Skip to main content

Part of the book series: Genome Mapping Genomics Animals ((MAPPANIMAL,volume 2))

Abstract

Tilapias are a group of species within the family Cichlidae and originate from Africa and the Middle East. They are one of the most important cultured species in tropical and subtropical regions. Tilapias have a long history of aquaculture and are known to have been cultured in ponds thousands of years ago in ancient Egypt and Rome. Due to their economic importance, the familiarity with their life cycle, and the relative simplicity of reproducing and maintaining these species, tilapias became some of the more extensively studied fish in the last half century. Genetic research and mapping was initiated in tilapias for agricultural purposes and as a model species for biomedical and evolutionary studies. Currently, tilapia is one of the most advanced cultured fish species in terms of genetic mapping and available genetic resources, with a dense linkage map containing hundreds of DNA markers and dozens of genes, a BAC-based physical map, several mapped QTL, and an ongoing whole genome sequencing project. In this chapter, we review and summarize two decades of progress in tilapia genetic mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abucay JS, Mair GC (2000) Divergent selection for growth in the development of a female line for the production of improved genetically male tilapia (GMT). In: Bolivar RB, Mair GC, Fitzsimmons K (eds) New dimensions in farmed tilapia. Proceedings of the fifth international symposium on tilapia in aquaculture, Manila, Philippines, pp 90–103

    Google Scholar 

  • Abucay JS, Mair GC, Skibinski DOF, Beardmore JA (1999) Environmental sex determination: the effect of temperature and salinity on sex ratio in Oreochromis niloticus L. Aquaculture 173:219–234

    Article  Google Scholar 

  • Agresti JJ, Seki S, Cnaani A, Poompuang S, Hallerman EM et al (2000) Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185:43–56

    Article  CAS  Google Scholar 

  • Ambali AJD (1996) The relationship between domestication and genetic diversity of Oreochromis species in Malawi: Oreochromis shiranus shiranus (Boulenger) and Oreochromis shiranus chilwae (Trewavas). Ph.D. thesis, Dalhousie University

    Google Scholar 

  • Ambali AJD, Doyle RW, Cook DI (2000) Development of polymorphic microsatellite DNA loci for characterizing Oreochromis shiranus subspecies in Malawi. J Appl Ichthyol 16:121–125

    Article  CAS  Google Scholar 

  • Appleyard SA, Renwick JM, Mather PB (2001) Individual heterozygosity levels and relative growth performance in Oreochromis niloticus (L.) cultured under Fijian conditions. Aquaculture Res 32:287–296

    Article  CAS  Google Scholar 

  • Avtalion RR (1982) Genetic markers in Sarotherodon and their use for sex and species identification. In: Pullin RSV, Lowe-McConnell RH (eds) The biology and culture of tilapias. ICLARM Conf Proc 7:269–277

    Google Scholar 

  • Avtalion RR, Wojdani A (1971) Electrophoresis and immunoelectrophoresis of sera from known F1 hybrids of Tilapia. Bamidgeh 23:117–124

    Google Scholar 

  • Avtalion RR, Pruginin Y, Rothbard S (1975) Determination of allogenic and xenogenic markers in the genus Tilapia: I. Identification of sex and hybrids in tilapia by electrophoretic analysis of serum proteins. Bamidgeh 27:8–13

    Google Scholar 

  • Avtalion RR, Duczyminer M, Wojdani A, Pruginin Y (1976) Determination of allogenic and xenogenic markers in the genus Tilapia: II. Identification of T. aurea, T. vulcani and T. nilotica by electrophoresis analysis of serum proteins. Aquaculture 7:255–265

    Article  CAS  Google Scholar 

  • Bardakci F, Skibinski DOF (1994) Application of the RAPD technique in tilapia fish species and subspecies identification. Heredity 73:117–123

    Article  PubMed  CAS  Google Scholar 

  • Bardakci F, Skibinski DOF (1999) A polymorphic SCAR-RAPD marker between species of tilapia (Pisces: Cichlidae). Anim Genet 30:78–79

    Article  PubMed  CAS  Google Scholar 

  • Barlow GW (1991) Mating systems among cichlid fishes. In: Keenleyside MHA (ed) Cichlid fishes, behaviour, ecology and evolution. Fish and fisheries series. Chapman & Hall, London, 173–190

    Google Scholar 

  • Basasibwaki P (1975) Comparative electrophoretic patterns of lactate dehydrogenase and malate dehydrogenase in five Lake Victoria cichlid species. Afr J Trop Hydrobiol Fish 4:21–26

    Google Scholar 

  • Basiao ZU, Doyle RW (1999) Test of size specific mass selection for Nile tilapia, Oreochromis niloticus L., cage farming in the Philippines. Aquaculture Res 10:373–378

    Article  Google Scholar 

  • Basiao ZU, Taniguchi N (1984) An investigation of enzyme and other protein polymorphism in Japanese stocks of the tilapias Oreochromis and T. zillii. Aquaculture 38:335–345

    Article  CAS  Google Scholar 

  • Beardmore JA, Mair GC, Lewis RI (2001). Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture 197:283–301

    Article  Google Scholar 

  • Beveridge MCM, McAndrew BJ (eds) (2000) Tilapias: biology and exploitation. Kluwer, Dordrecht

    Google Scholar 

  • Brummett RE, Halstrom ML, Dunham RA, Smitherman RO (1988) Development of biochemical dichotomous keys for the identification of American populations of Oreochromis aureus, O. mossambicus, O. niloticus, O. urolepis hornorum and red tilapia. In: Pullin RSV, Bhukaswan T, Tonguthai K, Maclean JL (eds) The second international symposium in tilapia in aquaculture, ICLARM Conf Proc 15, pp 135–141

    Google Scholar 

  • Brzeski VJ, Doyle RW (1995) A test of an on-farm selection procedure for tilapia growth in Indonesia. Aquaculture 137:219–230

    Article  Google Scholar 

  • Campos-Ramos R, Harvey SC, Masabanda JS, Carrasco LAP, Griffin DK et al (2001) Identification of putative sex chromosomes in the blue tilapia, Oreochromis aureus, through synaptonemal complex and FISH analysis. Genetica 111:143–153

    Article  PubMed  CAS  Google Scholar 

  • Carleton KL, Streelman JT, Lee B-Y, Garnhart N, Kidd M, Kocher TD (2002) Rapid isolation of CA microsatellites from the tilapia genome. Anim Genet 33:140–144

    Article  PubMed  CAS  Google Scholar 

  • Carrasco LAP, Penman DJ, Bromage N (1999) Evidence for the presence of sex chromosomes in the Nile tilapia (Oreochromis niloticus) from synaptonemal complex analysis of XX, XY and YY genotypes. Aquaculture 173:207–218

    Article  Google Scholar 

  • Carter RE, Mair GC, Skibinski DOF, Parkin DT, Beardmore JA (1991) The application of DNA fingerprinting in the analysis of gynogenesis in tilapia. Aquaculture 95:41–52

    Article  Google Scholar 

  • Chen F-Y, Tsuyuki M (1970) Zone electrophoretic studies on the proteins of Tilapia mossambica and T. hornorum and their F1 hybrids, T. zillii and T. melanopleura. J Fish Res Board Can 27:2167–2177

    CAS  Google Scholar 

  • Cnaani A, Gall GAE, Hulata G (2000) Cold tolerance of tilapia species and hybrids. Aquaculture Int 8:289–298

    Article  Google Scholar 

  • Cnaani A, Ron M, Hulata G, Seroussi E (2002a) Fishing in silico: searching for tilapia genes using sequences of microsatellite DNA markers. Anim Genet 33:474–476

    Article  CAS  Google Scholar 

  • Cnaani A, Ron M, Lee B-Y, Hulata G, Kocher TD, Seroussi E (2002b) Mapping the transferrin gene in tilapia. Anim Genet 33:78–80

    Article  CAS  Google Scholar 

  • Cnaani A, Lee B-Y, Ron M, Hulata G, Kocher TD, Seroussi E (2003b) Linkage mapping of major histocompatibilty complex class I loci in tilapia (Oreochromis spp.). Anim Genet 34:390–391

    Article  CAS  Google Scholar 

  • Cnaani A, Zilberman N, Tinman S, Hulata G, Ron M (2004) Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid. Mol Genet Genomics 272:162–172

    Article  PubMed  CAS  Google Scholar 

  • Cnaani A, Hallerman EM, Ron M, Weller JI, Indelman M et al (2003a) Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid. Aquaculture 223:117–128

    Article  CAS  Google Scholar 

  • Cnaani A, Lee B-Y, Ozouf-Costaz C, Bonillo C, Baroiller J-F et al (2007) Mapping of Sox2 and Sox14 in tilapia (Oreochromis spp.). Sex Dev 1:207–210

    Article  PubMed  CAS  Google Scholar 

  • Cnaani A, Lee B-Y, Zilberman N, Ozouf-Costaz C, Hulata G et al (2008) Genetics of sex determination in tilapiine species. Sex Dev (in press)

    Google Scholar 

  • Costa Pierce BA (2003) Rapid evolution of an established feral tilapia (Oreochromis spp.): the need to incorporate invasion science into regulatory structures. Biological Invasions 5:71–84

    Article  Google Scholar 

  • Costa Pierce BA, Hadikusumah HY (1990) Research on cage aquaculture systems in the Saguling Reservoir, West Java, Indonesia. In: Costa Pierce BA, Soemarwoto O (eds) Reservoir fisheries and aquaculture development for resettlement in Indonesia. ICLARM, Manila, Philippines, pp 112–217

    Google Scholar 

  • Costa Pierce BA, Doyle RW (1997) Genetic identification and the status of tilapia regional strains in southern California. In: Costa-Pierce BA, Rakocy JE (eds) Tilapia aquaculture in the Americas. World Aquaculture Society, Baton Rouge, vol 1, pp 1–17

    Google Scholar 

  • Coward K, Little DC (2001) Culture of the “aquatic chicken:” present concerns and future prospects. Biologist (London) 48:12–16

    CAS  Google Scholar 

  • Cruz EM, Ridha M (1990) Production of marketable-size tilapia, (Oreochromis spilurus Günther), in seawater cages using different production schedules. Aquacul Fish Manage 21:187–194

    Google Scholar 

  • Cruz EM, Ridha M (1991) Production of the tilapia Oreochromis spilurus Günther stocked at different densities in sea cages. Aquaculture 99:95–103

    Article  Google Scholar 

  • Dikel S, Çelik M (1998) Body and nutritional composition of Tilapia (Tilapia spp.) from the Southern Seyhan River. Turk J Vet Anim Sci 22:517–520

    Google Scholar 

  • Dinesh KR, Lim TM, Chan WK, Phang VPE (1996) Genetic variation inferred from RAPD fingerprinting in three species of tilapia. Aquaculture Int 4:19–30

    Google Scholar 

  • Eknath AE, Dey MM, Rye M, Gjerde B, Abella TA et al (1998) Selective breeding of Nile tilapia for Asia. In: Proceedings of the 6th world congress on genetics applied to livestock production, vol 27, pp 89–96

    Google Scholar 

  • Eknath AE, Tayamen MM, Palada-de Vera MS, Danting JC, Reyes RA et al (1993) Genetic improvement of farmed tilapias: the growth performance of eight strains of Oreochromis niloticus tested in different farm environments. Aquaculture 111:171–188

    Article  Google Scholar 

  • El-Sayed A-FM, Mansour CR, Ezzat AA (2003) Effects of dietary protein level on spawning performance of Nile tilapia (Oreochromis niloticus) broodstock reared at different water salinities. Aquaculture 220:619–632

    Article  Google Scholar 

  • Ezaz MT, Harvey SC, Boonphakdee C, Teale AJ, McAndrew BJ, Penman DJ (2004) Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus L.). Mar Biotechnol 6:435–445

    Article  PubMed  CAS  Google Scholar 

  • Falk TM, Abban EK, Oberst S, Villwock W, Pullin RSV, Renwrantz L (1996) A biochemical laboratory manual for species characterisation of some tilapiine fishes. ICLARM Education Series 17

    Google Scholar 

  • FAO (2004) Yearbooks of fisheries statistics

    Google Scholar 

  • Galman OR, Moreau J, Hulata G, Avtalion RR (1988) The use of electrophoresis as a technique for the identification and control of tilapia breeding stocks in Israel. In: Pullin RSV, Bhukaswan T, Tonguthai K, Maclean JL (eds) The second international symposium in tilapia in aquaculture, ICLARM Conf Proc 15, pp 177–181

    Google Scholar 

  • Gupta MV, Acosta BO (2004) From drawing board to dining table: the success story of the GIFT project. NAGA, WorldFish Center Quarterly 27(3):4–14

    Google Scholar 

  • Harris AS, Wright JM (1995) Nucleotide sequence and genomic organization of cichlid fish minisatellites. Genome 38:177–184

    PubMed  CAS  Google Scholar 

  • Harris AS, Bieger S, Doyle RW, Wright JM (1991) DNA fingerprinting of tilapia, Oreochromis niloticus, and its application to aquaculture genetics. Aquaculture 92:157–163

    Article  Google Scholar 

  • Harvey SC, Powell SF, Kennedy DD, McAndrew BJ, Penman DJ (2002a) Karyotype analysis of Oreochromis mortimeri (Trewavas) and Sarotherodon melanotheron (Rüppell). Aquaculture Res 33:339–342

    Article  Google Scholar 

  • Harvey SC, Campos-Ramos R, Kennedy DD, Ezaz MT, Bromage NR et al (2002b) Karyotype evolution in Tilapia: mitotic and meiotic chromosome analysis of Oreochromis karongae and O. niloticus x O. karongae hybrids. Genetica 115:169–177

    Article  CAS  Google Scholar 

  • Herzberg A (1978) Electrophoretic esterase patterns of the surface mucus for the identification of tilapia species. Aquaculture 13:81–83

    Article  CAS  Google Scholar 

  • Howe AE (2004) The genetic basis of red color in tilapia. MSc thesis, University of New Hampshire

    Google Scholar 

  • Hulata G (2001) Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies. Genetica 111:155–173

    Article  PubMed  CAS  Google Scholar 

  • ICLARM (1984) Tilapia – the aquatic chicken. International Centre for Living Aquatic Marine Resources Newsletter 7(1):1–17

    Google Scholar 

  • Karayucel I, Ezaz T, Karayucel S, McAndrew BJ, Penman DJ (2004) Evidence for two unlinked “sex reversal” loci in the Nile tilapia, Oreochromis niloticus, and for linkage of one of these to the red body colour gene. Aquaculture 234:51–63

    Article  CAS  Google Scholar 

  • Katagiri T, Asakawa S, Minagawa S, Shimizu N, Hirono I, Aoki T (2001) Construction and characterization of BAC libraries for three fish species: rainbow trout, carp and tilapia. Anim Genet 32:200–204

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Kidd C, Tomasino E, Davis JT, Wishon C et al (2005) A BAC-based physical map of the tilapia genome. BMC Genomics 6:89

    Article  PubMed  CAS  Google Scholar 

  • Keenleyside MHA (ed) (1991a) Cichlid fishes, behaviour, ecology and evolution. Fish and fisheries series. Chapman & Hall, London

    Google Scholar 

  • Keenleyside MHA (1991b) In: Keenleyside MHA (ed) Cichlid fishes, behaviour, ecology and evolution. Fish and fisheries series. Chapman & Hall, London, pp 191–224

    Google Scholar 

  • Kornfield IL, Ritte U, Wharman J (1979) Biochemical and cytological differentiation among cichlid fishes of the Sea of Galilee. Evolution 33:1–14

    Article  CAS  Google Scholar 

  • Lahav E (1993) Use of sex-reversed females to produce all-male tilapia (Oreochromis aureus) fry. Isr J Aquaculture – Bamidgeh 45:131–136

    Google Scholar 

  • Lee W-J, Kocher TD (1996) Microsatellite DNA markers for genetic mapping in the tilapia, Oreochromis niloticus. J Fish Biol 49:169–171

    CAS  Google Scholar 

  • Lee B-Y, Kocher TD (2007a) Exclusion of Wilms Tumor (WT1_2) and ovarian aromatase (CYP19A1) as candidates for sex determining genes in Nile tilapia (Oreochromis niloticus). Anim Genet 38:85

    Article  CAS  Google Scholar 

  • Lee B-Y, Kocher TD (2007b) Comparative genomics and positional cloning. In: Liu J (ed) Aquaculture genome technologies. Blackwell

    Google Scholar 

  • Lee W-J, Kocher TD (1998) Microsatellite mapping of the prolactin locus in the tilapia genome. Anim Genet 29:68

    PubMed  CAS  Google Scholar 

  • Lee B-Y, Hulata G, Kocher TD (2004) Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity 92:543–549

    Article  PubMed  CAS  Google Scholar 

  • Lee B-Y, Penman DJ, Kocher TD (2003) Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked-segregant analysis. Anim Genet 34:379–383

    Article  PubMed  CAS  Google Scholar 

  • Lee B-Y, Lee WJ, Streelman JT, Carleton KL, Howe A et al (2005) A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics 170:237–244

    Article  PubMed  CAS  Google Scholar 

  • Macaranas JM, Agustin LQ, Eknath AE (1996) Multiple haemoglobins in three tilapiine species of the genus Oreochromis and eight strains of O. niloticus (L.). Aquaculture Res 27:597–601

    Article  Google Scholar 

  • Macaranas JM, Taniguchi N, Pante MJR, Capili JB, Pullin RSV (1986) Electrophoretic evidence for extensive hybrid gene introgression into commercial Oreochromis niloticus (L.) in the Philippines. Aquacul Fish Manage 17:249–258

    CAS  Google Scholar 

  • Macaranas JM, Agustin LQ, Ablan MCA, Pante MJR, Eknath AE, Pullin RSV (1995) Genetic improvement of farmed tilapias: biochemical characterization of strain differences in Nile tilapia. Aquaculture Int 3:43–54

    Google Scholar 

  • Mair GC, Abucay JS, Beardmore JA, Skibinski DOF (1995) Growth performance of genetically male tilapia (GMT) derived from YY-males in Oreochromis niloticus L.: on-station comparisons with mixed sex and sex reversed male populations. Aquaculture 137:313–322

    Article  Google Scholar 

  • Mair GC, Abucay JS, Skibinski DOF, Abella TA, Beardmore JA (1997) Genetic manipulation of sex ratio for the large scale production of all-male tilapia Oreochromis niloticus L. Can J Fish Aquatic Sci 54:396–404

    Article  Google Scholar 

  • Majumdar KC, McAndrew BJ (1986) Relative DNA content of somatic nuclei and chromosomal studies in three genera: Tilapia, Sarotherodon and Oreochromis of the tribe Tilapiini. Genetica 68:165–168

    Article  Google Scholar 

  • Martins C, Oliveira C, Wasko AP, Wright JM (2004) Physical mapping of the Nile tilapia (Oreochromis niloticus) genome by fluorescent in situ hybridization of repetitive DNAs to metaphase chromosomes – a review. Aquaculture 231:37–49

    Article  CAS  Google Scholar 

  • McAndrew BJ, Majumdar KC (1983) Tilapia stock identification using electrophoretic markers. Aquaculture 30:249–261

    Article  CAS  Google Scholar 

  • McConnell SKJ, Beynon C, Leamon J, Skibinski DOF (2000) Microsatellite marker based genetic linkage maps of Oreochromis aureus and O. niloticus (Cichlidae): extensive linkage group segment homologies revealed. Anim Genet 31:214–218

    Article  PubMed  CAS  Google Scholar 

  • Moen T, Agresti JJ, Cnaani A, Moses H, Famula TR et al (2004) A genome scan of a four-way tilapia cross supports the existence of a quantitative trait locus for cold tolerance on linkage group 23. Aquaculture Res 35:893–904

    Article  CAS  Google Scholar 

  • Moreau J (1983) A review of introductions of tilapia in open inland waters of Africa, their influence on ecology and fisheries. In: Fishelson L, Yaron Z (compilers) International symposium on tilapia in aquaculture, Tel Aviv University, Tel Aviv, pp 77–85

    Google Scholar 

  • Moreira HLM, Dellagostin OA, Erdtmann B (2000) Levels of inbreeding and relatedness in breeder stocks of Nile tilapia (Oreochromis niloticus) detected by microsatellite analysis. In: Fitzsimmons K, Carvalho J (eds) Tilapia in the 21st century: proceedings of the fifth international symposium on tilapia in aquaculture. Ministry of Agriculture, Rio de Janeiro, 1:59–67

    Google Scholar 

  • Naish KA, Warren M, Bardacki F, Skibinski DOF, Carvalho GR, Mair GC (1995) Multilocus DNA-fingerprinting and RAPD reveal similar genetic relationships between strains of Oreochromis niloticus (Pisces, Cichlidae). Mol Ecol 4:271–274

    Article  PubMed  CAS  Google Scholar 

  • Palti Y, Shirak A, Cnaani A, Hulata G, Avtalion RR, Ron M (2002) Detection of genes with deleterious alleles in an inbred line of tilapia (Oreochromis aureus). Aquaculture 206:151–164

    Article  CAS  Google Scholar 

  • Penman DJ, McAndrew BJ (2000) Genetics for the management and improvement of cultured tilapias. In: Beveridge MCM, McAndrew BJ (eds) Tilapias: biology and exploitation. Kluwer, Dordrecht, pp 227–266

    Google Scholar 

  • Philippart JC, Ruwet JC (1982) Ecology and distribution of tilapias. In: Pullin RSV, Lowe-McConnell RH (eds) The biology and culture of tilapias. ICLARM Conf Proc 7:15–59

    Google Scholar 

  • Poompuang S, Hallerman EM (1997) Towards detection of quantitative trait loci and marker-assisted selection in fish. Rev Fish Sci 5:253–277

    Article  Google Scholar 

  • Pullin RSV (1991) Cichlids in aquaculture. In: Keenleyside MHA (ed) Cichlid fishes, behaviour, ecology and evolution. Fish and fisheries series. Chapman & Hall, London, pp 280–309

    Google Scholar 

  • Rosenstein S, Hulata G (1994) Sex reversal in the genus Oreochromis: optimization of feminization protocol. Aquacul Fish Manage 25:329–393

    Google Scholar 

  • Rutten MJM, Komen H, Deerenberg RM, Siwek M, Bovenhuis H (2004) Genetic characterization of four strains of Nile tilapia (Oreochromis niloticus L.) using microsatellite markers. Anim Genet 35:93–97

    Article  PubMed  CAS  Google Scholar 

  • Sanchez T, Ponce de Leon R, Aguilar M, Vazquez J, McAndrew BJ (1995) Response to selection and heritability for weight in Oreochromis aureus Steindachner after five generations of selection. Aquaculture 137:121 (abstr)

    Article  Google Scholar 

  • Seyoum S, Kornfield I (1992) Identification of the subspecies of Oreochromis niloticus (Pisces, Cichlidae) using restriction endonuclease analysis of mitochondrial DNA. Aquaculture 102:29–42

    Article  CAS  Google Scholar 

  • Shirak A, Palti Y, Cnaani A, Korol A, Hulata G et al (2002) Association between loci with deleterious alleles and distorted sex ratios in an inbred line of tilapia (Oreochromis aureus). J Hered 93:270–276

    Article  PubMed  CAS  Google Scholar 

  • Shirak A, Seroussi E, Cnaani A, Howe AE, Domokhovsky R et al (2006) Amh and Dmrta2 genes map to tilapia (Oreochromis spp.) linkage group 23 within QTL regions for sex determination. Genetics 174:1573–1581

    Article  PubMed  CAS  Google Scholar 

  • Sodsuk PK, McAndrew BJ (1991) Molecular systematics of three tilapiine genera Tilapia, Sarotherodon and Oreochromis using allozyme data. J Fish Biol 39(Suppl. A): 301–308

    Article  CAS  Google Scholar 

  • Streelman JT, Kocher TD (2002) Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol Genomics 9:1–4

    PubMed  CAS  Google Scholar 

  • Suresh AV, Kwei Lin C (1992) Tilapia culture in saline waters: a review. Aquaculture 106:201–226

    Article  Google Scholar 

  • Taniguchi N, Macaranas JM, Pullin RSV (1985) Introgressive hybridization in cultured tilapia stocks in the Philippines. Bull Jpn Soc Sci Fish 51:1219–1224

    Google Scholar 

  • Trewavas E (1983) Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia. British Museum (Natural History), London

    Google Scholar 

  • Tuan PA, Little DC, Mair GC (1998) Genotypic effects on comparative growth performance of all-male tilapia Oreochromis niloticus (L.). Aquaculture 159:293–302

    Article  Google Scholar 

  • Tuan PA, Mair GC, Little DC, Beardmore JA (1999) Sex determination and the feasibility of genetically male tilapia production in the Thai-Chitralada strain of Oreochromis niloticus (L.). Aquaculture 173:257–269

    Article  Google Scholar 

  • Watanabe WO, Wicklund RI, Olla BL, Ernst DH, Ellingson LJ (1989) Potential for saltwater Tilapia culture in the Caribbean. In: Waugh GT, Goodwin MH (eds) Proceedings of the 39th annual Gulf and Caribbean fisheries institute, Hamilton, Bermuda, pp 435–445

    Google Scholar 

  • Watanabe WO, Losordo TM, Fitzsimmons K, Hanley F (2002) Tilapia production systems in the Americas: technological advances, trends, and challenges. Rev Fish Sci 10:465–498

    Article  Google Scholar 

  • Wilson PJ, Wood CM, Walsh PJ, Bergman AN, Bergman HL et al (2004) Discordance between genetic structure and morphological, ecological, and physiological adaptation in Lake Magadi tilapia. Physiol Biochem Zool 77:537–555

    Article  PubMed  CAS  Google Scholar 

  • Wohlfarth GW (1994) The unexploited potential of tilapia hybrids in aquaculture. Aquacul Fish Manage 25:781–788

    Google Scholar 

  • Wohlfarth G, Hulata G (1983) Applied genetics of tilapias. ICLARM Studies and Reviews 6:1–26

    Google Scholar 

  • Wu J, Wu S (1983) Electrophoretic differences of esterase isozymes from the surface mucus of the Sarotherodon fishes. Bull Inst Zool Academica Sinica 2:1–8

    Google Scholar 

  • Yue GH, Orban L (2002) Microsatellites from genes show polymorphism in two related Oreochromis species. Mol Ecol Notes 2:99–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cnaani, A., Hulata, G. (2008). Tilapias. In: Kocher, T., Kole, C. (eds) Genome Mapping and Genomics in Fishes and Aquatic Animals. Genome Mapping Genomics Animals, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73837-4_4

Download citation

Publish with us

Policies and ethics