13931–13938

    Article  PubMed  CAS  Google Scholar 

  • Paglialunga S, Fisette A, Yan Y, Deshaies Y, Brouillette JF, Pekna M, Cianflone K (2008) Acylation-stimulating protein deficiency and altered adipose tissue in alternative complement pathway knockout mice. Am J Physiol Endocrinol Metab 294:E521–E529

    Article  CAS  Google Scholar 

  • Park TS, Yamashita H, Blaner WS, Goldberg IJ (2007) Lipids in the heart: a source of fuel and a source of toxins. Curr Opin Lipidol 18:277–282

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy N, Goldberg IJ, Sivaram P, Mulloy B, Flory DM, Wagner WD (1994) Oligosaccharide sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase. J Biol Chem 269:22391–22396

    PubMed  CAS  Google Scholar 

  • Patsch JR, Gotto AM Jr, Olivercrona T, Eisenberg S (1978) Formation of high density lipoprotein2-like particles during lipolysis of very low density lipoproteins in vitro. Proc Natl Acad Sci USA 75:4519–4523

    Article  PubMed  CAS  Google Scholar 

  • Payne VA, Au WS, Gray SL, Nora ED, Rahman SM, Sanders R, Hadaschik D, Friedman JE, O’Rahilly S, Rochford JJ (2007) Sequential regulation of diacylglycerol acyltransferase 2 expression by CAAT/enhancer-binding protein beta. (C/EBPbeta) and C/EBPalpha during adipogenesis. J Biol Chem 282:21005–21014

    Article  PubMed  CAS  Google Scholar 

  • Pedersen ME, Schotz MC (1980) Rapid changes in rat heart lipoprotein lipase activity after feeding carbohydrate. J Nutr 110:481–487

    PubMed  CAS  Google Scholar 

  • Peinado-Onsurbe J, Staels B, Deeb S, Ramirez I, Llobera M, Auwerx J (1992) Neonatal extinction of liver lipoprotein lipase expression. Biochim Biophys Acta 1131:281–286

    PubMed  CAS  Google Scholar 

  • Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, Krauss RM, Rubin EM (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294:169–173

    Article  PubMed  CAS  Google Scholar 

  • Pentikainen MO, Oksjoki R, Oorni K, Kovanen PT (2002) Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler Thromb Vasc Biol 22:211–217

    Article  PubMed  CAS  Google Scholar 

  • Peterfy M, Ben-Zeev O, Mao HZ, Weissglas-Volkov D, Aouizerat BE, Pullinger CR, Frost PH, Kane JP, Malloy MJ, Reue K, Pajukanta P, Doolittle MH (2007) Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat Genet 39:1483–1487

    Article  PubMed  CAS  Google Scholar 

  • Peterson J, Bihain BE, Bengtsson-Olivecrona G, Deckelbaum RJ, Carpentier YA, Olivecrona T (1990) Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport. Proc Natl Acad Sci USA 87:909–913

    Article  PubMed  CAS  Google Scholar 

  • Picard F, Naimi N, Richard D, Deshaies Y (1999) Response of adipose tissue lipoprotein lipase to the cephalic phase of insulin secretion. Diabetes 48:452–459

    Article  PubMed  CAS  Google Scholar 

  • Pilch PF, Souto RP, Liu L, Jedrychowski MP, Berg EA, Costello CE, Gygi SP (2007) Cellular spelunking: exploring adipocyte caveolae. J Lipid Res 48:2103–2111

    Article  PubMed  CAS  Google Scholar 

  • Ploug M, Kjalke M, Ronne E, Weidle U, Hoyer-Hansen G, Dano K (1993) Localization of the disulfide bonds in the NH2-terminal domain of the cellular receptor for human urokinase-type plasminogen activator. A domain structure belonging to a novel superfamily of glycolipid-anchored membrane proteins. J Biol Chem 268:17539–17546

    PubMed  CAS  Google Scholar 

  • Preiss-Landl K, Zimmermann R, Hammerle G, Zechner R (2002) Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol 13:471–481

    Article  PubMed  CAS  Google Scholar 

  • Pulinilkunnil T, Rodrigues B (2006) Cardiac lipoprotein lipase: metabolic basis for diabetic heart disease. Cardiovasc Res 69:329–340

    Article  PubMed  CAS  Google Scholar 

  • Querfeld U, Hoffmann MM, Klaus G, Eifinger F, Ackerschott M, Michalk D, Kern PA (1999) Antagonistic effects of vitamin D and parathyroid hormone on lipoprotein lipase in cultured adipocytes. J Am Soc Nephrol 10:2158–2164

    PubMed  CAS  Google Scholar 

  • Rader DJ, Jaye M (2000) Endothelial lipase: a new member of the triglyceride lipase gene family. Curr Opin Lipidol 11:141–147

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan G, Pokrovskaya I, Ranganathan S, Kern PA (2005) Role of A kinase anchor proteins in the tissue-specific regulation of lipoprotein lipase. Mol Endocrinol 19:2527–2534

    Article  PubMed  CAS  Google Scholar 

  • Rapp D, Olivecrona T (1978) Kinetics of milk lipoprotein lipase. Studies with tributyrin. Eur J Biochem 91:379–385

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, Li M, Tang B, Jelicks LA, Scherer PE, Lisanti MP (2002) Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277:8635–8647

    Article  PubMed  CAS  Google Scholar 

  • Reinbold M, Hufnagel B, Kewitz T, Klumpp S, Krieglstein J (2008) Unsaturated fatty acids liberated from VLDL cause apoptosis in endothelial cells. Mol Nutr Food Res 52:581–588

    Article  PubMed  CAS  Google Scholar 

  • Roh C, Roduit R, Thorens B, Fried S, Kandror KV (2001) Lipoprotein lipase and leptin are accumulated in different secretory compartments in rat adipocytes. J Biol Chem 276:35990–35994

    Article  PubMed  CAS  Google Scholar 

  • Rojas C, Olivecrona T, Bengtsson-Olivecrona G (1991) Comparison of the action of lipoprotein lipase on triacylglycerols and phospholipids when presented in mixed liposomes or in emulsion droplets. Eur J Biochem 197:315–321

    Article  PubMed  CAS  Google Scholar 

  • Ruge T, Wu G, Olivecrona T, Olivecrona G (2004) Nutritional regulation of lipoprotein lipase in mice. Int J Biochem Cell Biol 36:320–329

    Article  PubMed  CAS  Google Scholar 

  • Ruge T, Svensson M, Eriksson JW, Olivecrona G (2005) Tissue-specific regulation of lipoprotein lipase in humans: effects of fasting. Eur J Clin Invest 35:194–200

    Article  PubMed  CAS  Google Scholar 

  • Rutledge JC, Woo MM, Rezai AA, Curtiss LK, Goldberg IJ (1997) Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circ Res 80:819–828

    PubMed  CAS  Google Scholar 

  • Saario SM, Laitinen JT (2007) Monoglyceride lipase as an enzyme hydrolyzing 2-arachidonoylglycerol. Chem Biodivers 4:1903–1913

    Article  PubMed  CAS  Google Scholar 

  • Saiki A, Murano T, Watanabe F, Oyama T, Miyashita Y, Shirai K (2005) Pitavastatin enhanced lipoprotein lipase expression in 3T3-L1 preadipocytes. J Atheroscler Thromb 12:163–168

    Article  PubMed  CAS  Google Scholar 

  • Saiki A, Oyama T, Endo K, Ebisuno M, Ohira M, Koide N, Murano T, Miyashita Y, Shirai K (2007) Preheparin serum lipoprotein lipase mass might be a biomarker of metabolic syndrome. Diabetes Res Clin Pract 76:93–101

    Article  PubMed  CAS  Google Scholar 

  • Santamarina-Fojo S, Dugi KA (1994) Structure, function and role of lipoprotein lipase in lipoprotein metabolism. Curr Opin Lipidol 5:117–125

    Article  PubMed  CAS  Google Scholar 

  • Santosa S, Jensen MD (2008) Why are we shaped differently, and why does it matter. Am J Physiol Endocrinol Metab 295:E531–E535

    Article  CAS  Google Scholar 

  • Sasaki A, Goldberg IJ (1992) Lipoprotein lipase release from BFC-1 beta adipocytes Effects of triglyceride-rich lipoproteins and lipolysis products. J Biol Chem 267:15198–15204

    PubMed  CAS  Google Scholar 

  • Saxena U, Goldberg IJ (1990) Interaction of lipoprotein lipase with glycosaminoglycans and apolipoprotein C-II: effects of free-fatty-acids. Biochim Biophys Acta 1043:161–168

    PubMed  CAS  Google Scholar 

  • Saxena U, Witte LD, Goldberg IJ (1989) Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J Biol Chem 264:4349–4355

    PubMed  CAS  Google Scholar 

  • Saxena U, Kulkarni NM, Ferguson E, Newton RS (1992) Lipoprotein lipase-mediated lipolysis of very low density lipoproteins increases monocyte adhesion to aortic endothelial cells. Biochem Biophys Res Commun 189:1653–1658

    Article  PubMed  CAS  Google Scholar 

  • Schaffer JE (2002) Fatty acid transport: the roads taken. Am J Physiol Endocrinol Metab 282:E239–E246

    Google Scholar 

  • Schoefl GI, French JE (1967) Morphologic aspects of vascular permeability to fat. Bibl Anat 9:495–500

    PubMed  CAS  Google Scholar 

  • Schotz MC, Garfinkel AS (1965) The effect of puromycin and actinomycin on carbohydrate-induced lipase activity in rat adipose tissue. Biochim Biophys Acta 106:202–205

    PubMed  CAS  Google Scholar 

  • Schultz FM, Wylie MB, Johnston JM (1971) The relationship between the monoglyceride and glycerol-3-phosphate pathways in adipose tissue. Biochem Biophys Res Commun 45:246–250

    Article  PubMed  CAS  Google Scholar 

  • Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281:40236–40241

    Article  PubMed  CAS  Google Scholar 

  • Scow RO (1977) Metabolism of cyhlomicrons in perfused adipose and mammary tissue of the rat. Fed Proc 36:182–185

    PubMed  CAS  Google Scholar 

  • Scow RO, Blanchette-Mackie EJ (1985) Why fatty acids flow in cell membranes. Prog Lipid Res 24:197–241

    Article  PubMed  CAS  Google Scholar 

  • Scow RO, Olivecrona T (1977) Effect of albumin on products formed from chylomicron triacylclycerol by lipoprotein lipase in vitro. Biochim Biophys Acta 487:472–486

    PubMed  CAS  Google Scholar 

  • Scow RO, Chernick SS, Fleck TR (1977) Lipoprotein lipase and uptake of triacylglycerol, cholesterol and phosphatidylcholine from chylomicrons by mammary and adipose tissue of lactating rats in vivo. Biochim Biophys Acta 487:297–306

    PubMed  CAS  Google Scholar 

  • Semb H, Olivecrona T (1986) Nutritional regulation of lipoprotein lipase in guinea pig tissues. Biochim Biophys Acta 876:249–255

    PubMed  CAS  Google Scholar 

  • Semb H, Olivecrona T (1987) Mechanisms for turnover of lipoprotein lipase in guinea pig adipocytes. Biochim Biophys Acta 921:104–115

    PubMed  CAS  Google Scholar 

  • Semb H, Olivecrona T (1989a) The relation between glycosylation and activity of guinea pig lipoprotein lipase. J Biol Chem 264:4195–4200

    PubMed  CAS  Google Scholar 

  • Semb H, Olivecrona T (1989b) Two different mechanisms are involved in nutritional regulation of lipoprotein lipase in guinea-pig adipose tissue. Biochem J 262:505–511

    PubMed  CAS  Google Scholar 

  • Sendak RA, Bensadoun A (1998) Identification of a heparin-binding domain in the distal carboxyl-terminal region of lipoprotein lipase by site-directed mutagenesis. J Lipid Res 39:1310–1315

    PubMed  CAS  Google Scholar 

  • Seo T, Al-Haideri M, Treskova E, Worgall TS, Kako Y, Goldberg IJ, Deckelbaum RJ (2000) Lipoprotein lipase-mediated selective uptake from low density lipoprotein requires cell surface proteoglycans and is independent of scavenger receptor class B type 1. J Biol Chem 275:30355–30362

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Lindberg A, Olivecrona G (2000) Apolipoprotein CII from rainbow trout (Oncorhynchus mykiss) is functionally active but structurally very different from mammalian apolipoprotein CII. Gene 254:189–198

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Lookene A, Nilsson S, Olivecrona G (2002) Functional analyses of human apolipoprotein CII by site-directed mutagenesis: identification of residues important for activation of lipoprotein lipase. J Biol Chem 277:4334–4342

    Article  PubMed  CAS  Google Scholar 

  • Shirai K, Fitzharris TJ, Shinomiya M, Muntz HG, Harmony JA, Jackson RL, Quinn DM (1983) Lipoprotein lipase-catalyzed hydrolysis of phosphatidylcholine of guinea pig very low density lipoproteins and discoidal complexes of phospholipid and apolipoprotein: effect of apolipoprotein C-II on the catalytic mechanism. J Lipid Res 24:721–730

    PubMed  CAS  Google Scholar 

  • Shu X, Chan J, Ryan RO, Forte TM (2007) Apolipoprotein A-V association with intracellular lipid droplets. J Lipid Res 48:1445–1450

    Article  PubMed  CAS  Google Scholar 

  • Sivaram P, Choi SY, Curtiss LK, Goldberg IJ (1994) An amino-terminal fragment of apolipoprotein B binds to lipoprotein lipase and may facilitate its binding to endothelial cells. J Biol Chem 269:9409–9412

    PubMed  CAS  Google Scholar 

  • Skowronski MT, Lebeck J, Rojek A, Praetorius J, Fuchtbauer EM, Frokiaer J, Nielsen S (2007) AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol Renal Physiol 292:F956–F965

    Article  CAS  Google Scholar 

  • Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, Sanan DA, Raber J, Eckel RH, Farese RV Jr (2000) Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet 25:87–90

    Article  PubMed  CAS  Google Scholar 

  • Soma MR, Gotto AM Jr, Ghiselli G (1989) Rapid modulation of rat adipocyte lipoprotein lipase: effect of calcium, A23187 ionophore, and thrombin. Biochim Biophys Acta 1003:307–314

    PubMed  CAS  Google Scholar 

  • Soupene E, Kuypers FA (2008) Mammalian long-chain acyl-CoA synthetases. Exp Biol Med (Maywood) 233:507–521

    Article  CAS  Google Scholar 

  • Spillmann D, Lookene A, Olivecrona G (2006) Isolation and characterization of low sulfated heparan sulfate sequences with affinity for lipoprotein lipase. J Biol Chem 281:23405–23413

    Article  PubMed  CAS  Google Scholar 

  • Sprecher DL, Harris BV, Stein EA, Bellet PS, Keilson LM, Simbartl LA (1996) Higher triglycerides, lower high-density lipoprotein cholesterol, and higher systolic blood pressure in lipoprotein lipase-deficient heterozygotes. A preliminary report. Circulation 94:3239–3245

    PubMed  CAS  Google Scholar 

  • Stein Y, Stein O (2003) Lipoprotein lipase and atherosclerosis. Atherosclerosis 170:1–9

    Article  PubMed  CAS  Google Scholar 

  • Stremmel W (1988) Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J Clin Invest 82:2001–2010

    Article  PubMed  CAS  Google Scholar 

  • Stump DD, Zhou SL, Berk PD (1993) Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am J Physiol 265:G894–G902

    Google Scholar 

  • Sukonina V, Lookene A, Olivecrona T, Olivecrona G (2006) Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci USA 103:17450–17455

    Article  PubMed  CAS  Google Scholar 

  • Talmud PJ (2007) Rare APOA5 mutations – clinical consequences, metabolic and functional effects: an ENID review. Atherosclerosis 194:287–292

    Article  PubMed  CAS  Google Scholar 

  • Talmud PJ, Hawe E, Martin S, Olivier M, Miller GJ, Rubin EM, Pennacchio LA, Humphries SE (2002) Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet 11:3039–3046

    Article  PubMed  CAS  Google Scholar 

  • Tan GD, Olivecrona G, Vidal H, Frayn KN, Karpe F (2006) Insulin sensitisation affects lipoprotein lipase transport in type 2 diabetes: role of adipose tissue and skeletal muscle in response to rosiglitazone. Diabetologia 49:2412–2418

    Article  PubMed  CAS  Google Scholar 

  • Teusink B, Voshol PJ, Dahlmans VE, Rensen PC, Pijl H, Romijn JA, Havekes LM (2003) Contribution of fatty acids released from lipolysis of plasma triglycerides to total plasma fatty acid flux and tissue-specific fatty acid uptake. Diabetes 52:614–620

    Article  PubMed  CAS  Google Scholar 

  • Thorne A, Aberg W, Carneheim C, Olivecrona T, Nordenstrom J (2005) Influence of trauma on plasma elimination of exogenous fat and on lipoprotein lipase activity and mass. Clin Nutr 24:66–74

    Article  PubMed  CAS  Google Scholar 

  • Tornvall P, Olivecrona G, Karpe F, Hamsten A, Olivecrona T (1995) Lipoprotein lipase mass and activity in plasma and their increase after heparin are separate parameters with different relations to plasma lipoproteins. Arterioscler Thromb Vasc Biol 15:1086–1093

    Article  PubMed  CAS  Google Scholar 

  • Traber MG, Olivecrona T, Kayden HJ (1985) Bovine milk lipoprotein lipase transfers tocopherol to human fibroblasts during triglyceride hydrolysis in vitro. J Clin Invest 75:1729–1734

    Article  PubMed  CAS  Google Scholar 

  • Ullrich NF, Purnell JQ, Brunzell JD (2001) Adipose tissue fatty acid composition in humans with lipoprotein lipase deficiency. J Invest Med 49:273–275

    CAS  Google Scholar 

  • van Bennekum AM, Kako Y, Weinstock PH, Harrison EH, Deckelbaum RJ, Goldberg IJ, Blaner WS (1999) Lipoprotein lipase expression level influences tissue clearance of chylomicron retinyl ester. J Lipid Res 40:565–574

    PubMed  CAS  Google Scholar 

  • van der Hoogt CC, Berbee JF, Espirito Santo SM, Gerritsen G, Krom YD, van der Zee A, Havekes LM, van Dijk KW, Rensen PC (2006) Apolipoprotein CI causes hypertriglyceridemia independent of the very-low-density lipoprotein receptor and apolipoprotein CIII in mice. Biochim Biophys Acta 1761:213–220

    PubMed  CAS  Google Scholar 

  • van Kuiken BA, Behnke WD (1994) The activation of porcine pancreatic lipase by cis-unsaturated fatty acids. Biochim Biophys Acta 1214:148–160

    PubMed  CAS  Google Scholar 

  • van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C (1994) Lipoprotein lipase. Molecular model based on the pancreatic lipase X-ray structure: consequences for heparin binding and catalysis. J Biol Chem 269:4626–4633

    PubMed  CAS  Google Scholar 

  • van Vlijmen BJ, Rohlmann A, Page ST, Bensadoun A, Bos IS, van Berkel TJ, Havekes LM, Herz J (1999) An extrahepatic receptor-associated protein-sensitive mechanism is involved in the metabolism of triglyceride-rich lipoproteins. J Biol Chem 274:35219–35226

    Article  PubMed  CAS  Google Scholar 

  • Vannier C, Ailhaud G (1989) Biosynthesis of lipoprotein lipase in cultured mouse adipocytes. II. Processing, subunit assembly, and intracellular transport. J Biol Chem 264:13206–13216

    PubMed  CAS  Google Scholar 

  • Veltri BC, Backus RC, Rogers QR, Depeters EJ (2006) Adipose fatty acid composition and rate of incorporation of alpha-linolenic acid differ between normal and lipoprotein lipase-deficient cats. J Nutr 136:2980–2986

    PubMed  CAS  Google Scholar 

  • Verger R (1976) Interfacial enzyme kinetics of lipolysis. Annu Rev Biophys Bioeng 5:77–117

    Article  PubMed  CAS  Google Scholar 

  • Vilaro S, Llobera M, Bengtsson-Olivecrona G, Olivecrona T (1988) Lipoprotein lipase uptake by the liver: localization, turnover, and metabolic role. Am J Physiol 254:G711–G722

    Google Scholar 

  • Vilella E, Joven J, Fernandez M, Vilaro S, Brunzell JD, Olivecrona T, Bengtsson-Olivecrona G (1993) Lipoprotein lipase in human plasma is mainly inactive and associated with cholesterol-rich lipoproteins. J Lipid Res 34:1555–1564

    PubMed  CAS  Google Scholar 

  • Wagner EM, Kratky D, Haemmerle G, Hrzenjak A, Kostner GM, Steyrer E, Zechner R (2004) Defective uptake of triglyceride-associated fatty acids in adipose tissue causes the SREBP-1c-mediated induction of lipogenesis. J Lipid Res 45:356–365

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902–910

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Gill R, Pedersen TL, Higgins LJ, Newman JW, Rutledge JC. (2008) Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized free fatty acids that induce endothelial cell inflammation. J Lipid Res (in press)

    Google Scholar 

  • Wang SP, Laurin N, Himms-Hagen J, Rudnicki MA, Levy E, Robert MF, Pan L, Oligny L, Mitchell GA (2001) The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes Res 9:119–128

    Article  PubMed  CAS  Google Scholar 

  • Watt MJ, Steinberg GR (2008) Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J 414:313–325

    Article  PubMed  CAS  Google Scholar 

  • Weinstein MM, Beigneux AP, Davies BS, Gin P, Yin L, Estrada K, Melford K, Bishop JR, Esko JD, Fong LG, Bensadoun A, Young SG. (2008) Abnormal patterns of lipoprotein lipase release into the plasma in GPIHBP1-deficient mice. J Biol Chem. DOI:10.1074/jbc.M806067200

    Google Scholar 

  • Weinstock PH, Levak-Frank S, Hudgins LC, Radner H, Friedman JM, Zechner R, Breslow JL (1997) Lipoprotein lipase controls fatty acid entry into adipose tissue, but fat mass is preserved by endogenous synthesis in mice deficient in adipose tissue lipoprotein lipase. Proc Natl Acad Sci USA 94:10261–10266

    Article  PubMed  CAS  Google Scholar 

  • Williams CM, Maitin V, Jackson KG (2004) Triacylglycerol-rich lipoprotein-gene interactions in endothelial cells. Biochem Soc Trans 32:994–998

    Article  PubMed  CAS  Google Scholar 

  • Willnow TE (1998) Receptor-associated protein (RAP): a specialized chaperone for endocytic receptors. Biol Chem 379:1025–1031

    PubMed  CAS  Google Scholar 

  • Wing DR, Fielding CJ, Robinson DS (1967) The effect of cycloheximide on tissue clearing-factor lipase activity. Biochem J 104:45C–46C

    Google Scholar 

  • Viso A, Cisneros JA, Ortega-Gutierrez S (2008) The medicinal chemistry of agents targeting monoacylglycerol lipase. Curr Top Med Chem 8:231–246

    Article  PubMed  CAS  Google Scholar 

  • Wong H, Yang D, Hill JS, Davis RC, Nikazy J, Schotz MC (1997) A molecular biology-based approach to resolve the subunit orientation of lipoprotein lipase. Proc Natl Acad Sci USA 94:5594–5598

    Article  PubMed  CAS  Google Scholar 

  • Wong K Ryan RO (2007) Characterization of apolipoprotein A-V structure and mode of plasma triacylglycerol regulation. Curr Opin Lipidol 18:319–324

    Article  CAS  Google Scholar 

  • Wu G, Olivecrona G, Olivecrona T (2003) The distribution of lipoprotein lipase in rat adipose tissue. Changes with nutritional state engage the extracellular enzyme. J Biol Chem 278:11925–11930

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Olivecrona G, Olivecrona T (2005) Extracellular degradation of lipoprotein lipase in rat adipose tissue. BMC Cell Biol 6:4

    Article  PubMed  CAS  Google Scholar 

  • Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama M, Yagyu H, Hu Y, Seo T, Hirata K, Homma S, Goldberg IJ (2004) Apolipoprotein B production reduces lipotoxic cardiomyopathy: studies in heart-specific lipoprotein lipase transgenic mouse. J Biol Chem 279:4204–4211

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama M, Seo T, Park T, Yagyu H, Hu Y, Son NH, Augustus AS, Vikramadithyan RK, Ramakrishnan R, Pulawa LK, Eckel RH, Goldberg IJ (2007) Effects of lipoprotein lipase and statins on cholesterol uptake into heart and skeletal muscle. J Lipid Res 48:646–655

    Article  PubMed  CAS  Google Scholar 

  • Young SG, Davies BS, Fong LG, Gin P, Weinstein MM, Bensadoun A, Beigneux AP (2007) GPIHBP1: an endothelial cell molecule important for the lipolytic processing of chylomicrons. Curr Opin Lipidol 18:389–396

    Article  PubMed  CAS  Google Scholar 

  • Zambon A, Schmidt I, Beisiegel U, Brunzell JD (1996) Dimeric lipoprotein lipase is bound to triglyceride-rich plasma lipoproteins. J Lipid Res 37:2394–2404

    PubMed  CAS  Google Scholar 

  • Zannis VI, Chroni A, Krieger M (2006) Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med 84:276–294

    Article  PubMed  CAS  Google Scholar 

  • Zdunek J, Martinez GV, Schleucher J, Lycksell PO, Yin Y, Nilsson S, Shen Y, Olivecrona G, Wijmenga S (2003) Global structure and dynamics of human apolipoprotein CII in complex with micelles: evidence for increased mobility of the helix involved in the activation of lipoprotein lipase. Biochemistry 42:1872–1889

    Article  PubMed  CAS  Google Scholar 

  • Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. (2008) Adipose triglyceride lipase – and the lipolytic catabolism of cellular fat stores. J Lipid Res (in press)

    Google Scholar 

  • Zechner R, Strauss J, Frank S, Wagner E, Hofmann W, Kratky D, Hiden M, Levak-Frank S (2000) The role of lipoprotein lipase in adipose tissue development and metabolism. Int J Obes Relat Metab Disord 24[Suppl 4]:S53–S56

    Google Scholar 

  • Zechner R, Strauss JG, Haemmerle G, Lass A, Zimmermann R (2005) Lipolysis: pathway under construction. Curr Opin Lipidol 16:333–340

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chu W, Crandall I (2008) Lipoprotein binding preference of CD36 is altered by filipin treatment. Lipids Health Dis 7:23

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Wu G, Tate CG, Lookene A, Olivecrona G (2003) Calreticulin promotes folding/dimerization of human lipoprotein lipase expressed in insect cells (sf21). J Biol Chem 278:29344–29351

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lookene A, Wu G, Olivecrona G (2005) Calcium triggers folding of lipoprotein lipase into active dimers. J Biol Chem 280:42580–42591

    Article  PubMed  CAS  Google Scholar 

  • Zhao G, Souers AJ, Voorbach M, Falls HD, Droz B, Brodjian S, Lau YY, Iyengar RR, Gao J, Judd AS, Wagaw SH, Ravn MM, Engstrom KM, Lynch JK, Mulhern MM, Freeman J, Dayton BD, Wang X, Grihalde N, Fry D, Beno DW, Marsh KC, Su Z, Diaz GJ, Collins CA, Sham H, Reilly RM, Brune ME, Kym PR (2008) Validation of diacyl glycerolacyltransferase I as a novel target for the treatment of obesity and dyslipidemia using a potent and selective small molecule inhibitor. J Med Chem 51:380–383

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Olivecrona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olivecrona, T., Olivecrona, G. (2009). The Ins and Outs of Adipose Tissue. In: Ehnholm, C. (eds) Cellular Lipid Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00300-4_13

Download citation

Publish with us

Policies and ethics