Skip to main content

Extreme Views on Prokaryote Evolution

  • Chapter
Microbiology of Extreme Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 13))

Not two soils are identical. Not two bacteria are identical either, with perhaps even not two daughter cells as they emerge from symmetric division being rigorously the same (Stewart et al. 2005). However, it might be easier to draw generalizations from observations of Escherichia coli or Caulobacter crescentus than from soil studies. This might explain why the bacterial cell has been deemed a more popular object of theoretical reflections than has the soil environment, although remarkable concepts on soil biology have emerged (Wardle et al. 2004; Young and Crawford 2004). This being said, extreme soils may appear as a particularly fruitful ground for those of us who feel seduced by the “idea of the soil” and who wish to venture on such a (admittedly slippery) terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aertsen A, Michiels CW (2006) Upstream of the SOS response: Figure out the trigger. Trends Microbiol 14:421–423

    Article  PubMed  CAS  Google Scholar 

  • Al Mamun AAM, Gautam S, Humayun MZ (2006) Hypermutagenesis in mutA cells is mediated by mistranslational corruption of polymerase, and is accompanied by replication fork collapse. Molec Microbiol 62:1752–1763

    Article  CAS  Google Scholar 

  • Allen EE, Tyson GW, Whitaker RJ, Detter JC, Richardson PM, Banfield JF (2007) Genome dynamics in a natural archaeal population. Proc Natl Acad Sci USA 104:1883–1888

    Article  PubMed  CAS  Google Scholar 

  • Andersson DI, Slechta ES, Roth JR (1998) Evidence that gene amplification underlies adaptive mutability of the bacterial lac operon. Science 282:1133–1135

    Article  PubMed  CAS  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  PubMed  CAS  Google Scholar 

  • Banas JA et al. (2007) Evidence that accumulation of mutants in a biofilm reflects natural selection rather than stress-induced adaptive mutation. Appl Environ Microbiol 73:357–361

    Article  PubMed  CAS  Google Scholar 

  • Bardgett RD (2002) Causes and consequences of biological diversity in soil. Zoology 105:367–375

    Article  PubMed  Google Scholar 

  • Battista JR, Earl AM, Park M-J (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7:362–365

    Article  PubMed  CAS  Google Scholar 

  • Baumstark-Khan C, Facius R (2001) Life under conditions of ionizing radiation. In: Horneck G, Baumstark-Khan C (eds) Astrobiology – The Quest for the Conditions of Life. Springer-Verlag, Berlin Heidelberg, pp 260–283

    Google Scholar 

  • Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74

    Article  PubMed  CAS  Google Scholar 

  • Beare MH, Coleman DC, Crossley Jr DA, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22

    Article  CAS  Google Scholar 

  • Belotte D, Curien J-B, Maclean RC, Bell G (2003) An experimental test of local adaptation in soil bacteria. Evolution 57:27–36

    PubMed  Google Scholar 

  • Bendich AJ, Drlica K (2000) Prokaryotic and eukaryotic chromosomes: What’s the difference? BioEssays 22:481–486

    Article  PubMed  CAS  Google Scholar 

  • Berg OG, Kurland CG (2002) Evolution of microbial genomes: Sequence acquisition and loss. Mol Biol Evol 19:2265–2276

    PubMed  CAS  Google Scholar 

  • Bershtein S, Segal M, Bekerman R, Tokuriki N, Tawfik DS (2006) Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444:929–932

    Article  PubMed  CAS  Google Scholar 

  • Bjedov I et al. (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409

    Article  PubMed  CAS  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101:16630–16635

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1985) Life at high temperatures. Science 230:132–138

    Article  PubMed  CAS  Google Scholar 

  • Buckling A, Wills MA, Colegrave N (2003) Adaptation limits diversification of experimental bacterial populations. Science 302:2107–2109

    Article  PubMed  CAS  Google Scholar 

  • Cairns J, Overbaugh J, Miller S (1988) The origin of mutants. Nature 335:142–145

    Article  PubMed  CAS  Google Scholar 

  • Castán P, Casares L, Barbé J, Berenguer J (2003) Temperature-dependent hypermutational phenotype in recA mutants of Thermus thermophilus HB27. J Bacteriol 185:4901–4907

    Article  PubMed  CAS  Google Scholar 

  • Cho J-C, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456

    Article  PubMed  CAS  Google Scholar 

  • Cleaves HJ, Chalmers JH (2004) Extremophiles may be irrelevant to the origin of life. Astrobiology 4:1–9

    Article  PubMed  CAS  Google Scholar 

  • Colegrave N, Buckling A (2005) Microbial experiments on adaptive landscapes. BioEssays 27:1167–1173

    Article  PubMed  Google Scholar 

  • Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736–739

    Article  PubMed  CAS  Google Scholar 

  • Cooper VS, Schneider D, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183:2834–2841

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S et al. (2002) Molecular basis of cold adaptation. Phil Trans R Soc B 357:917–925

    Article  PubMed  CAS  Google Scholar 

  • Denamur E, Matic I (2006) Evolution of mutation rates in bacteria. Molec Microbiol 60:820–827

    Article  CAS  Google Scholar 

  • Des Marais DJ (1998) Earth’s early biosphere and its environment. In: Woodward CE, Shull JM, Thronson Jr HA (eds) Origins (ASP Conference Series 148). Astronomical Society of the Pacific, San Francisco, pp 415–434

    Google Scholar 

  • Di Giulio M (2003) The ancestor of the Bacteria domain was a hyperthermophile. J Theor Biol 224:277–283

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Raviña M, Bååth E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977

    PubMed  Google Scholar 

  • Dion P (2008) Reconstructing soil biology. In: Nautiyal CS, Dion P (eds) Molecular Mechanisms of Plant-Microbe Coexistence. Springer-Verlag, Berlin Heidelberg, in press

    Google Scholar 

  • Drake JW, Bebenek A, Kissling GE, Peddada S (2005) Clusters of mutations from transient hypermutability. Proc Natl Acad Sci USA 102:12849–12854

    Article  PubMed  CAS  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    PubMed  CAS  Google Scholar 

  • Earl DJ, Deem MW (2004) Evolvability is a selectable trait. Proc Natl Acad Sci USA 101:11531–11536

    Article  PubMed  CAS  Google Scholar 

  • Elena SF, Cooper VS, Lenski RE (1996) Punctuated evolution caused by selection of rare beneficial mutations. Science 272:1802–1804

    Article  PubMed  CAS  Google Scholar 

  • Engelen B, Meinken K, von Wintzingerode F, Heuer H, Malkomes H-P, Backhaus H (1998) Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Appl Environ Microbiol 64:2814–2821

    PubMed  CAS  Google Scholar 

  • Erill I, Campoy S, Mazon G, Barbé J (2006) Dispersal and regulation of an adaptive mutagenesis cassette in the bacteria domain. Nucl Acids Res 34:66–77

    Article  PubMed  CAS  Google Scholar 

  • Erwin DH (2000) Macroevolution is more than repeated rounds of microevolution. Evol Dev 2:78–84

    Article  PubMed  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed  CAS  Google Scholar 

  • Finkel SE, Kolter R (1999) Evolution of microbial diversity during prolonged starvation. Proc Natl Acad Sci USA 96:4023–4027

    Article  PubMed  CAS  Google Scholar 

  • Fitz-Gibbon ST, Ladner H, Kim U-J, Stetter KO, Simon MI, Miller JH (2002) Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci USA 99:984–989

    Article  PubMed  CAS  Google Scholar 

  • Gelsomino A, Keijzer-Wolters AC, Cacco G, van Elsas JD (1999) Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Meth 38:1–15

    Article  CAS  Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Varma A (2005) Microbial diversity in soils. In: Buscot F, Varma A. (ed) Microorganisms in Soils: Roles in Genesis and Functions. Springer-Verlag, Berlin Heidelberg, pp 19–55

    Chapter  Google Scholar 

  • Goldenfeld N, Woese C (2007) Biology’s next revolution. Nature 445:369

    Article  PubMed  CAS  Google Scholar 

  • Griffin DW, Kellogg CA, Shinn EA (2001) Dust in the wind: Long range transport of dust in the atmosphere and its implications for global public and ecosystem health. Global Change Hum Health 2:20–33

    Article  Google Scholar 

  • Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: Analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98:7928–7933

    Article  PubMed  CAS  Google Scholar 

  • Grundmann GL (2004) Spatial scales of soil bacterial diversity - The size of a clone. FEMS Microbiol Ecol 48:119–127

    Article  CAS  PubMed  Google Scholar 

  • Grundmann GL, Debouzie D (2000) Geostatistical analysis of the distribution of NH4 + and NO2 -oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol Ecol 34:57–62

    PubMed  CAS  Google Scholar 

  • Grundmann GL, Dechesne A, Bartoli F, Flandrois JP, Chassé JL, Kizungu R (2001) Spatial modeling of nitrifier microhabitats in soil. Soil Sci Soc Am J 65:1709–1716

    Article  CAS  Google Scholar 

  • Grundmann GL, Normand P (2000) Microscale diversity of the genus Nitrobacter in soil on the basis of analysis of genes encoding rRNA. Appl Environ Microbiol 66:4543–4546

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (1999) Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 2:148–152

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395

    Article  PubMed  CAS  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  PubMed  CAS  Google Scholar 

  • Ilves H, Hörak R, Kivisaar M (2001) Involvement of σS in starvation-induced transposition of Pseudomonas putida transposon Tn4652. J Bacteriol 183:5445–5448

    Article  PubMed  CAS  Google Scholar 

  • Ishihama A (1997) Adaptation of gene expression in stationary phase bacteria. Curr Opin Genet Develop 7:582–588

    Article  CAS  Google Scholar 

  • Islas S, Velasco AM, Becerra A, Delaye L, Lazcano A (2003) Hyperthermophily and the origin and earliest evolution of life. Int Microbiol 6:87–94

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Rivera MC, Moore JE, Lake JA (2003) Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol 20:1598–1602

    Article  PubMed  CAS  Google Scholar 

  • Jamieson RC, Gordon RJ, Sharples KE, Stratton W, Madani A (2002) Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: A review. Can Biosyst Eng 44:1.1–1.9

    Google Scholar 

  • Janion C (2001) Some aspects of the SOS response system — A critical survey. Acta Biochim Pol 48:599–610

    PubMed  CAS  Google Scholar 

  • Jenkins DE, Schultz JE, Matin A (1988) Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol 170:3910–3914

    PubMed  CAS  Google Scholar 

  • Jiang X, Morgan J, Doyle MP (2002) Fate of Escherichia coli O157:H7 in manure-amended soil. Appl Environ Microbiol 68:2605–2609

    Article  PubMed  CAS  Google Scholar 

  • Kandeler E et al. (2000) Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32:390–400

    Article  CAS  Google Scholar 

  • Kang JM, Iovine NM, Blaser MJ (2006) A paradigm for direct stress-induced mutation in prokaryotes. FASEB J 20:2476–2485

    Article  PubMed  CAS  Google Scholar 

  • Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15:173–190

    Article  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644

    Article  PubMed  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  PubMed  CAS  Google Scholar 

  • Kharecha P, Kasting J, Siefert J (2005) A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3:53–76

    Article  CAS  Google Scholar 

  • King T, Seeto S, Ferenci T (2006) Genotype-by-environment interactions influencing the emergence of rpoS mutations in Escherichia coli populations. Genetics 172:2071–2079

    Article  PubMed  CAS  Google Scholar 

  • Kirisits MJ, Prost L, Starkey M, Parsek MR (2005) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71:4809–4821

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink JL et al. (2000) Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proc Nat Acad Sci USA 97:1400–1405

    Article  PubMed  CAS  Google Scholar 

  • Kivisaar M (2003) Stationary phase mutagenesis: Mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 5:814–827

    Article  PubMed  CAS  Google Scholar 

  • Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Palaeogeog Palaeoclimatol Palaeoecol 219:53–69

    Article  Google Scholar 

  • Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull 115:566–580

    Article  CAS  Google Scholar 

  • Korona R, Nakatsu C, Forney L, Lenski R (1994) Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc Nat Acad Sci USA 91:9037–9041

    Article  PubMed  CAS  Google Scholar 

  • Kresse AU, Dinesh SD, Larbig K, Römling U (2003) Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Molec Microbiol 47:145–158

    Article  CAS  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  PubMed  CAS  Google Scholar 

  • Kunte HJ, Trüper HG, Stan-Lotter H (2001) Halophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology – The Quest for the Conditions of Life. Springer-Verlag, Berlin Heidelberg, pp 185–199

    Google Scholar 

  • Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: A critical view. Proc Natl Acad Sci USA 100:9658–9662

    Article  PubMed  CAS  Google Scholar 

  • Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: A model of survival in changing environments. Genetics 169:1807–1814

    Article  PubMed  Google Scholar 

  • Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078

    Article  PubMed  CAS  Google Scholar 

  • Lazazzera BA (2000) Quorum sensing and starvation: Signals for entry into stationary phase. Curr Opin Microbiol 3:177–182

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2000) Programmed death in bacteria. Microbiol Mol Biol Rev 64:503–514

    Article  PubMed  CAS  Google Scholar 

  • Lockwood JL (1988) Evolution of concepts associated with soilborne plant pathogens. Annu Rev Phytopathol 26:93–121

    Article  Google Scholar 

  • Loewe L (2004) Response to comment on “High deleterious genomic mutation rate in stationary phase of Escherichia coli”. Science 304:518d

    Article  Google Scholar 

  • Macario AJL, Lange M, Ahring BK, De Macario EC (1999) Stress genes and proteins in the Archaea. Microbiol Mol Biol Rev 63:923–967

    PubMed  CAS  Google Scholar 

  • Martiny JBH et al. (2006) Microbial biogeography: Putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J, Smith N, O’Rourke M, Spratt B (1993) How clonal are bacteria? Proc Natl Acad Sci USA 90:4384–4388

    Article  Google Scholar 

  • Mazón G, Campoy S, Fernández de Henestrosa AR, Barbé J (2006) Insights into the LexA regulon of Thermotogales. Antonie van Leeuwenhoek 90:123–137

    Article  PubMed  CAS  Google Scholar 

  • McArthur JV, Kovacic DA, Smith MH (1988) Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc Natl Acad Sci USA 85:9621–9624

    Article  PubMed  CAS  Google Scholar 

  • Michel B (2005) After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol 3:e255

    Article  PubMed  CAS  Google Scholar 

  • Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN (2004) SOS response induction by β-Lactams and bacterial defense against antibiotic lethality. Science 305:1629–1631

    Article  PubMed  CAS  Google Scholar 

  • Mokkapati SK, Fernández de Henestrosa AR, Bhagwat AS (2001) Escherichia coli DNA glycosylase Mug: A growth-regulated enzyme required for mutation avoidance in stationary-phase cells. Molec Microbiol 41:1101–1111

    Article  CAS  Google Scholar 

  • Moore FB-G, Woods R (2006) Tempo and constraint of adaptive evolution in Escherichia coli (Enterobacteriaceae, Enterobacteriales). Biol J Linnean Soc 88:403–411

    Article  Google Scholar 

  • Moxon ER, Rainey PB, Nowak MA, Lenski RE (1994) Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4:24–33

    Article  PubMed  CAS  Google Scholar 

  • Napolitano R, Janel-Bintz R, Wagner J, Fuchs RPP (2000) All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J 19:6259–6265

    Article  PubMed  CAS  Google Scholar 

  • Nicol GW, Glover LA, Prosser JI (2003) Spatial analysis of archaeal community structure in grassland soil. Appl Environ Microbiol 69:7420–7429

    Article  PubMed  CAS  Google Scholar 

  • Noguez AM, Arita HT, Escalante AE, Forney LJ, García-Oliva F, Souza V (2005) Microbial macroecology: Highly structured prokaryotic soil assemblages in a tropical deciduous forest. Global Ecol Biogeog 14:241–248

    Article  Google Scholar 

  • Nohmi T (2006) Environmental stress and lesion-bypass DNA polymerases. Annu Rev Microbiol 60:231–253

    Article  PubMed  CAS  Google Scholar 

  • Norris TB, Wraith JM, Castenholz RW, McDermott TR (2002) Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl Environ Microbiol 68:6300–6309

    Article  PubMed  CAS  Google Scholar 

  • Notley-McRobb L, Pinto R, Seeto S, Ferenci T (2002) Regulation of mutY and nature of mutator mutations in Escherichia coli populations under nutrient limitation. J Bacteriol 184:739–745

    Article  PubMed  CAS  Google Scholar 

  • Nunan N, Wu K, Young IM, Crawford JW, Ritz K (2002) In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil. Microb Ecol 44:296–305

    Article  PubMed  CAS  Google Scholar 

  • Nunan N, Wu K, Young IM, Crawford JW, Ritz K (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol Ecol 44:203–215

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, a Handbook on the Biology of Bacteria, 3rd edn, vol 2. Springer-Verlag, Berlin Heidelberg, pp 263–282

    Google Scholar 

  • Peliti L (1997) Introduction to the statistical theory of Darwinian evolution. arXiv:cond-mat/9712027 (http://lanl.arxiv.org/abs/cond-mat/9712027)

  • Poole AM, Phillips MJ, Penny D (2003) Prokaryote and eukaryote evolvability. Biosystems 69:163–185

    Article  PubMed  CAS  Google Scholar 

  • Price CW, Fawcett P, Cérémonie H, Su N, Murphy CK, Youngman P (2001) Genome-wide analysis of the general stress response in Bacillus subtilis. Molec Microbiol 41:757–774

    Article  CAS  Google Scholar 

  • Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    Article  PubMed  CAS  Google Scholar 

  • Ramette A, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci USA 104:2761–2766

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L et al. (2000) Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microb Ecol 39:263–272

    PubMed  CAS  Google Scholar 

  • Robert F, Chaussidon M (2006) A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969–972

    Article  PubMed  CAS  Google Scholar 

  • Rocha EP (2004) Order and disorder in bacterial genomes. Curr Opin Microbiol 7:519–527

    Article  PubMed  CAS  Google Scholar 

  • Ross C, Pybus C, Pedraza-Reyes M, Sung H-M, Yasbin RE, Robleto E (2006) Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 188:7512–7520

    Article  PubMed  CAS  Google Scholar 

  • Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI (2006) Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 60:477–501

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Saint-Ruf C, Matic I (2006) Environmental tuning of mutation rates. Environ Microbiol 8:193–199

    Article  PubMed  CAS  Google Scholar 

  • Scherer S, Neuhaus K (2006) Life at low temperatures. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, a Handbook on the Biology of Bacteria, 3rd edn, vol 2. Springer-Verlag, Berlin Heidelberg, pp 210–262

    Google Scholar 

  • Schloter M, Lebuhn M, Heulin T, Hartmann A (2000) Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev 24:647–660

    Article  PubMed  CAS  Google Scholar 

  • Schwartzman D, Lineweaver CH (2005) Temperature, biogenesis and biospheric self-organization. In: Kleidon A, Lorenz R (eds) Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer-Verlag, Berlin Heidelberg, pp 207–222

    Chapter  Google Scholar 

  • Schwartzman DW, Lineweaver CH (2004) The hyperthermophilic origin of life revisited. Biochem Soc Trans 32:168–171

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224

    Article  PubMed  CAS  Google Scholar 

  • Shabala L, Ross T, McMeekin T, Shabala S (2006) Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. FEMS Microbiol Rev 30:472–486

    Article  PubMed  CAS  Google Scholar 

  • Shapiro JA (2005) Thinking about evolution in terms of cellular computing. Nat Comput 4:297–324

    Article  CAS  Google Scholar 

  • Slechta ES, Bunny KL, Kugelberg E, Kofoid E, Andersson DI, Roth JR (2003) Adaptive mutation: General mutagenesis is not a programmed response to stress but results from rare coamplification of dinB with lac. Proc Natl Acad Sci USA 100:12847–12852

    Article  PubMed  CAS  Google Scholar 

  • Sniegowski PD, Gerrish PJ, Johnson T, Shaver A (2000) The evolution of mutation rates: Separating causes from consequences. BioEssays 22:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Solomon JM, Grossman AD (1996) Who’s competent and when: Regulation of natural genetic competence in bacteria. Trends Genet 12:150–155

    Article  PubMed  CAS  Google Scholar 

  • Staley JT (1997) Biodiversity: Are microbial species threatened? Curr Opin Biotechnol 8:340–345

    Article  PubMed  CAS  Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: Biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (2001) Hyperthermophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology – The Quest for the Conditions of Life. Springer-Verlag, Berlin Heidelberg, pp 169–184

    Google Scholar 

  • Stewart EJ, Madden R, Paul G, Taddei F (2005) Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology 3:e45

    Article  PubMed  CAS  Google Scholar 

  • Taddei F, Matic I, Radman M (1995) cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc Natl Acad Sci USA 92:11736–11740

    Article  PubMed  CAS  Google Scholar 

  • Tark M et al. (2005) A DNA polymerase V homologue encoded by TOL Plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress. J Bacteriol 187:5203–5213

    Article  PubMed  CAS  Google Scholar 

  • Thattai M, van Oudenaarden A (2004) Stochastic gene expression in fluctuating environments. Genetics 167:523–530

    Article  PubMed  Google Scholar 

  • Torkelson J, Harris RS, Lombardo MJ, Nagendran J, Thulin C, Rosenberg SM (1997) Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J 16:3303–3311

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: From genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity – Magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  PubMed  CAS  Google Scholar 

  • Tringe SG et al. (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  PubMed  CAS  Google Scholar 

  • Usher MB (1979) Markovian approaches to ecological succession. J Anim Ecol 48:413–426

    Article  Google Scholar 

  • Van Belkum A, Scherer S, van Alphen L, Verbrugh H (1998) Short-sequence DNA repeats in prokaryotic genomes. Microbiol Molec Biol Rev 62:275–293

    CAS  Google Scholar 

  • Van Gestel M, Merckx R, Vlassak K (1996) Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biol Biochem 28:503–510

    Article  CAS  Google Scholar 

  • Van Veen J, van Overbeek L, van Elsas J (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    PubMed  CAS  Google Scholar 

  • Vogel J, Normand P, Thioulouse J, Nesme X, Grundmann GL (2003) Relationship between spatial and genetic distance in Agrobacterium spp. in 1 cubic centimeter of soil. Appl Environ Microbiol 69:1482–1487

    Article  PubMed  CAS  Google Scholar 

  • Vos M, Velicer GJ (2006) Genetic population structure of the soil bacterium Myxococcus xanthus at the centimeter scale. Appl Environ Microbiol 72:3615–3625

    Article  PubMed  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Webster G, Embley TM, Prosser JI (2002) Grassland management regimens reduce small-scale heterogeneity and species diversity of β-proteobacterial ammonia oxidizer populations. Appl Environ Microbiol 68:20–30

    Article  PubMed  CAS  Google Scholar 

  • Whitaker RJ, Banfield JF (2005) Population dynamics through the lens of extreme environments. Rev Mineral Geochem 59:259–277

    Article  CAS  Google Scholar 

  • Whitlock MC, Phillips PC, Moore FB-G, Tonsor SJ (1995) Multiple fitness peaks and epistasis. Annu Rev Ecol Syst 26:601–629

    Article  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama desert. Astrobiology 6:415–422

    Article  PubMed  Google Scholar 

  • Wilke CO, Adami C (2001) Interaction between directional epistasis and average mutational effects. Proc R Soc B 268:1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Willenbrock H, Friis C, Juncker AS, Ussery DW (2006) An environmental signature for 323 microbial genomes based on codon adaptation indices. Genome Biol 7:R114

    Article  PubMed  CAS  Google Scholar 

  • Wipat A, Harwood CR (1999) The Bacillus subtilis genome sequence: The molecular blueprint of a soil bacterium. FEMS Microbiol Ecol 28:1–9

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1988) Surfaces of selective value revisited. Am Nat 131:115–123

    Article  Google Scholar 

  • Yamamoto H (2000) Viable but nonculturable state as a general phenomenon of non-spore-forming bacteria, and its modeling. J Infect Chemother 6:112–114

    Article  PubMed  CAS  Google Scholar 

  • Yang Y-H, Yao J, Hu S, Qi Y (2000) Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: A study with RAPD marker. Microb Ecol 39:72–79

    Article  PubMed  CAS  Google Scholar 

  • Yeiser B, Pepper ED, Goodman MF, Finkel SE (2002) SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proc Natl Acad Sci USA 99:8737–8741

    PubMed  CAS  Google Scholar 

  • Young IM, Crawford JW (2004) Interactions and self-organization in the soil-microbe complex. Science 304:1634–1637

    Article  PubMed  CAS  Google Scholar 

  • Zahradka K et al. (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573

    PubMed  CAS  Google Scholar 

  • Zinser ER, Kolter R (2004) Escherichia coli evolution during stationary phase. Res Microbiol 155:328–336

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dion, P. (2008). Extreme Views on Prokaryote Evolution. In: Dion, P., Nautiyal, C.S. (eds) Microbiology of Extreme Soils. Soil Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74231-9_3

Download citation

Publish with us

Policies and ethics