Skip to main content
Log in

Molecular phylogeny of geminivirus infecting wild plants in Japan

  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Few studies have been made on the molecular divergence of plant viruses. To remedy this deficiency, we examined the molecular divergence of the tobacco leaf curl geminivirus (TLCV). TLCV infects not only tobacco but alsoEupatorium andLonicera in the field and causes yellow vein disease. A total of 29 nucleotide sequences of the replication protein gene (ORF C1) of geminiviruses infecting wild plants ofE. makinoi, E. glehni andL. japonica collected from ten localities was determined. Highly divergent sequences were obtained not only among host plant populations but also within a host population. Phylogenetic analyses showed that the TLCVs infectingEupatorium andLonicera were clustered into three different clades, and were either paraphyletic or polyphyletic. This result is the first evidence demonstrating that wild populations of single plant species possess genetically diversified virus strains. Comparison with recently reported genetic variations of tobacco mild green mosaic tobamovirus (TMGMV) revealed three characteristics of TLCV evolution: (1) a higher nucleotide substitution rate, (2) more frequent migration among geographically isolated host populations, and (3) more frequent host changes to different plant families. While TMGMV is an RNA virus, TLCV has DNA genomes. In animal viruses, RNA viruses tend to evolve faster than DNA viruses. Our results indicated that this trend may not hold for plant viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution42: 795–803.

    Article  CAS  Google Scholar 

  • Bremer, K. 1994. Branch support and tree stability. Cladistics10: 295–304.

    Article  Google Scholar 

  • Crespi, S., Noris, E., Vaira, A. andAccotto, G.P. 1995. Molecular characterization of cloned DNA from a tomato yellow leaf curl virus isolate from Sicily. Phyto. Medit.34: 93–99.

    CAS  Google Scholar 

  • Domingo, E. andHolland, J.J. 1994. Mutation rates and rapid evolution of RNA viruses.In S.S. Morse, ed., The Evolutionary Biology of Viruses. Raven Press, New York, pp. 161–184.

    Google Scholar 

  • Dry, I.B., Rigden, J.E., Krake, L.R., Mullineaux, P.M. andRezaian, M.A. 1993. Nucleotide sequence and genome organization of tomato leaf curl geminivirus. J. Gen. Virol.74: 147–151.

    PubMed  CAS  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool.20: 406–416.

    Article  Google Scholar 

  • Fraile, A., Malpica, J.M., Aranda, M.A., Rodriguez-Cerezo, E. andGarcia-Arenal, F. 1996. Genetic diversity in tobacco mild green mosaic tobamovirus infecting the wild plantNicotiana glauca. Virology223: 148–155.

    Article  PubMed  CAS  Google Scholar 

  • Frischmuth, T., Zimmat, G. andJeske, H. 1990. The nucleotide sequence of abutilon mosaic virus reveals prokaryotic as well as eukaryotic features. Virology178: 461–467.

    Article  PubMed  CAS  Google Scholar 

  • Funayama, S., Hikosaka, K. and Yahara, T. 1997. Effects of virus infection and growth irradiance on fitness components and photosynthetic properties ofEupatorium makinoi (Compositae). Amer. J. Bot.84: in press.

  • Gojobori, T., Moriyama, E.N. andKimura, M. 1990. Molecular clock of viral evolution, and the neutral theory. Proc. Natl. Acad. Sci. USA.87: 10015–10018.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, B.H., Shaw, G.M., Tayler, M.E., Redfield, R.R., Markham, P.D., Salahuddin, S.Z., Wong-Stal, F., Gallo, R.C., Parks, E.S. andParks, W.P. 1986. Genetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS. Science232: 1548–1553.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, W.D.O., Stein, V., Coutts, R.H.A. andBuck, K.Q.W. 1984. Complete nucleotide sequence of the infectious cloned DNA components of tomato golden mosaic virus: potential coding regions and regulatory sequences. EMBO J.3: 2197–2205.

    PubMed  CAS  Google Scholar 

  • Harper, J.L. 1990. Pests, pathogens and plant communities: an introduction.In J.J. Burdon and S.R. Leather, eds. Pests, Pathogens and Plant Communities, Blackwell Scientific, Oxford, pp. 3–14.

    Google Scholar 

  • Hong, Y.G. andHarrison, B.D. 1995. Nucleotide sequences from tomato leaf curl viruses from different countries: evidence for three geographically separate branches in evolution of the coat protein of whitefly-transmitted geminiviruses. J. Gen. Virol.76: 2043–2049.

    PubMed  CAS  Google Scholar 

  • Howarth, A.J., Caton, J., Bossert, M. andGoodman, R.M. 1985. Nucleotide sequence of bean golden mosaic virus and a model for gene regulation in geminiviruses. Proc. Natl. Acad. Sci. USA82: 3572–3576.

    Article  PubMed  CAS  Google Scholar 

  • Ikegami, M., Osaki, T. andInouye, T. 1987. Single-strand DNA in tobacco leaf curl virus. Ann. Phytopath. Soc. Japan53: 269–273.

    CAS  Google Scholar 

  • Inouye, T. andOsaki, T. 1980. The first record in the literature of the Japanese classic anthology, as far back as the time of the 8th century. Ann. Phytopath. Soc. Japan46: 49–50.

    Google Scholar 

  • Jupin, I., de Kouchkovsky, F., Jouanneau, F. andGronenborn, B. 1994. Movement of tomato yellow leaf curl geminivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology204: 82–90.

    Article  PubMed  CAS  Google Scholar 

  • Kawahara, T., Murakami, N., Setoguchi, H. andTsumura, Y. 1996. Procedures of plant DNA extraction for phylogenetic analysis. Proc. Japan Soc. Plant Taxon.11: 13–32.

    Google Scholar 

  • Kheyr-Pour, A., Bendahmane, M., Matzeit, V., Accotto, G.P., Crespi, S. andGronenborn, B. 1991. Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res.19: 6763–6769.

    PubMed  CAS  Google Scholar 

  • Klinkenberg, F.A. andStanley, J. 1990. Encapsidation and spread of African cassava mosaic virus DNA A in absence of DNA B when agroinoculated toNicotiana benthamiana. J. Gen. Virol.71: 1409–1412.

    CAS  Google Scholar 

  • Lartey, R.T., Voss, T.C. andMelcher, U. 1996. Tobamovirus evolution: gene overlaps, recombination, and taxonomic implications. Mol. Biol. Evol.13: 1327–1338.

    PubMed  CAS  Google Scholar 

  • Lazarowitz, S.G. 1992. Geminiviruses: genome structure and gene function. Crit. Rev. Plant Sci.11: 327–349.

    CAS  Google Scholar 

  • Li, W.-H. 1993. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J. Mol. Evol.36: 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Morris, B., Coates, L., Lowe, S., Richardson, K. andEddy, P. 1990. Nucleotide sequence of the infectious cloned DNA components of African cassava mosaic virus (Nigerian strain). Nucleic Acids Res.18: 197–198.

    PubMed  CAS  Google Scholar 

  • Navot, N., Pichersky, E., Zeidan, M., Zamir, D. andCzosnek, H. 1991. Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology185: 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Noris, E., Hidalgo, E., Accotto, G.P. andMoriones, E. 1994. High similarity among the tomato yellow leaf curl virus isolates from the west Mediterranean basin: the nucleotide sequence of an infectious clone from Spain. Arch. Virol.135: 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Orito, E., Mizokami, M., Ina, Y., Moriyama, E.N., Kameshima, N., Yamamoto, M. andGojobori, T. 1989. Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc. Natl. Acad. Sci. USA86: 7059–7062.

    Article  PubMed  CAS  Google Scholar 

  • Osaki, T. andInouye, T. 1978. Resemblance in morphology and intranuclear appearance of viruses isolated from yellow dwarf diseased tomato and leaf curl diseased tobacco. Ann. Phytopath. Soc. Japan44: 167–178.

    Google Scholar 

  • Osaki, T., Kobatake, H. andInouye, T. 1976. A new yellow dwarf disease of tomato transmitted byBemisia tabaci. Shokubutsuboueki30: 458–462.(In Japanese)

    Google Scholar 

  • Osaki, T., Kobatake, H. andInouye, T. 1979. Yellow vein mosaic of honeysuckle (Lonicera japonica Thunb.), a disease caused by tobacco leaf curl virus in Japan. Ann. Phytopath. Soc. Japan45: 62–69.

    Google Scholar 

  • Padidam, M., Beachy, R.N. andFauquet, C.M. 1995a. Classification and identification of geminiviruses using sequence comparisons. J. Gen. Virol.76: 249–263.

    PubMed  CAS  Google Scholar 

  • Padidam, M., Beachy, R.N. andFauquet, C.M. 1995b. Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J. Gen. Virol.76: 25–35.

    PubMed  CAS  Google Scholar 

  • Pamilo, P. andBianci, N.O. 1993. Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol. Biol. Evol.10: 271–281.

    PubMed  CAS  Google Scholar 

  • Rigden, J.E., Krake, L.R., Rezaian, M.A. andDry, I.B. 1994. ORF C4 of tomato leaf curl geminivirus is a determinant of symptom severity. Virology204: 847–850.

    Article  PubMed  CAS  Google Scholar 

  • Rojas, M.R., Gilbertson, R.L., Russel, D.R. andMaxwell, D.P. 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis.77: 340–347.

    Article  CAS  Google Scholar 

  • Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. andErlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science239: 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. andNei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4: 406–425.

    PubMed  CAS  Google Scholar 

  • Stanley, J. andGay, M.R. 1983. Nucleotide sequence of cassava latent virus DNA. Nature301: 260–262.

    Article  CAS  Google Scholar 

  • Stanley, J. 1991. The molecular determinants of geminivirus pathogenesis. Semin. Virol.2: 139–149.

    CAS  Google Scholar 

  • Stanley, J. andLatham, J.R. 1992. A symptom variant of beet curly top geminivirus produced by mutation of open reading frame C4. Virology190: 506–509.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D.L. 1993. PAUP: phylogenetic analysis using parsimony, version 3.1.1. Smithsonian Institution. Washington.

    Google Scholar 

  • Swofford, D.L. andMaddison, W.P. 1987. Reconstructing ancestral character states under Wagner parsimony. Math. Biosci.87: 199–229.

    Article  Google Scholar 

  • Tan, P.H.N., Wong, S.M., Wu, M., Bedford, I.D., Saunders, K. andStanley, J. 1995. Genome organization of ageratum yellow vein virus, a monopartite whitefly-transmitted geminivirus isolated from a common weed. J. Gen. Virol.76: 2915–2922.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., Higgins, D.G., andGibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res.22: 4673–4680.

    PubMed  CAS  Google Scholar 

  • Thompson, J.D., Gibson, T.J. andHiggins, D.G. 1996. CLUSTAL W version 1.6. European Molecular Biology Laboratory. Heidelberg.

    Google Scholar 

  • Vasudeva, R.S. andSam Raj, J. 1948. A leaf-curl disease of tomato. Phytopathology38: 364–369.

    Google Scholar 

  • Watanabe, K., Furuhara, T. andHuziwara, Y. 1982. Studies on the Asian eupatorias. I.Eupatorium chinense var.simplicifolium from the Rokko Mountains. Bot. Mag. Tokyo95: 261–280.

    Article  Google Scholar 

  • Watanabe, K. andYahara, T. 1984. Studies on the Asian Eupatoria. II. Cytogeography ofEupatorium chinense subsp.sachalinense varoppositifolium. Bot. Mag. Tokyo97: 87–105.

    Article  Google Scholar 

  • Watanabe, K. 1986. The cytogeography of the genusEupatorium (Compositae)—a review. Plant Species Biol.1: 99–116.

    Article  CAS  Google Scholar 

  • Webster, R.G., Laver, W.G., Air, G.M. andSchild, G.C. 1982. Molecular mechanisms of variation in influenza viruses. Nature296: 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Yahara, T. 1990. Evolution of agamospermous races inBoemeria andEupatorium. Plant Species Biol.5: 183–196.

    Article  Google Scholar 

  • Yahara, T. andOyama, K. 1993. Effects of virus infection on demographic traits of an agamospermous population ofEupatorium chinense (Asteraceae) Oecologia96: 310–315.

    Article  Google Scholar 

  • Yahara, T., Watanabe, K. andKawahara, T. 1995.Eupatorium.In K. Iwatsuki, T. Yamazaki, D.E. Boufford and H. Ohba, eds., Flora of Japan, vol. IIIb., Kodansha Scientific, Tokyo, pp. 110–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyki Ooi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooi, K., Ohshita, S., Ishii, I. et al. Molecular phylogeny of geminivirus infecting wild plants in Japan. J. Plant Res. 110, 247–257 (1997). https://doi.org/10.1007/BF02509313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509313

Key words

Navigation