Skip to main content
Log in

Insights into the LexA regulon of Thermotogales

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The lexA genes of Thermotoga maritima and Petrotoga miotherma, both members of the Order Thermotogales, have been cloned and their transcriptional organization, as well as the functional characteristics of their encoded products, analyzed. In both bacterial species, the lexA gene was found to be co-transcribed together with another four (T. maritima) or three (P. miotherma) upstream open-reading frames. The P. miotherma LexA was able to bind promoters of both the cognate lexA encoding operon and the uvrA gene but not to that of the recA. Conversely, LexA protein and crude cell extracts from T. maritima were unable to bind promoters governing the expression of either its lexA or recA genes. In agreement with these observations, no functional copy of the P. miotherma LexA box, corresponding to the GANTN6GANNAC motif, seems to be present in the T. maritima genome. Giving support to the proposal that the evolutionary branching order of the Order Thermotogales is very close to that of Gram-positive bacteria, the P. miotherma LexA protein was still able to recognize the previously described LexA-binding sequence for Gram-positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach-Richter L, Gupta R, Stetter KO, Woese CR (1987) Were the original eubacteria thermophiles? Syst Appl Microbiol 9:34–39

    PubMed  CAS  Google Scholar 

  • Bridges BA, Ashwood-Smith MJ, Munson RJ (1969) Correlation of bacterial sensitivities to ionizing radiation and mild heating. J Gen Microbiol 58:115–124

    PubMed  CAS  Google Scholar 

  • Campoy S, Mazón G, Fernández de Henestrosa AR, Llagostera M, Monteiro PB, Barbé J (2002) A new regulatory DNA motif of the gamma subclass Proteobacteria: identification of the LexA protein binding site of the plant pathogen Xylella fastidiosa. Microbiology 148:3583–3597

    PubMed  CAS  Google Scholar 

  • Campoy S, Fontes M, Padmanabhan S, Cortes P, Llagostera M, Barbé J (2003) LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus. Mol Microbiol 49:769–781

    Article  PubMed  CAS  Google Scholar 

  • Castan P, Casares L, Barbé J, Berenguer J (2003) Temperature-dependent hypermutational phenotype in recA mutants of Thermus thermophilus HB27. J Bacteriol 185:4901–4907

    Article  PubMed  CAS  Google Scholar 

  • Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158:41–64

    PubMed  CAS  Google Scholar 

  • Cuñé J, Cullen P, Mazón G, Campoy S, Adler B, Barbé J (2005) The Leptospira interrogans lexA gene is not autoregulated. J Bacteriol 187:5841–5845

    Article  PubMed  Google Scholar 

  • Davey ME, Wood WA, Key R, Nakamura K, Stahl D (1998) Isolation of three species of Geotoga and Petrotoga: two new genera representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales”. J Syst Appl Microbiol 16:191–200

    Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    Article  PubMed  CAS  Google Scholar 

  • Eisen JA (1995) The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123

    Article  PubMed  CAS  Google Scholar 

  • Erill I, Escribano M, Campoy S, Barbé J (2003) In silico analysis reveals substantial variability in the gene contents of the Gamma Proteobacteria LexA-regulon. Bioinformatics 19:2225–2236

    Article  PubMed  CAS  Google Scholar 

  • Erill I, Jara M, Salvador N, Escribano M, Campoy S, Barbé J (2004) Differences in LexA regulon structure among Proteobacteria through in vivo assisted comparative genomics. Nucleic Acids Res 32:6617–6626

    Article  PubMed  CAS  Google Scholar 

  • Fernández de Henestrosa AR, Rivera E, Tapias A, Barbé J (1998) Identification of the Rhodobacter sphaeroides SOS box. Mol Microbiol 28:991–1003

    Article  Google Scholar 

  • Fernández de Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35:1560–1572

    Article  Google Scholar 

  • Fernández de Henestrosa AR, Cuñé J, Erill I, Magnuson JK, Barbé J (2002) A green nonsulfur bacterium Dehalococcoides ethenogenes with the LexA binding sequence found in Gram-positive organisms. J Bacteriol 184:6073–6080

    Article  Google Scholar 

  • Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton GG, Kelley JM, Fritchman JL, Weidman JF, Small KV, Sandusky M, Fuhrmann JL, Nguyen DT, Utterback T, Saudek DM, Phillips CA, Merrick JM, Tomb J, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC (1995) Out of the shadows and into the light: the emergence of DNA repair. Trends Biochem Sci 20:381–384

    Article  PubMed  CAS  Google Scholar 

  • Guipaud O, Marguet E, Noll KM, de la Tour CB, Forterre P (1997) Both DNA gyrase and reverse gyrase are present in the hyperthermophilic bacterium Thermotoga maritima. Proc Natl Acad Sci USA 94:10606–10611

    Article  PubMed  CAS  Google Scholar 

  • Griffiths E, Gupta RS (2004) Signature sequences in diverse proteins provide evidence for the late divergence of the Order Aquificales. Internat Microbiol 7:41–52

    PubMed  CAS  Google Scholar 

  • Henne A, Bruggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22:547–553

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Langworthy TA, Köning H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. J Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  • Kawabata M, Saeki K (1998) Sequence analysis and expression of a novel mouse homolog of Escherichia coli recA gene. Biochim Biophys Acta 1398:353–358

    PubMed  CAS  Google Scholar 

  • Knegtel RMA, Fogh RH, Ottleben G, Rüterjans H, Dumoulin P, Schnarr M, Boelens R, Kaptein R (1995) A model for the LexA repressor DNA complex. Proteins 21:226–236

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  • Little JW, Edminston S, Pacelli L, Mount D (1980) Cleavage of the Escherichia coli LexA protein by the RecA protease. Proc Natl Acad Sci USA 77:3225–3229

    Article  PubMed  CAS  Google Scholar 

  • Little JW (1991) Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73:411–422

    Article  PubMed  CAS  Google Scholar 

  • Lusetti SL, Cox MM (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 71:71–100

    Article  PubMed  CAS  Google Scholar 

  • Mazón G, Lucena JM, Campoy S, Fernández de Henestrosa AR, Candau P, Barbé J (2004a) LexA-binding sequences in Gram-positive and cyanobacteria are closely related. Mol Gen Genom 271:40–49

    Article  Google Scholar 

  • Mazón G, Erill I, Campoy S, Cortés P, Forano E, Barbé J (2004b) Reconstruction of the evolutionary history of the LexA-binding sequence. Microbiology 150:3783–3795

    Article  Google Scholar 

  • Mohana-Borges R, Pacheco AB, Sousa FJ, Foguel D, Almeida DF, Silva JL (2000) LexA repressor forms stable dimers in solution. The role of specific DNA in tightening protein-protein interactions. J Biol Chem 275:4708–4712

    Article  PubMed  CAS  Google Scholar 

  • Morin A, Huysveld N, Braun F, Dimova D, Sakanyan V, Charlier D (2003) Hyperthermophilic Thermotoga arginine repressor binding to full-length cognate and heterologous arginine operators and to half-site targets. J Mol Biol 332:537–553

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  PubMed  CAS  Google Scholar 

  • Ogata H, Audic S, Renesto-Audiffren P, Fournier P-E, Barbe V, Samson D, Roux V, Cossart P, Weissenbach J, Claverie JM, Raoult D (2001) Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293:2093–2098

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning; a laboratory manual, 3rd edn. Cold Spring harbor Laboratory Press, Cold Spring Harbor NY

    Google Scholar 

  • Sandler SJ, Satin LH, Samra HS, Clark AJ (1996) recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 24:2125–2132

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson S (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sassanfar M, Roberts JW (1990) Nature of SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 212:79–96

    Article  PubMed  CAS  Google Scholar 

  • Savijoki K, Ingmer H, Frees D, Vogensen FK, Palva A, Varmanen P (2003) Heat and DNA damage induction of the LexA-like regulator HdiR from Lactococcus lactis is mediated by RecA and ClpP. Mol Microbiol 50:609–621

    Article  PubMed  CAS  Google Scholar 

  • Setlow B, Setlow P (1996) Role of DNA repair in Bacillus subtilis spore resistance. J Bacteriol 178:3486–3495

    PubMed  CAS  Google Scholar 

  • van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernandez JM, Jimenez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Moran F, and Moya A (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586

    Article  PubMed  Google Scholar 

  • Walker GC (1984) Mutagenesis and inducible responses to deoxyribonecleic acid damage in Escherichia coli. Microbiol Rev 48:60–93

    PubMed  CAS  Google Scholar 

  • Winterling KW, Chafin D, Hayes JJ, Sun J, Levine AS, Yasbin RE, Woodgate R (1998) The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol 180:2201–2211

    PubMed  CAS  Google Scholar 

  • Woodcock BA, Grigg GW (1972) Repair of thermally induced DNA breakage in Escherichia coli. Nat New Biol 237:76–79

    PubMed  CAS  Google Scholar 

  • Yuste L, Hervás AB, Canosa I, Tobes R, Jiménez JI, Nogales J, Pérez-Pérez MM, Santero E, Díaz E, Ramos JL, de Lorenzo V, Rojo F (2005) Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ Microbiol 8:165–177

    Article  Google Scholar 

  • Zverlov VV, Schwarz WH (1999) Organization of the chromosomal region containing the genes lexA and topA in Thermotoga neapolitana Primary structure of LexA reveals phylogenetic relevance. Syst Appl Microbiol 22:174–178

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Grant BFM2004-02768/BMC from the Ministerio de Educación y Ciencia (MEC) of Spain. Dra. S. Campoy is a recipient of a post-doctoral contract from the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria – Institut de Recerca i Tecnologia Agroalimentàries (INIA-IRTA). We are deeply grateful to Joan Ruíz and Dr. Pilar Cortés for their excellent technical assistance and to our English teaching university colleague, Chuck Simmons, for his help in the language revision and correction of this article. We are indebted to Professors Robert Huber and Christian Jeanthon for providing both the T. maritima and the P. miotherma cell masses. We are also indebted to Dr. Roger Woodgate for his generous gift of the B. subtilis LexA protein. We wish to acknowledge Integrated Genomics, Inc., for the release of P. miotherma genome sequence contigs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Barbé.

Additional information

Gerard Mazón and Susana Campoy should be regarded as joint first authors in this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazón, G., Campoy, S., Fernández de Henestrosa, A.R. et al. Insights into the LexA regulon of Thermotogales . Antonie Van Leeuwenhoek 90, 123–137 (2006). https://doi.org/10.1007/s10482-006-9066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9066-x

Keywords

Navigation