Skip to main content

Technetium-99m Radiopharmaceuticals

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine
  • 3108 Accesses

Abstract

The name technetium was derived by the scientist Mendeleyev from the Greek word technetos, meaning “artificial.” Technetium-99m was discovered in 1937 by Perrier and Segre in a sample of naturally occurring 98Mo irradiated by neutrons and deuterons. The first generator as a source for Tc-99m was introduced in 1957 at the Brookhaven National laboratory, and the first commercially available 99Mo-99mTc generator was made available in 1965. Use of Tc-99m really revolutionized nuclear medicine procedures, particularly with the modern gamma cameras coupled to advanced electronics and computing systems. This revolution was not completed until 1970, when the stannous ion reduction method of 99mTc-diethylenetriaminepentaacetate (DTPA) production as an “instant kit” was described, that simple and convenient “shake-and-bake” preparations for a large number of 99mTc-labeled radiopharmaceuticals were possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray IPC, Ell PJ (1998) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, Edinburgh

    Google Scholar 

  2. Dewanjee MK (1990) The chemistry of 99mTc-labeled radiopharmaceuticals. Semin Nucl Med 20:5

    Article  PubMed  CAS  Google Scholar 

  3. Fleming WK, Jay M, Ryo UY (1990) Reconstitution and fractionation of radiopharmaceutical kits. J Nucl Med 31:127–128

    Google Scholar 

  4. Kowalsky RJ, Falen SW (2004) Radiopharmaceuticals in nuclear pharmacy and nuclear medicine, 2nd edn. American Pharmacists Association, Washington

    Google Scholar 

  5. Hung JC, Iverson BC, Toulouse KA, Mahoney DW (2002) Effect of methylene blue stabilizer on in vitro viability and chemotaxis of Tc-99m-exametazime-labeled leukocytes. J Nucl Med 43(7):928–932

    PubMed  CAS  Google Scholar 

  6. Bogsrud TV, Herold TJ, Mahoney DW, Hung JC (1999) Comparison of three cold kit reconstitution techniques for the reduction of hand radiation dose. Nucl Med Commun 20(8):761–767

    Article  PubMed  CAS  Google Scholar 

  7. Zolle I (2007) Technetium-99m pharmaceuticals. Springer, Berlin

    Book  Google Scholar 

  8. Eckelman WC, Steigman J, Paik CH (1996) Radiopharmaceutical chemistry. In: Harpert J, Eckelman WC, Neumann RD (eds) Nuclear medicine: diagnosis and therapy. Thieme Medical, New York, p 213

    Google Scholar 

  9. European Pharmacopoeia (Ph. Eur.) ver. (5.0). Council of Europe, Maisonneuve, Sainte-Ruffine, 2005

    Google Scholar 

  10. Oldendorf WH, Sisson WB, Lisaka Y (1970) Compartmental redistribution of 99mTc-pertechnetate in the presence of perchlorate ion and its relation to plasma protein binding. J Nucl Med 11:85–88

    PubMed  CAS  Google Scholar 

  11. Ahlgren L, Ivarsson S, Johansson L, Mattsson S, Nosslin B (1985) Excretion of radionuclides in human breast milk after administration of radiopharmaceuticals. J Nucl Med 26:1085–1090

    PubMed  CAS  Google Scholar 

  12. Tofe AJ, Bevan JA, Fawzi MB, Francis MD, Silberstein EB, Alexander GA, Gunderson DE, Blair K (1980) Gentisic acid: a new stabilizer for low tin skeletal imaging agents: concise communication. J Nucl Med 21:366–370

    PubMed  CAS  Google Scholar 

  13. Wilson MA (1998) Textbook on nuclear medicine. Lippincott-Raven, Philadelphia

    Google Scholar 

  14. Francis MD, Ferguson DL, Tofe AJ, Bevan JA, Michaels SE (1980) Comparative evaluation of three diphosphonates: in vitro adsorption (C14-labeled) and in vivo osteogenic uptake (Tc-99m complexed). J Nucl Med 21:1185–1189

    PubMed  CAS  Google Scholar 

  15. Fogelman I, Pearson DW, Bessent RG, Tofe AJ, Francis MD (1981) A comparison of skeletal uptakes of three diphosphonates by whole-body retention: concise communication. J Nucl Med 22:880–883

    PubMed  CAS  Google Scholar 

  16. Carlsen JE, Moller MH, Lund JO, Trap-Jensen J (1988) Comparison of four commercial Tc-99m-(Sn)-DTPA preparations used for the measurement of glomerular filtration rate. J Nucl Med 21:126–129

    Google Scholar 

  17. Agnew JE (1991) Characterizing lung aerosol penetration (abstract). J Aerosol Med 4:237–250

    Article  Google Scholar 

  18. de Lange MJ, Piers DA, Kosterink JGW, van Luijk WHJ, Meijer S, de Zeeuw D, Van-der Hem GJ (1989) Renal handling of technetium-99m-DMSA: evidence for glomerular filtration and peri-tubular uptake. J Nucl Med 30:1219–1223

    PubMed  Google Scholar 

  19. Ramamoorthy N, Shetye SV, Pandey PM, Mani RS, Patel MC, Patel RB, Ramanathan P, Krishna BA, Sharma SM (1987) Preparation and evaluation of 99mTc(V)-DMSA complex: studies in medullary carcinoma of thyroid. Eur J Nucl Med 12:623–628

    Article  PubMed  CAS  Google Scholar 

  20. Murray T, Mckellar K, Owens J, Watson WS, Hilditch TE, Elliott AT (2000) Tc-99m – MAG3: problems with radiochemical purity testing (letter). Nucl Med Commun 21:71–75

    Article  PubMed  CAS  Google Scholar 

  21. Van Hemert FJ, Lenthe H, Schimmel KJM, van Eck-smit BLF (2005) Preparation, radiochemical purity control and stability of Tc-99m mertiatide (Mag-3). Ann Nucl Med 19(4):345–349

    Article  PubMed  Google Scholar 

  22. Oriuchi N, Miymoto K, Hoshino K, Imai J, Takahashi Y, Sakai S, Shimada A, Endo K (1997) Tc-99m-MAG3: a sensitive indicator for evaluating perfusion and rejection of renal transplants. Nucl Med Commun 18:400–404

    Article  PubMed  CAS  Google Scholar 

  23. Gupta NK, Bomanji JB, Waddington W, Lui D, Costa DC, Verbruggen AM, Ell PJ (1995) Technetium-99m-1,1-ethylenedicysteine scintigraphy in patients with renal disorders. Eur J Nucl Med 22:617–624

    Article  PubMed  CAS  Google Scholar 

  24. Kabasakal L, Turoğlu HT, Onsel C, Ozker K, Uslu I, Atay S, Cansiz T, Sönmezoğlu K, Altiok E, Isitman AT et al (1995) Clinical comparison of technetium-99m-EC, technetium-99m-MAG3 and iodine-131-OIH in renal disorders. J Nucl Med 36:224–228

    PubMed  CAS  Google Scholar 

  25. Jaksic E, Artikoa V, Beatovic S, Djokic D, Jankovic D, Saranovic D, Hana R, Obradovic V (2009) Clinical investigations of 99mTc-p-aminohippuric acid as a new renal agent. Nucl Med Commun 30:76–81

    Article  PubMed  CAS  Google Scholar 

  26. Cooper M, Duston K, Rotureau L (2006) The effect on radiochemical purity of modifications to the method of preparation and dilution of Tc-99m sestamibi. Nucl Med Commun 27:455–460

    Article  PubMed  CAS  Google Scholar 

  27. Varelis P, Parkes SL, Poot MT (1998) The influence of generator eluate on the radiochemical purity of Tc-99m-sestamibi prepared using fractionated Cardiolite® kits. Nucl Med Commun 19(7):615–623

    Article  PubMed  CAS  Google Scholar 

  28. Millar AM, Murray T (2006) Preparation of Tc-99m sestamibi for parathyroid imaging. Nucl Med Commun 27(5):473

    Article  PubMed  Google Scholar 

  29. Patel M, Owunwanne A, Tuli M, al-Za’abi K, al-Mohannadi S, Sa’ad M, Jahan S, Jacob A, Al-Bunny A (1998) Modified preparation and rapid quality control test for technetium-99m-tetrofosmin. J Nucl Med Technol 26(4):269–273

    PubMed  CAS  Google Scholar 

  30. Graham D, Millar AM (1999) Artifacts in the thin-layer chromatographic analysis of Tc-99m-tetrafosmin Injections. Nucl Med Commun 20:439–444

    Article  PubMed  CAS  Google Scholar 

  31. Ramírez A, Arroyo T, Díaz-Alarcón JP, García-Mendoza A, Muros MA, Martinez del Valle MD, Rodríguez-Fernández A, Acosta-Gómez MJ, Llamas-Elvira JM (2000) An alternative to the reference method for testing the radiochemical purity of Tc-99m-tetrofosmin. Nucl Med Commun 21(2):199–203

    Article  PubMed  Google Scholar 

  32. Hammes R, Joas LA, Kirschling TE, Ledford JR, Knox TL, Nybo MR et al (2004) A better method of quality control for Tc-99m-tetrafosmin. J Nucl Med Technol 32:72–78

    PubMed  CAS  Google Scholar 

  33. Webber DI, Zimmer AM, Geyer MC, Spies SM (1992) Use of a single-strip chromatography system to assess the lipophilic component in technetium-99m exametazime preparations. J Nucl Med Technol 20:29–32

    CAS  Google Scholar 

  34. Solanki C, LI D, Wong A, Barber R, Wraight E, Sampson C (1994) Stabilization and multidose use of exametazime for cerebral perfusion studies. Nucl Med Commun 15(9):718–722

    Article  PubMed  CAS  Google Scholar 

  35. Catafau A (2001) Brain SPECT in clinical practice. Part I: perfusion. J Nucl Med 42:259–271

    PubMed  CAS  Google Scholar 

  36. Pi-lien H, Shu-hua H, Chao-ching H, Song-chei H, Ying-chao C (2008) Tc-99m HMPAO brain SPECT imaging in children with acute cerebellar ataxia. Clin Nucl Med 33(12):841–844

    Article  Google Scholar 

  37. Dormehl IC, Oliver DW, Langen K-J, Hugo N, Croft SA (1997) Technetium-99m-HMPAO, technetium-99m-ECD and iodine-123-IMP cerebral blood flow measurements with pharmacological interventions in primates. J Nucl Med 38:1897–1901

    PubMed  CAS  Google Scholar 

  38. Holman BL, Hellman RS, Goldsmith SJ, Mean IG, Leveille J, Gherardi PG, Moretti JL, Bischof-Dela-loye A, Hill TC, Rigo PM, Van Heertum RL, Ell PJ, Bçll U, DeRoo MC, Morgan RA (1989) Bio-distribution, dosimetry and clinical evaluation of Tc-99m ethyl cysteinate dimer (ECD) in normal subjects and in patients with chronic cerebral infarction. J Nucl Med 30:1018–1024

    PubMed  CAS  Google Scholar 

  39. Myron LL, Anthony RB, John DS (1985) Failure of quality control to detect errors in the preparation of Tc-99m disofenin (DISIDA). Clin Nucl Med 10(7):468–474

    Article  Google Scholar 

  40. Saha GB (2004) Fundamentals of radiopharmacy, 5th edn. Springer, Berlin

    Google Scholar 

  41. Zolle I, Oniciu L, Hofer R (1973) Contribution to the study of the mechanism of labelling human serum albumin (HSA) with technetium-99m. Int J Appl Radiat Isotopes 24:621–626

    Article  CAS  Google Scholar 

  42. Strauss HW, Zaret BL, Hurley PJ, Natarajan TK, Pitt P (1971) A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Am J Cardiol 28:575–580

    Article  PubMed  CAS  Google Scholar 

  43. Chandra R, Shannon J, Braunstein P, Durlov OL (1973) Clinical evaluation of an instant kit for preparation of 99m Tc-MAA for lung scanning. J Nucl Med 14:702–705

    PubMed  CAS  Google Scholar 

  44. Wagner HN, Sabiston DC, Iio M, McAfee JG, Langan JK (1964) Regional pulmonary blood flow in man by radioisotope scanning. JAMA 187:601–603

    Article  PubMed  Google Scholar 

  45. Zolle I, Rhodes BA, Wagner HN Jr (1970) Preparation of metabolizable radioactive human serum albumin microspheres for studies of the circulation. Int J Appl Radiat Isotopes 21:155–167

    Article  CAS  Google Scholar 

  46. Rhodes BA, Stern HS, Buchanan JW, Zolle I, Wagner HN Jr (1971) Lung scanning with Tc-99m-microspheres (abstract). Radiology 99:613–621

    PubMed  CAS  Google Scholar 

  47. Stern HS, McAfee JG, Subramanian G (1966) Preparation, distribution and utilization of technetium-99m-sulfur colloid. J Nucl Med 7:665–675

    PubMed  CAS  Google Scholar 

  48. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 271–274

    Google Scholar 

  49. Whateley TL, Steele G (1985) Particle size and surface charge studies of a tin colloid radiopharmaceutical for liver scintigraphy. Eur J Nucl Med 19:353–357

    Google Scholar 

  50. Schuind F, Schoutens A, Verhas M, Verschaeren A (1984) Uptake of colloids by bone is dependent on bone blood flow. Eur J Nucl Med 9:461–463

    Article  PubMed  CAS  Google Scholar 

  51. SolcoNanocoll Product monograph of the kit for the preparation of Tc-99m nanocolloid, issued by Sorin Biomedica, Italy (1992)

    Google Scholar 

  52. Alazraki N, Eshima D, Eshima LA, Herda SC, Murray DR, Vansant JP, Taylor AT (1997) Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer and other potential cancers. Semin Nucl Med 27:55–67

    Article  PubMed  CAS  Google Scholar 

  53. Immunomedics Europe product monograph for the CEA-Scan (arcitumomab) kit for the preparation of Tc-99m CEA-Scan. Immunomedics Europe, Darmstadt, Germany (2000)

    Google Scholar 

  54. Moffat FL Jr, Pinsky CM, Hammershaimb L, Petrelli NJ, Patt YZ, Whaley FS, Goldenberg DM (1996) Immunomedics study group clinical utility of external immunoscintigraphy with the IMMU-4 technetium-99m Fab’ antibody fragment in patients undergoing surgery for carcinoma of the colon and rectum: results of a pivotal, phase III trial. J Clin Oncol 14:2295–2305

    PubMed  Google Scholar 

  55. Immunomedics Europe product monograph for LeukoScan (sulesomab). Issued by Immunomedics Europe, Darmstadt, Germany (1997)

    Google Scholar 

  56. Gratz S, Schipper ML, Dorner J, Hoffken H, Becker W, Kaiser JW, Behe M, Behr TM (2003) LeukoScan for imaging infection in different clinical settings: a retrospective evaluation and extended review of the literature. Clin Nucl Med 28(4):267–276

    PubMed  CAS  Google Scholar 

  57. Berlex laboratories product monograph for the neotect kit for the preparation of Tc-99m depreotide. Berlex Laboratories, Wayne, NJ (2001) (Diatide, NDA No. 21-012)

    Google Scholar 

  58. Danielsson R, Bââth M, Svensson L, Forslæv U, Kælbeck K-G (2005) Imaging of regional lymph node metastases with 99m Tc-depreotide in patients with lung cancer. Eur J Nucl Med Mol Imaging 32:925–931

    Article  PubMed  Google Scholar 

  59. Kahn D, Menda Y, Kernstine K, Bushnell DL, McLaughlin K, Miller S, Berbaum K (2004) The utility of 99mTc-depreotide compared with F-18 fluorodeoxyglucose positron emission tomography and surgical staging in patients with suspected non-small cell lung cancer. Chest 125:494–501

    Article  PubMed  CAS  Google Scholar 

  60. Menda Y, Kahn D, Bushnell DL, Thomas M, Miller S, McLaughlin K, Kernstine KH (2001) Nonspecific mediastinal uptake of 99m Tc-depreotide (NeoTect). J Nucl Med 42(Suppl):304P

    Google Scholar 

  61. Blankenberg FG, Katsikis PD, Tait JF et al (1999) Imaging of apoptosis (programmed cell death) with 99mTc annexin V. J Nucl Med 40:184–191

    PubMed  CAS  Google Scholar 

  62. Tait JF, Cerqueira MD, Dewhurst TA (1994) Evaluation of annexin V as platelet directed thrombus targeting agent. Thromb Res 75:491–501

    Article  PubMed  CAS  Google Scholar 

  63. Kemerink D, Liem IN, Hofstra L, Boersma HH, Buijs W, Reutelingsperger C, Heidendal G (2001) Patient dosimetry of intravenously administered 99mTc-annexin V. J Nucl Med 42:382–387

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer B. Saleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Saleh, T.B. (2010). Technetium-99m Radiopharmaceuticals. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics