Skip to main content
Log in

Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

We searched for genetic linkage between DNA markers and quantitative trait loci (QTLs) for innate immunity, response to stress, biochemical parameters of blood, and fish size in an F2 population derived from an interspecific tilapia hybrid ( Oreochromis mossambicus × O. aureus). A family of 114 fish was scanned for 40 polymorphic microsatellite DNA markers and two polymorphic genes, covering ~80% of the tilapia genome. These fish had previously been phenotyped for seven immune-response traits and six blood parameters. Critical values for significance were P <0.05 with the false discovery rate (FDR) controlled at 40%. The genome-scan analysis resulted in 35 significant marker-trait associations, involving 26 markers in 16 linkage groups. In a second experiment, nine markers were re-sampled in a second family of 79 fish of the same species hybrid. Seven markers ( GM180, GM553 , MHC-I , UNH848 , UNH868 , UNH898 and UNH925) in five linkage groups (LG 1, 3, 4, 22 and 23) were associated with stress response traits. An additional six markers ( GM47, GM552 , UNH208 , UNH881 , UNH952 , UNH998) in five linkage groups (LG 4, 16, 19, 20 and 23) were verified for their associations with immune response traits, by linkage to several different traits. The portion of variance explained by each QTL was 11% on average, with a maximum of 29%. The average additive effect of QTLs was 0.2 standard deviation units of stress response traits and fish size, with a maximum of 0.33. In three linkage groups (LG 1, 3 and 23) markers were associated with stress response, body weight and sex determination, confirming the location of QTLs reported by several other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agresti JJ, Seki S, Cnaani A, Poompuang S, Hallerman EM, Umiel N, Hulata G, Gall GAE, May B (2000) Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185:43–56

    Article  CAS  Google Scholar 

  • Andersson L (2001) Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet 2:130–138

    Article  CAS  PubMed  Google Scholar 

  • Balfry SK, Shariff M, Iwama GK (1997) Strain differences in non-specific immunity of tilapia ( Oreochromis niloticus) following challenge with Vibrio parahemolyticus. Dis Aquat Org 30:77–80

    Google Scholar 

  • Bartley DM, Rana K, Immink AJ (2000) The use of inter-specific hybrids in aquaculture and fisheries. Rev Fish Biol Fisher 10:325–337

    Article  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative Comp Biol 42:517–525

    CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Methods 57:289–300

    Google Scholar 

  • Beveridge MCM, McAndrew BJ (eds) (2000) Tilapias: biology and exploitation. Kluwer Academic Publishers, Dordrecht

  • Carleton KL, Streelman JT, Lee B-Y, Garnhart N, Kidd M, Kocher TD (2002) Rapid isolation of CA microsatellites from the tilapia genome. Anim Genet 33:140–144

    Article  CAS  PubMed  Google Scholar 

  • Clark MS (2003) Genomics and mapping of Teleostei (bony fish). Comp Funct Genom 4:182–193

    Article  CAS  Google Scholar 

  • Cnaani A, Gall GAE, Hulata G (2000) Cold tolerance of tilapia species and hybrids. Aquacul Int 8:289–298

    Article  Google Scholar 

  • Cnaani A, Ron M, Hulata G, Seroussi E (2002a) Fishing in silico: searching for tilapia genes using sequences of microsatellite DNA markers. Anim Genet 33:474–476

    Article  CAS  Google Scholar 

  • Cnaani A, Ron M, Lee B-Y, Hulata G, Kocher TD, Seroussi E (2002b) Mapping the transferrin gene in tilapia. Anim Genet 33:78–80

    Article  CAS  PubMed  Google Scholar 

  • Cnaani A, Hallerman EM, Ron M, Weller JI, Indelman M, Kashi Y, Gall GAE, Hulata G (2003a) Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid. Aquaculture 223:117–128

    Article  CAS  Google Scholar 

  • Cnaani A, Lee B-Y, Ron M, Hulata G, Kocher TD, Seroussi E (2003b) Linkage mapping of major histocompatibilty complex class I loci in tilapia ( Oreochromis spp.). Anim Genet 34:390–391

    Article  CAS  PubMed  Google Scholar 

  • Cnaani A, Tinman S, Avidar Y, Ron M, Hulata G (2004) Comparative study of biochemical parameters in response to stress in Oreochromis aureus, O. mossambicus and two strains of O. niloticus. Aquac Res, in press

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–365

    Article  CAS  Google Scholar 

  • Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839

    Article  CAS  PubMed  Google Scholar 

  • Grimholt U, Larsen S,·Nordmo R, Midtlyng P, Kjoeglum S, Storset A, Saebø S, Stet RJM (2003) MHC polymorphism and disease resistance in Atlantic salmon ( Salmo salar): facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55:210–219

    Article  CAS  PubMed  Google Scholar 

  • Heyen DW, Weller JI, Ron M, Band M, Beever JE, Feldmesser E, Da Y, Wiggans GR, Van Raden PM, Lewin HA (1999) A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol Genomics 1:165–175

    CAS  PubMed  Google Scholar 

  • Jackson TR, Ferguson MM, Danzmann RG, Fishback AG, Ihssen PE, O’Connell M, Crease TJ (1998) Identification of two QTL influencing upper temperature tolerance in three rainbow trout ( Oncorhynchus mykiss) half-sib families. Heredity 80:143–151

    Article  Google Scholar 

  • Kocher TD, Lee WJ, Sobolewska H, Penman D, McAndrew B (1998) A genetic linkage map of a cichlid fish, the tilapia ( Oreochromis niloticus). Genetics 148:1225–1232

    CAS  PubMed  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    CAS  PubMed  Google Scholar 

  • Langefors A, Lohm J, Grahn M, Andersen O, von Schantz T (2001) Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in atlantic salmon. P Roy Soc Lond B Biol 268:479–485

    Article  CAS  Google Scholar 

  • Lee B-Y, Penman DJ, Kocher TD (2003) Identification of the sex-determining region in tilapia ( Oreochromis niloticus) using bulked segregant analysis. Anim Genet 34:379–383

    Article  CAS  PubMed  Google Scholar 

  • Lee B-Y, Hulata G, Kocher TD (2004) Two unlinked loci controlling the sex of blue tilapia ( Oreochronis aureus). Heredity 92:543–549

    Article  CAS  PubMed  Google Scholar 

  • Lohm J, Grahn M, Langefors A, Andersen O, Storset A, von Schantz T (2002) Experimental evidence for major histocompatibility complex-allele-specific resistance to a bacterial infection. P Roy Soc Lond B Biol 269:2029–2033

    Article  CAS  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  • Maita M, Satoh K, Fukuda Y, Lee HK, Winton JR, Okamoto N (1998) Correlation between plasma component levels of cultured fish and resistance to bacterial infection. Fish Pathol 33:129–133

    CAS  Google Scholar 

  • McConnell SKJ, Beynon C, Leamon J, Skibinski DOF (2000) Microsatellite marker based genetic linkage maps of Oreochromis aureus and O. niloticus (Cichlidae): extensive linkage group segment homologies revealed. Anim Genet 31:214–218

    Article  CAS  PubMed  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    CAS  PubMed  Google Scholar 

  • Moen T, Agrest JJ, Cnaani A, Moses H, Famula TR, Hulata G, Gall GAE, May B (2004) A genome scan of a four-way tilapia cross supports the existence of a quantitative trait locus for cold tolerance on linkage group 23. Aquac Res, 35:893–904

    Google Scholar 

  • Mosig MO, Lipkin E, Khutoreskaya G, Tchourzyna E, Soller M, Friedmann A (2001) A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion. Genetics 157:1683–1698

    CAS  PubMed  Google Scholar 

  • Nezer C, Moreau L, Wagenaar D, Georges M (2002) Results of a whole genome scan targeting QTL for growth and carcass traits in a Pietrain × Large White intercross. Genet Sel Evol 34:371–387

    Article  CAS  PubMed  Google Scholar 

  • O’Malley KG, Sakamoto T, Danzmann RG, Ferguson MM (2003) Quantitative trait loci for spawning date and body weight in rainbow trout: testing for conserved effects across ancestrally duplicated chromosomes. J Hered 94:273–284

    Article  PubMed  Google Scholar 

  • Ozaki A, Sakamoto T, Khoo S, Nakamura K, Coimbra MRM, Akutsu T, Okamoto N (2001) Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout ( Oncorhynchus mykiss). Mol Genet Genomics 265:23–31

    Article  CAS  PubMed  Google Scholar 

  • Palti Y, Parsons JE, Thorgaard GH (1999a) Identification of candidate DNA markers associated with IHN virus resistance in backcrosses of rainbow ( Oncorhynchus mykiss) and cutthroat trout ( O. clarki). Aquaculture 173:81–94

    Article  CAS  Google Scholar 

  • Palti Y, Tinman S, Cnaani A, Avidar Y, Ron M, Hulata G (1999b) Comparative study of biochemical and nonspecific immunological parameters in two tilapia species ( Oreochromis aureus and O. mossambicus). Isr J Aquacult-Bamid 51:148–156

    Google Scholar 

  • Palti Y, Nichols KM, Waller KI, Parsons JE, Thorgaard GH (2001) Association between DNA polymorphisms tightly linked to MHC class II genes and IHN virus resistance in backcrosses of rainbow and cutthroat trout. Aquaculture 194:283–289

    Article  CAS  Google Scholar 

  • Palti Y, Shirak A, Cnaani A, Hulata G, Avtalion RR, Ron M (2002) Detection of genes with deleterious alleles in an inbred line of tilapia ( Oreochromis aureus). Aquaculture 206:151–164

    Article  CAS  Google Scholar 

  • Perry GML, Danzmann RG, Ferguson MM, Gibson JP (2001) Quantitative trait loci for upper thermal tolerance in outbred strains of rainbow trout ( Oncorhynchus mykiss). Heredity 86:333–341

    Article  CAS  PubMed  Google Scholar 

  • Pickering AD (1993) Growth and stress in fish production. Aquaculture 111:51–63

    Article  Google Scholar 

  • Poompuang S, Hallerman EM (1997) Towards detection of quantitative trait loci and marker-assisted selection in fish. Rev Fisher Sci 5:253–277

    Google Scholar 

  • Roed KH, Fevolden SE, Fjalestad KT (2002) Disease resistance and immune characteristic in rainbow trout ( Oncorhynchus mykiss) selected for lysozyme activity. Aquaculture 209:91–101

    Article  CAS  Google Scholar 

  • Shirak A, Palti Y, Cnaani A, Korol A, Hulata G, Ron M, Avtalion RR (2002) Association between loci with deleterious alleles and distorted sex ratios in an inbred line of tilapia ( Oreochromis aureus). J Hered 93:270–276

    Article  CAS  PubMed  Google Scholar 

  • Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3:391–396

    Article  CAS  PubMed  Google Scholar 

  • Van der Zijpp AJ, Egberts E (1989) The major histocompatibility complex and diseases in farm animals. Immunol Today 10:109–111

    Article  PubMed  Google Scholar 

  • Van Kaam JBCHM, Groenen MAM, Bovenhuis H, Veenendaal A, Vereijken ALJ, van Arendonk JAM (1999) Whole genome scan in chickens for quantitative trait loci affecting carcass traits. Poultry Sci 78:1091–1099

    Google Scholar 

  • Weller JI, Soller M, Brody T (1988) Linkage analysis of quantitative traits in interspecific cross of tomato ( Lycopersicon esculentum × Lycopersicon pimpinellifolium) by means of genetic markers. Genetics 118:329–339

    Google Scholar 

  • Weller JI, Song JZ, Heyen DW, Lewin HA, Ron M (1998) A new approach to the problem of multiple comparisons in the genetic dissection of complex traits. Genetics 150:1699–1706

    CAS  PubMed  Google Scholar 

  • Wohlfarth GW, Hulata G, Rothbard S, Itzkowich J, Halevy A (1983) Comparison between interspecific tilapia hybrids for some production traits. In: Fishelson L, Yaron Z (eds) International Symposium on Tilapia in Aquaculture. Tel Aviv University, Israel, pp 559–569

  • Zhou HJ, Lamont SJ (2003) Chicken MHC class I and II gene effects on antibody response kinetics in adult chickens. Immunogenetics 55:133–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Thomas D. Kocher for allowing the use of data on the tilapia linkage map and microsatellite sequences before they were published. This study was supported by the Israel Science Foundation (Grant no. 418/99-1), and has been carried out in compliance with the current laws governing genetic experimentation in Israel

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cnaani.

Additional information

Communicated by G. Reuter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cnaani, A., Zilberman, N., Tinman, S. et al. Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid. Mol Genet Genomics 272, 162–172 (2004). https://doi.org/10.1007/s00438-004-1045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1045-1

Keywords

Navigation