Skip to main content

Virus Populations, Mutation Rates and Frequencies

  • Chapter
Plant Virus Evolution

Populations of plant viruses are genetically heterogeneous. This heterogeneity is often linked to mutation, the ultimate source of genetic variation and an uncontested player in plant virus evolution. This review gives basic key information indispensable to understanding mutation in plant viruses, from mutation sources, mutation detection means, to the role of mutation in shaping plant virus evolution in combination with various other evolutionary factors. From information drawn from the recent literature, we confirm or refute some generally held views and we reinstate several unanswered questions. It is clear that low genetic diversity characterizes some plant virus populations, irrespective of their life cycle or their nature (DNA or RNA). Mutation frequencies of plant DNA viruses can be as high as those of RNA viruses. This casts some doubt on a positive correlation between high mutation rates and adaptive evolution, and on the lack of proofreading for RNAdependent RNA polymerases. However, the lack of information on viral mutation rates still precludes a complete understanding of the link between mutation rates and population heterogeneity. Information about plant virus replication mode, generation time and generation size also is still crucially needed before a complete picture of virus evolution will emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali A, Li H, Schneider WL, Sherman DJ, Gray S, Smith D, Roossinck MJ (2006) Analysis of genetic bottlenecks during horizontal transmission of Cucumber mosaic virus. J Virol 80(17):8345–8350

    Article  PubMed  CAS  Google Scholar 

  • Aranda MA, Fraile A, Garcia-Arenal F, Malpica J (1995) Experimental evaluation of the ribonuclease protection assay method for the assessment of genetic heterogeneity in populations of RNA viruses. Arch Virol 140:1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71(1):817–846

    Article  PubMed  CAS  Google Scholar 

  • Bierne H, Vilette D, Ehrlich S, Michel B (1997) Isolation of a dnaE mutation which enhances RecA-independent homologous recombination in the Escherichia coli chromosome. Mol Biol 24(6):1225–1234

    CAS  Google Scholar 

  • Bisaro DM (1996) Geminivirus DNA replication. In: DePamphilis ML (ed) DNA Replication in eukaryotic cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 833–854

    Google Scholar 

  • Bull JJ, Ancel ML, Lachmann M (2005) Quasispecies made simple. PLoS Biol 1(6):450–460

    CAS  Google Scholar 

  • Burch CL, Chao L (2000) Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature 406(10):625–628

    Article  PubMed  CAS  Google Scholar 

  • Chao L, Rang CU, Wong, LE (2002) Distribution of spontaneous mutants and inferences about the replication mode of the RNA bacteriophage ø6. J Virol 76(7):3276–3281

    Article  PubMed  CAS  Google Scholar 

  • Cheng C-P, Nagy PD (2003) Mechanism of RNA recombination in carmo- and tombusviruses: evidence for template switching by the RNA-dependent RNA polymerase in vitro. J Virol 77(22):12033–12047

    Article  PubMed  CAS  Google Scholar 

  • Cuevas JM, Moya A, Sanjuan R (2005) Following the very initial growth of biological RNA viral clones. J Gen Virol 86(2):435–443

    Article  PubMed  CAS  Google Scholar 

  • Domingo E (2002) Quasispecies theory in virology. J Virol 76(1):463–465

    Article  CAS  Google Scholar 

  • Domingo E Holland JJ (1994) Mutation rates and rapid evolution of RNA viruses. In: Morse SS (ed) The evolutionary biology of viruses. Raven, New York, pp 161–184

    Google Scholar 

  • Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178

    Article  PubMed  CAS  Google Scholar 

  • Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88:7160–7164

    Article  PubMed  CAS  Google Scholar 

  • Drake JW (1993) Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA 90:4171–4175

    Article  PubMed  CAS  Google Scholar 

  • Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96(24):13910–13913

    Article  PubMed  CAS  Google Scholar 

  • Drake JW, Hwang CBC (2005) On the mutation rate of herpes simplex virus type I. Genetics 170:969–970

    Article  PubMed  CAS  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    PubMed  CAS  Google Scholar 

  • Dwyer GI, Gibbs MJ, Gibbs AJ, Jones RAC (2007) Wheat streak mosaic virus in Australia: relationship to isolates from the Pacific northwest of the USA and its dispersion via seed transmission. Plant Dis 91(2):164–170

    Article  CAS  Google Scholar 

  • Fields BN, Joklik, WK (1969) Isolation and preliminary genetic and biochemical characterization of temperature-sensitive mutants of reovirus. Virology 37:335–342

    Article  PubMed  CAS  Google Scholar 

  • French R, Stenger DC (2003) Evolution of Wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu Rev Phytopathol 41:199–214

    Article  PubMed  CAS  Google Scholar 

  • Furió V, Moya A, Sanjuan R (2005) The cost of replication fidelity in an RNA virus. Proc Natl Acad Sci USA 102(69):10233–10237

    Article  PubMed  Google Scholar 

  • García-Arenal F, Fraile A, Malpica J (2003) Variation and evolution of plant virus populations. Int Microbiol 6:225–232

    Article  PubMed  Google Scholar 

  • García-Arenal F, Fraile A, Malpica JM (2001) Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186

    Article  PubMed  Google Scholar 

  • Ge L, Zhang J, Zhou X, Li H (2007) Genetic structure and population variability of tomato yellow leaf curl China virus. J Virol 81(11):5902–5907

    Article  PubMed  CAS  Google Scholar 

  • Gierer A, Mundry K-W (1958) Production of mutants of tobacco mosaic virus by chemical alteration of its ribonucleic acid in vitro. Nature 182(4647):1457–1458

    Article  PubMed  CAS  Google Scholar 

  • Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98(14):7928–7933

    Article  PubMed  CAS  Google Scholar 

  • Hall G (2006) Selective constraint and genetic differentiation in geographically distant barley yellow dwarf virus populations. J Gen Virol 87(10):3067–3075

    Article  PubMed  CAS  Google Scholar 

  • Halle S (1968) 5-Azacytidine as a mutagen for arboviruses. J Virol 2(10):1228–1229

    PubMed  CAS  Google Scholar 

  • Hancock JM, F Santibáñez-Koref MF (1998) Trinucleotide expansion disease in the context of micro- and minisatellite evolution, Hammersmith Hospital, April 1–3, 1998. EMBO J 17(19):5521–5524

    Article  PubMed  CAS  Google Scholar 

  • Hancock JM, Chaleeprom W, Chaleeprom W, Dale J, Gibbs A (1995) Replication slippage in the evolution of potyviruses. J Gen Virol 76:3229–3232

    Article  PubMed  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18(1):71–106

    Article  CAS  Google Scholar 

  • Holland JJ, Domingo E, de la Torre JC, Steinhauer DA (1990) Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol 64(8):3960–3962

    PubMed  CAS  Google Scholar 

  • Holmes EC, Moya A (2002) Is the quasispecies concept relevant to RNA viruses? J Virol 76(1):460–462

    Article  PubMed  CAS  Google Scholar 

  • Inamdar NM, Zhang X-Y, Brough CL, Gardiner WE, Bisaro DM, Ehrlich M (1992) Transfection of heteroduplexes containing uracil-guanine or thymine-guanine mispairs into plant cells. Plant Mol Biol 20:123–131

    Article  PubMed  CAS  Google Scholar 

  • Isnard M, Granier M, Frutos R, Reynaud B, Peterschmitt M (1998) Quasispecies nature of three maize streak virus isolates obtained through different modes of selection from a population used to assess response to infection of maize cultivars. J Gen Virol 79:3091–3099

    PubMed  CAS  Google Scholar 

  • Koenig RP, Luddecke P, Haeberle AM (1995) Detection of been necrotic yellow vein virus strains, variants and mixed infections by examining single-stranded conformation polymorphisms on immunocaptured RT-PCR products. J Gen Virol 76:2051–2055

    Article  PubMed  CAS  Google Scholar 

  • Kunkel LO (1947) Variation in phytopathogenic viruses. Annu Rev Microbiol 1:85–100

    Article  Google Scholar 

  • Li H, Roossinck, MJ (2004). Genetic bottlenecks reduce population variation in an experimental RNA virus population. J Virol 78(19):10582–10587

    Article  PubMed  CAS  Google Scholar 

  • Lin H-X, Rubio L, Smythe AB, Falk BW (2004) Molecular population genetics of Cucumber mosaic virus in California: evidence for founder effects and reassortment. J Virol 78(12):6666–6675

    Article  PubMed  CAS  Google Scholar 

  • Luria SE, Delbruck M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511

    PubMed  CAS  Google Scholar 

  • Malpica JM, Fraile A, Moreno I, Obies CI, Drake JW, García-Arenal F (2002) The rate and character of spontaneous mutations in an RNA virus. Genetics 162:1505–1511

    PubMed  CAS  Google Scholar 

  • Martin DP, Willment JA, Billharz R, Velders R, Odhiambo B, Njuguna J, James D, Rybicki EP (2001) Sequence diversity and virulence in Zea mays of Maize streak virus isolates. Virology 288(2):247–255

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Garcia ML, Troisi A, Rubio L, Legarreta G, Grau O, Alioto D, Moreno P, Guerri J (2006) Genetic variation of populations of Citrus psorosis virus. J Gen Virol 87(10):3097–3102

    Article  PubMed  CAS  Google Scholar 

  • Maynard SJ, Szathmary E (1995) The major transitions in evolution. Freeman/Spektrum, Oxford

    Google Scholar 

  • Nagy PD, Bujarski J (1996) Homologous RNA recombination in brome mosaic virus AU-rich sequences decrease the accuracy of crossovers. J Virol 70(1):415–426

    PubMed  CAS  Google Scholar 

  • Naraghi-Arani P, Daubert S, Rowhani A (2001) Quasispecies nature of the genome of Grapevine fanleaf virus. J Gen Virol 82:1791–1795

    PubMed  CAS  Google Scholar 

  • Ndunguru J, Legg J, Aveling T, Thompson G, Fauquet C (2005) Molecular biodiversity of cassava begomoviruses in Tanzania: evolution of cassava geminiviruses in Africa and evidence for East Africa being a center of diversity of cassava geminiviruses. Virol J 2(1):21

    Article  PubMed  CAS  Google Scholar 

  • Ooi K, Ohshita S, Ishii I, Yahara T (1997) Molecular phylogeny of geminivirus infecting wild plants in Japan. J Plant Res 110(2):247–257

    Article  CAS  Google Scholar 

  • Pathak V, Temin H (1990) Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci 87(16):6019–6023

    Article  PubMed  CAS  Google Scholar 

  • Pathak VK, Temin HM (1992) 5-Azacytidine and RNA secondary structure increase the retrovirus mutation rate. J Virol 66(5):3093–3100

    PubMed  CAS  Google Scholar 

  • Pennington RE, Melcher U (1993) In planta deletion of DNA inserts from the large intergenic region of Califlower mosaic virus DNA. Virology 192:188–196

    Article  PubMed  CAS  Google Scholar 

  • Pita JS, de Miranda JR, Schneider WL, Roossinck MJ (2007) Environment determines fidelity for an RNA virus replicase. J Virol 81(17):9072–9077

    Article  PubMed  CAS  Google Scholar 

  • Pita JS, Fondong VN, Sangaré A, Otim-Nape GW, Ogwal S, Fauquet CM (2001) Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J Gen Virol 82:655–665

    PubMed  CAS  Google Scholar 

  • Polson AG, Bass BL, Casey JL (1996) RNA editing of hepatitis delta virus antigenome by dsRNA adenosine deaminase. Nature 380:454–456

    Article  PubMed  CAS  Google Scholar 

  • Pringle CR (1970) Genetic characteristics of conditional lethal mutants of vesicular stomatitis virus induced by 5-fluorouracil, 5-azacytidine, and ethyl methane sulfonate. J Virol 5(5):559–567

    PubMed  CAS  Google Scholar 

  • Rodríguez-Alvarado G, Roossinck MJ (1997) Structural analysis of a necrogenic strain of cucumber mosaic cucumovirus satellite RNA in planta. Virology 236:155–166

    Article  PubMed  Google Scholar 

  • Roossinck MJ (1997) Mechanisms of plant virus evolution. Ann Rev Phytopathol 35:191–209

    Article  CAS  Google Scholar 

  • Roossinck MJ, Ali A (2007) Mechanisms of plant virus evolution and identification of genetic bottlenecks: impact on disease management. In: Punja ZK, DeBoer SH, Sanfaçon H (eds) Biotechnology and plant disease management. CABI, Wallingford, pp 109–124

    Google Scholar 

  • Roossinck MJ, Schneider WL (2005) Mutant clouds and occupation of sequence space in plant RNA viruses. In: Domingo E (ed) Quasispecies: concepts and implications for virology. Current topics in microbiology and immunology, vol 299. Springer, Heidelberg, pp 337–348

    Chapter  Google Scholar 

  • Rosenberg SM (2001) Evolving responsively: adaptive mutation. Nat Rev Genet 2:504–515

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Campos S, Diaz JA, Monci F, Bejarano ER, Reina J, Vavas-Castillo MA, Aranda MA, Moriones E (2002) High genetic stability of the begomovirus Tomato yellow leaf curl Sardinia virus in southern Spain over an 8-year period. Phyopathology 92(8):842–849

    Article  CAS  Google Scholar 

  • Sanz AI, Fraile A, Gallego JM, Malpica JM, García-Arenal F (1999). Genetic variability of natural populations of Cotton leaf curl geminivirus, a single-stranded DNA virus. J Mol Evol 49(5):672–681

    Article  PubMed  CAS  Google Scholar 

  • Schalk H-J, Matzeit V, Schiller B, Schell J, Gronenborn B (1989) Wheat dwarf virus, a geminivirus of graminaceous plants needs splicing for replication. EMBO J 8(2):359–364

    PubMed  CAS  Google Scholar 

  • Schneider WL, Roossinck MJ (2000) Evolutionarily related sindbis-like plant viruses maintain different levels of population diversity in a common host. J Virol 74(7):3130–3134

    Article  PubMed  CAS  Google Scholar 

  • Schneider WL, Roossinck MJ (2001) Genetic diversity in RNA viral quasispecies is controlled by host-virus interactions. J Virol 75(14):6566–6571

    Article  PubMed  CAS  Google Scholar 

  • Scholthof H, Wu FC, Richins RD, Shepherd RJ (1991) A naturally occurring deletion mutant of Figwort mosaic virus (caulimovirus) is generated by RNA splicing. Virology 184:290–298

    Article  PubMed  CAS  Google Scholar 

  • Scott J (1995) A place in the world for RNA editing. Cell 81:833–836

    Article  PubMed  CAS  Google Scholar 

  • Smith DB, Inglis SC (1987) The mutation rate and variability of eukaryotic viruses: an analytical review. J Gen Virol 68(11):2729–2740

    Article  PubMed  CAS  Google Scholar 

  • Steinhauer DA, Holland JJ (1986) Direct method for quantification of extreme polymerase error frequencies at selected single base sites in viral RNA. J Virol 57:219–228

    PubMed  CAS  Google Scholar 

  • Teycheney P-Y, Laboureau N, Iskra-Caruana M-L, Candresse T (2005) High genetic variability and evidence for plant-to-plant transfer of Banana mild mosaic virus. J Gen Virol 86:3179–3187

    Article  PubMed  CAS  Google Scholar 

  • Vadivukarasi T, Girish KR, Usha R (2007) Sequence and recombination analyses of the geminivirus replication initiator protein. J Biosci 32(1):17–29

    Article  PubMed  CAS  Google Scholar 

  • Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348

    Article  PubMed  CAS  Google Scholar 

  • Viguera E, Canceill D, Ehrlich SD (2001) Replication slippage involves DNA polymerase pausing and dissociation. EMBO J 20(10):2587–2595

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Huang LF, Cooper JI (2006) Analyses on mutation patterns, detection of population bottlenecks, and suggestion of deleterious-compensatory evolution among members of the genus Potyvirus. Arch Virol 151(8):1625–1633

    Article  PubMed  CAS  Google Scholar 

  • Yarwood CE (1979) Host passage effects with plant viruses. Adv Virus Res 24:69–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pita, J.S., Roossinck, M.J. (2008). Virus Populations, Mutation Rates and Frequencies. In: Roossinck, M.J. (eds) Plant Virus Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75763-4_6

Download citation

Publish with us

Policies and ethics