Skip to main content

Population Genetics and Ecological Niche Modelling Reveal High Fragmentation and Potential Future Extinction of the Endangered Relict Butterfly Lycaena helle

  • Conference paper
  • First Online:
Relict Species

Abstract

During the post-glacial warming, cold-adapted species shifted their distribution to higher latitudes and altitudes and became widely extinct over the European lowlands. The butterfly Lycaena helle shows this feature, and is currently distributed in highly isolated habitat remnants restricted to higher elevations over Central Europe. We analysed five polymorphic microsatellite loci and applied Climate Envelope Modelling. We detected strong genetic differentiation coinciding with the orographic structures of seven distinct mountain regions. This picture become underlined by deflecting levels of genetic diversity and the presence of private alleles, endemic for each single mountain area. Furthermore, genetic differentiation among populations within these mountain groups were detectable and reveal interrupted geneflow on a regional level. This genetic picture of a fragmented distribution coincides with the obtained pattern of potential suitable habitats given by a Climate Envelope Model. A scenario of further climate warming predicts a loss of the major parts of these areas and rising fragmentation of the remainings. The predicted extinction of some populations will cause the loss of unique alleles, which are recently restricted to the given populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allendorf FW, Luikart G (2006) Conservation and the genetics of populations. Blackwell, Oxford

    Google Scholar 

  • Araujo M, Whittaker R (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538

    Article  Google Scholar 

  • Baali-Cherif D, Besnard G (2005) High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar, Algeria. Ann Bot 96:823–830

    Article  CAS  PubMed  Google Scholar 

  • Bachelard P, Descimon H (1999) Lycaena helle (Denis & Schiffermüller, 1775) dans le Massif Central (France): une analyse écogéographique (Lepidoptera: Lycaenidae). Linneana Belg 17:23–41

    Google Scholar 

  • Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schuyt, Haarlem

    Google Scholar 

  • Bozano GC (2001) Guide to the butterflies of the palearctic region. Lycaenidae. 1. Lycaeninae. Omnes Artes, Milano

    Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  Google Scholar 

  • Coope GR (1994) The response of insect faunas to glacial-interglacial climatic fluctuations. Phil Trans R Soc Lond B 344:19–26

    Article  Google Scholar 

  • Dépraz M, Cordellier M, Hausser J, Pfenninger M (2008) Postglacial recolonization at a snail’s pace (Trochulus villosus): confronting competing refugia hypotheses using model selection. Mol Ecol 17:2449–2462

    Article  PubMed  Google Scholar 

  • Drees C, Matern A, Rasplus J-Y, Terlutter H, Assmann T, Weber F (2008) Microsatellites and allozymes as the genetic memory of habitat fragmentation and defragmentation in populations of the ground beetle Carabus auronitens (Col., Carabidae). J Biogeogr 35:1937–1949

    Article  Google Scholar 

  • Drews M, Pretscher P (2003) Schmetterlinge (Insecta, Lepidoptera) der FFH-Richtlinie. In: Das europäische Schutzgebietssystem Natura 2000, Ökologie und Verbreitung von Arten der FFH-Richtlinie in Deutschland. Schriftenr Landschaftspfl Naturschutz 69:445–448

    Google Scholar 

  • Duffy PB, Govindasamy B, Lorio JP (2003) High resolution simulations of global climate, Part 1. Clim Dyn 21:371–390

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Perterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Shapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species´ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Finger A, Zachos FE, Schmitt T, Meyer M, Assmann T, Habel JC (2009) The genetic status of the Violet Copper Lycaena helle - a relict of the cold past in times of global warming. Ecography 32:382–390

    Article  Google Scholar 

  • Fischer K, Beinlich B, Plachter H (1999) Population structure, mobility and habitat preferences of the violet copper Lycaena helle (Lepidoptera: Lycaenidae) in Western Germany: implications for conservation. J Insect Conserv 3:43–52

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Goffart P, Schtickzelle N, Turlure C (2009) Conservation and management of the habitats of two relict butterflies in the Belgian Ardenne: Proclossiana eunomia and Lycaena helle. In: Habel JC, Assmann T (eds) Relict species - phylogeography and conservation biology. Springer, Heidelberg

    Google Scholar 

  • Goudet J (1995) FSTATversion 1.2: a computer programm to calculate F-statistics. Heredity 86:485–486

    Google Scholar 

  • Govindasamy B, Duffy PB, Coquard J (2003) High-resolution simulations of global climate, part 2: effects of increased greenhouse cases. Clim Dyn 21:391–404

    Article  Google Scholar 

  • Habel JC, Meyer M, Schmitt T, Assmann T (2008) Polymorphic microsatellite loci in the endangered butterfly Lycaena helle (Lepidoptera: Lycaenidae). Eur J Entomol 105:361–362

    CAS  Google Scholar 

  • Habel JC, Finger A, Meyer M, Louy D, Zachos F, Assmann T, Schmitt T (2009) Unprecedented long-term genetic monomorphism in an endangered relict butterfly species. Conserv Genet (in press)

    Google Scholar 

  • Habel JC, Schmitt T, Müller P (2005) The fourth paradigm pattern of postglacial range expansion of European terrestrial species: the phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). J Biogeogr 32:1489–1497

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hanski I (2005) The shrinking world: ecological consequences of habitat loss. International Ecology Institute, Oldendorf

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hewitt GM (2001) Speciation, hybrid zones and phylogeography - or seeing genes in space and time. Mol Ecol 10:537–549

    Article  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Lones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Chang Biol 12:2272–2281

    Article  Google Scholar 

  • Holt RD, Gomulkiewicz R (2004) Conservation implication of niche conservatism and evolution in heterogeneous environments. In: Ferrière R, Dieckmann U, Couvet D (eds) Evolutionary conservation biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Huntley B, Birks HJB (1983) An atlas of past and present pollen maps of Europe: 0-130000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Huntley B, Green RH, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Durham University, the RSPB and Lynx, Barcelona

    Google Scholar 

  • Huntley B, Webb T (1989) Migration: Species’ response to climatic variations caused by changes in the earth’s orbit. J Biogeogr 16:5–19

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (2005) Genetic differntiation and gene flow among populations of the alpine butterfly Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14:1897–1909

    Article  CAS  PubMed  Google Scholar 

  • Keyghobadi N, Unger KP, Weintraub JD, Fonseca DM (2006) Remnant populations of the Regal Fritillary (Speyeria idalia) in Pennsylvania: local genetic structure in a high gene flow species. Conserv Genet 2006:309–313

    Article  Google Scholar 

  • Kimberly A, Selkoe RJT (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  Google Scholar 

  • Lesica P, Allendorf FW (1995) When peripheral populations are valuable for conservation. Conserv Biol 9:753–760

    Article  Google Scholar 

  • Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103

    Article  CAS  PubMed  Google Scholar 

  • Meyer M (1982) Révision systématique, chorologique et écologique de Lycaena helle Denis & Schiffermüller, 1775 (Lycaenidae). 3° partie: l’écologie. Linneana Belg 8:451–466

    Google Scholar 

  • Moritz C (1994) Defining evolutionarily significant units for conservation. Trends Ecol Evol 9:373–375

    Article  Google Scholar 

  • Nève G, Pavlíc A, Konvicka M (2009) Loss of genetic diversity through spontaneous colonisation in the Bog Fritillary butterfly (Proclossiana eunomia) in the Czech Republic (Lepidoptera: Nymphalidae). Eur J Entomol 106:11–19

    Google Scholar 

  • Nève G (1996) Dispersion chez une espèce à habitat fragmenté : Proclossiana eunomia (Lepidoptera, Nymphalidae). PhD Thesis, Louvain-la-Neuve

    Google Scholar 

  • Nève G, Barascud B, Descimon H, Baguette M (2008) Gene flow rise with habitat fragmentation in the bog fritillary butterfly (Lepidoptera: Nymphalidae). BMC Evol Biol 8:84

    Article  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rödder D, Schlüter A, Lötters S (2009) Is the ‘Lost World’ lost? High endemism of South American tepuís in a changing climate. In: Habel JC, Assmann T (eds) Relict species - phylogeography and conservation biology. Springer, Heidelberg

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schmitt T (2007) Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Front Zool 4:11

    Article  PubMed  Google Scholar 

  • Selkoe T, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Slatkin M (1985) Rare alleles as indicator of gene flow. Evolution 39:53–65

    Article  Google Scholar 

  • Steiner R, Trautner J, Grandchamp A-C (2006) Larvalhabitate des blauschillernden Feuerfalters (Lycaena helle) am schweizerischen Alpennordrand unter Berücksichtigung des Einflusses von Beweidung. Abhandlungen aus dem Westfälischen Museum für Naturkunde 68:135–151

    Google Scholar 

  • Turlure C (2006) Deux Lépidoptères qui utilisent la même plante-hôte occupent-ils nécessairement le même habitat? Cas du Nacré et du Cuivré de la bistorte, Diploma-thesis, Université catholique de Louvain, Belgium

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER (Version 2.2.3): software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Van Swaay CAM, Warren M (1999) Red data book of European butterflies (Rhopalocera). Nature and environment 99. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • Varga Z, Schmitt T (2008) Types of areal and oreotundral disjunctions in the Western Palearctic. Biol J Linn Soc 93:415–430

    Article  Google Scholar 

  • Waltari E, Hijmans RJ, Peterson AT, Nyari ÁS, Perkins SL, Guralnick RP (2007) Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2:e563

    Article  PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution ecology and conservation biology. Annu Rev Ecol Syst 36:519–539

    Article  Google Scholar 

  • Willis KJ, van Andel TH (2004) Trees or no trees? The environments of central and Eastern Europe during the Last Glaciation. Quat Sci Rev 23:2369–2387

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge a grant from the Ministry of Culture, Education and Sciences Luxemburg (grant number BFR-05/118), the Natural History Museum Luxembourg. Thanks go to all lepidopterologists who helped us to collect the species and/or showed us suitable sites. We also thank Aline Finger (Zürich, Switzerland) for the laboratory work and Thomas Schmitt (Trier, Germany) for critical comments on a draft version of this manuscript.

Frequencies of private alleles for distinct mountain regions analysed (no private allele was found for the Vosges); mean frequency/population, mean frequency/group, mean number/population, mean number/group and total frequency of loci over all populations are given as percentages

Gene/alleles

Pyrenees

Massif Central

Jura

Madeleine Mts.

Ardennes/Eifel

Wester-wald

 
 

P

M1

M2

M3

M4

M5

J10

J9

J8

J7

J2

J3

MM

A1

A2

A3

E2

E3

E1

E4

W2

Total

He03

             

1.9

  

4.8

2.2

   

0.4

E12

             

5.8

4.5

4.8

     

0.6

         

2.6

            

0.1

 

32.4

                    

1.0

He12

                 

7.1

   

0.3

                

2.5

     

0.1

                     

10.7

0.3

           

2.2

          

0.1

           

2.2

          

0.1

              

8.0

2.3

 

19.0

 

1.9

2.6

 

1.4

             

7.1

        

0.1

  

25.0

15.0

5.3

35.0

3.3

               

3.0

      

3.3

               

0.1

       

5.0

  

5.0

           

0.3

  

2.5

                   

0.1

                 

11.9

    

0.5

 

5.6

                    

0.2

      

3.3

               

0.1

    

5.3

 

3.3

               

0.3

    

2.6

 

6.7

               

0.3

F12

                 

2.2

   

0.1

             

7.1

        

0.1

                

27.3

14.7

19.6

16.1

7.9

 

3.7

        

47.6

25.0

            

2.8

          

2.8

           

0.1

        

2.4

             

0.1

              

2.1

       

0.1

He14

2.9

                    

0.1

  

2.6

                   

0.1

   

2.5

                  

0.1

  

5.3

                   

0.2

       

5.0

              

0.1

       

5.0

              

0.1

       

5.0

              

0.1

   

2.5

                  

0.1

          

5.9

           

0.2

 

35.3

                    

1.2

         

17.6

2.9

           

0.7

       

10.0

36.8

 

2.9

           

1.7

        

2.6

             

0.1

              

6.5

31.6

      

1.5

  

18.4

10.0

23.5

21.1

10.7

               

3.0

                     

3.6

0.1

            

3.3

         

0.1

B06

2.9

                    

0.1

  

2.6

                   

0.1

   

2.5

                  

0.1

  

5.3

    

5.0

              

0.2

Mean frequency/ population

0.52

0.40

0.21

0.24

0.36

0.20

0.23

0.59

0.29

0.13

0.03

0.02

0.09

0.16

0.25

0.22

0.33

0.20

0.12

0.07

0.09

0.1

Mean frequency / group

0.52

0.38

0.32

0.03

0.09

0.19

0.09

 

Mean number/ population

3.28

4.60

3.28

2.63

1.31

3.95

3.95

2.63

1.97

3.28

1.32

  

1.31

3.28

1.97

1.97

2.63

2.63

1.32

1.31

1.32

 

Mean number / group

3.28

3.2

2.97

0.99

1.31

2.16

1.32

 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. Habel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Habel, J.C., Augenstein, B., Meyer, M., Nève, G., Rödder, D., Assmann, T. (2010). Population Genetics and Ecological Niche Modelling Reveal High Fragmentation and Potential Future Extinction of the Endangered Relict Butterfly Lycaena helle . In: Habel, J.C., Assmann, T. (eds) Relict Species. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92160-8_25

Download citation

Publish with us

Policies and ethics