Skip to main content

The Mechanisms of Genomic Imprinting

  • Chapter
Genomic Imprinting

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 25))

Abstract

Genomic imprinting can be regarded as one of many variants of epigenetic modes of gene regulation in eukaryotic cells. There is no a priori reason, therefore, to invoke fundamentally novel mechanisms to explain the imprinting phenomenon in mammals. For example, the different factors involved in imprinting, such as the stable propagation of different chromatin states that repress or permit gene transcription, are well-known entities in a wide range of eukaryotic cells (see Pirotta Chap. 10, and Geramisova and Corces Chap. 11, this vol.). From this point of view, we should perhaps consider the mechanism(s) of imprinting as being the unusual result of combinatory events that occur regularly on an evolutionary scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam G, Cui H, Miller S, Flam F, Ohlsson R (1996) Allele-specific in situ hybridization (ASISH) analysis: a novel technique which resolves differential allelic usage of H19 within the same cell lineage during human placental development. Development 122: 839–847

    PubMed  CAS  Google Scholar 

  • Adenot P, Mercier Y, Renard J-P, Thompson E (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124: 4615–4625

    PubMed  CAS  Google Scholar 

  • Ainscough J, Koide T, Tada M, Barton S, Surani M (1997) Imprinting of Igf2 and H19 from a 130-kb YAC transgene. Development 124: 3621–3632

    PubMed  CAS  Google Scholar 

  • Allen N, Norris M, Surani M (1990) Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell 61: 853–861

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Smallwood A (1995) A chromatin model of IGF2/H19 imprinting. Nat Genet 11: 237–238

    Article  PubMed  CAS  Google Scholar 

  • Barlow D (1993) Methylation and imprinting: from host defence to gene regulation. Science 260: 309–310

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei MM, Webber AL, Brunkow ME, Tilghman SM (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 7: 1663–1673

    Article  PubMed  CAS  Google Scholar 

  • Bestor TH (1990) DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes. Philos Trans R Soc Lond B 326: 179–187

    Article  CAS  Google Scholar 

  • Bickmore W, Carothers A (1995) Factors affecting the timing and imprinting of replication on a mammalian chromosome. J Cell Sci 108: 2801–2809

    PubMed  CAS  Google Scholar 

  • Brandeis M FD, Keshet I, Siegfried Z, Mendelsohn M, Nemes A, Temper, Razin A, Cedar H (1994) Spl elements protect a CpG island from de novo methylation. Nature 371: 435–438

    Article  PubMed  CAS  Google Scholar 

  • Brink R (1973) Paramutation. Annu Rev Genet 7: 129–152

    Article  CAS  Google Scholar 

  • Buiting K, Dittrich B, Robinson WP, Guitart M, Abeliovich D, Lerer I, Horsthemke B (1994) Detection of aberrant DNA methylation in unique Prader-Willi syndrome patients and its diagnostic implications. Hum Mol Genet 3: 893–895

    Article  PubMed  CAS  Google Scholar 

  • Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls R, Horsthemke B (1995) Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet 9: 395–400

    Article  PubMed  CAS  Google Scholar 

  • Buiting K, Dittrich B, Groß S, Lich C, Färber C, Buchholz T, Smith E, Reis A, Bürger J, Nöthen M, Barth-Witte U, Janssen B, Abeliovich D, Lerer I, van den Ouweland A, Halley D, SchranderStumpel C, Smeets H, Meinecke P, Malcolm S, Gardner A, Lalande M, Nicholls R, Friend K, Schulze A, Matthijs G, Kokkonen H, Hilbert P, Van Maldergem L, Glover G, Carbonell P, Willems P, Gillessen-Kaesbach G, Horsthemke B (1998) Sporadic imprinting defects in Prader-Willi syndrome and Angelman syndrome: implications for imprint switch models, genetic counseling and prenatal diagnosis. Am J Hum Genet (in press)

    Google Scholar 

  • Bürger J, Buiting K, Dittrich B, Groß S, Lich C, Sperling K, Horsthemke B, Reis A (1997) Different mechanisms and recurrence risks of imprinting defects in Angelman syndrome. Am J Hum Genet 61: 88–93

    Article  PubMed  Google Scholar 

  • Colot V, Rossiguol JL (1996) Interchromosomal transfer of epigenetic states in ascobolus: Transfer of DNA methylation is mechanistically related to homologous recombination. Cell 86: 855–864

    Google Scholar 

  • De Rubertis F, Kadosh D, Henchoz S, Pauli D, Reuter G, Struhl K, Spierer P (1996) The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384: 589–591

    Article  PubMed  Google Scholar 

  • Dittrich B, Buiting K, Korn B, Rickard S, Buxton J, Saitoh S, Nicholls RD, Poustka A, Winterpacht A, Zabel B, Horsthemke B (1996) Imprint switch mutation on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet 14: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Ekström TJ, Cui H, Li X, Ohlsson R (1995) Promoter-specific IGF2 imprinting status and its plasticity during human liver development. Development 121: 309–316

    PubMed  Google Scholar 

  • Elson D, Bartolomei M (1997) A 5’ differentially methylated sequence and the 3’-flanking region are necessary for H19 transgene imprinting. Mol Cell Biol 17: 309–317

    PubMed  CAS  Google Scholar 

  • Feil R, Walter J, Allen N, Reik W (1994) Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120: 2933–2943

    PubMed  CAS  Google Scholar 

  • Feil R, Boyano M, Allen N, Kelsey G (1997) Parental chromosome-specific chromatin conformation in the imprinted U2afl-rs1 gene in the mouse. J Biol Chem 272: 20893–20900

    Article  PubMed  CAS  Google Scholar 

  • Franke A, Messmer S, Mohrle A, Orlando V, Zink D, Paro R (1994) Mechanisms of heritable gene silencing during Drosophila development. Biochem Soc Trans 22: 561–565

    PubMed  CAS  Google Scholar 

  • Franklin GC, Adam GIR, Ohlsson R (1996) Genomic imprinting and mammalian development. Placenta 17: 3–14

    Article  PubMed  CAS  Google Scholar 

  • Garrick D, Fiering S, Martin D, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18: 56–59

    Article  PubMed  CAS  Google Scholar 

  • Glenn C, Nicholls R, Robinson W, Saitoh S, Niikawa N, Schinzel A, Horsthemke B, Driscoll DJ (1993) Modification of 15q11-q13 DNA methylation imprints in unique Angelman and Prader-Willi patients. Hum Mol Genet 2: 1377–1382

    Article  PubMed  CAS  Google Scholar 

  • Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz E, Coupland G (1997) A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386: 44–51

    Article  PubMed  CAS  Google Scholar 

  • Greally J, Guinness M, McGrath J, Zemel S (1997) Matrix-attachment regions in the mouse chromosome 7F imprinted domain. Mamm Genome 8: 805–810

    Article  PubMed  CAS  Google Scholar 

  • Greally J, Starr D, Hwang S, Song L, Jaarola M, Zemel S (1998) The mouse H19 locus mediates a transition between imprinted and non-imprinted DNA replication patterns. Hum Mol Genet 7: 91–95

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349–352

    Article  PubMed  CAS  Google Scholar 

  • Gunaratne P, Nakao M, Ledbetter D, Sutcliffe J, Chinault A (1995) Tissue-specific and allele.specific replication timing control in the imprinted human Prader-Willi syndrome region. Genes Dev 9: 808–820

    Article  PubMed  CAS  Google Scholar 

  • Holländer G, Zuklys S, Morel C, Mizoguchi E, Mobisson K, Simpson S, Terhorst C, Wishart W, Golan D, Bhan A, Burakoff S (1998) Monoallelic expression of the interleukin-2 locus. Science 279: 2118–2121

    Article  PubMed  Google Scholar 

  • Holliday R (1987) The inheritance of epigenetic defects. Science 238: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Holmquist G (1975) Hoechst 33258 fluorescent staining of Drosophila chromosomes. Chromosoma 49: 333–356

    Article  PubMed  CAS  Google Scholar 

  • Horsthemke B, Dittrich B, Buiting K (1995) Parent-of-origin specific DNA methylation and imprinting mutations on human chromosome 15. In Parental imprinting: causes and consequences. Cambridge University Press, Cambridge, pp 295–308

    Google Scholar 

  • Hu J, Vu T, Hoffman A (1997) Genomic deletion of an imprint maintenance element abolishes imprinting of both insulin-like growth factor II and H19. J Biol Chem 272: 20715–20720

    Article  PubMed  CAS  Google Scholar 

  • James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6: 3862–3872

    PubMed  CAS  Google Scholar 

  • James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SC (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol 50: 170–180

    PubMed  CAS  Google Scholar 

  • Jeppesen P (1997) Histone acetylation: a possible mechanism for the inheritance of cell memory at mitosis. Bioessays 19: 67–74

    Article  PubMed  CAS  Google Scholar 

  • Jeppesen P, Turner B (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281–289

    Article  PubMed  CAS  Google Scholar 

  • Karpen G, Allshire R (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13: 489–496

    Article  PubMed  CAS  Google Scholar 

  • Khosla S, Kantheti P, Brahmachari V, Chandra H (1996) A male-specific nuclease-resistant chromatin fraction in the mealybug Planococcus lilacinus. Chromosoma 104: 386–392

    Article  PubMed  CAS  Google Scholar 

  • Kitsberg D, Selig S, Brandeis M, Simon I, Keshet I, Driscoll DJ, Nicholls RD, Cedar H (1993) Allelespecific replication timing of imprinted gene regions. Nature 364: 459–463

    Article  PubMed  CAS  Google Scholar 

  • Knoll JHM, Cheng S-D, LaLande M (1994) Allele-specificity of DNA replication timing in the Angelman/Prader Willi syndrome imprinted chromosomal region. Nat Genet 6: 41–46

    Article  PubMed  CAS  Google Scholar 

  • LaSalle J, Lalande M (1995) Domain organisation of allele-specific replication within the GABRB3 gene cluster requires biparental 15q11–13 contribution. Nat Genet 9: 386–394

    Article  PubMed  CAS  Google Scholar 

  • LaSalle J, Lalande M (1996) Homologous association of oppositely imprinted chromosomal domains. Science 272: 725–728

    Article  PubMed  CAS  Google Scholar 

  • Leighton P, Saam J, Ingram R, Stewart C, Tilghman S (1995a) An enhancer deletion affects both H19 and Igf2 expression. Genes Dev 9: 2079–2089

    Article  PubMed  CAS  Google Scholar 

  • Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM (1995b) Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375: 34–39

    Article  PubMed  CAS  Google Scholar 

  • Lerchner W, Barlow D (1997) Paternal repression of the imprinted mouse Igf2r locus occurs during implantation and is stable in all tissues of the post-implantation mouse embryo. Mech Dev 61: 141–149

    Article  PubMed  CAS  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Looijenga L, Verkerk A, De Groot N, Hochberg A, Oosterhuis J (1997) H19 in normal development and neoplasia. Mol Reprod Dev 46: 419–439

    Google Scholar 

  • Lyko F, Brenton JD, Surani MA, Paro R (1997) An imprinting element from the mouse H19 locus functions as a silencer in Drosophila. Nat Genet 16: 171–173

    Article  PubMed  CAS  Google Scholar 

  • Lyko F, Buiting K, Horsthemke B, Paro R (1998) Identification of a silencing element in the human 15g11-q13 imprinting center by using transgenic Drosophila. Proc Natl Acad Sci USA 95: 1698–1702

    Article  PubMed  CAS  Google Scholar 

  • Mertineit C, Yoder J, Taketo T, Laird D, Trasler J, Bestor T (1998) Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125: 889–897

    PubMed  CAS  Google Scholar 

  • Moore T, Constancia M, Zubair M, Bailleul B, Feil R, Sasaki H, Reik W (1997) Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc Natl Acad Sci USA 94: 12509–12514

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Campoy F, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88: 471–481

    Article  PubMed  CAS  Google Scholar 

  • Neumann B, Kubicka P, Barlow DP (1995) Characteristics of imprinted genes. Nat Genet 9: 12–13

    Article  PubMed  CAS  Google Scholar 

  • Obata Y, Kaneko-Ishino T, Koide T, Takai Y, Ueda T, Domeki I, Shiroishi T, Ishino F (1998) Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 125: 1553–1560

    PubMed  CAS  Google Scholar 

  • Ohlsson R, Hedborg F, Holmgren L, Walsh C, Ekström TJ (1994) Overlapping patterns of IGF2 and H19 expression during human development: biallelic IGF2 expression correlates with a lack of H19 expression. Development 120: 361–368

    PubMed  CAS  Google Scholar 

  • Ohta T, Buiting K, Kokkonen H, Saitoh S, McCandless S, Cassidy S, Driscoll D, Horsthemke B, Nicholls R (1997) Molecular analysis in two large AS imprinting mutation (IM) families and identification of microdeletion junctions in AS and PWS IM families. Am J Hum Genet 61 (Suppl): A1850

    Google Scholar 

  • Olek A, Walter J (1997) The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet 17: 275–276

    Article  PubMed  CAS  Google Scholar 

  • Orlando V, Paro R (1995) Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr Opin Genet Dev 5: 174–9

    Article  PubMed  CAS  Google Scholar 

  • Overall M, Bakker M, Spencer J, Parker N, Smith P, Dziadek M (1997) Genomic imprinting in the rat: linkage of Igf2 and H19 genes and opposite parental allele-specific expression during embryogenesis. Genomics 45: 416–420

    Article  PubMed  CAS  Google Scholar 

  • Pak DT, Pflumm M, Chesnokov I, Huang DW, Kellum R, Marr J, Romanowski P, Botchan MR (1997) Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell 91: 311–323

    Article  PubMed  CAS  Google Scholar 

  • Paldi A, Gyapay G, Jami J (1995) Imprinted chromosomal regions of the human genome display sex-specific meiotic recombination frequencies. Curr Biol 15: 1030–1035

    Article  Google Scholar 

  • Paro R, Hogness DS (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci USA 88: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Poirier F, Chan C-T, Timmons P, Robertson E, Evans M, Rigby P (1991) The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development 113: 1105–1114

    PubMed  CAS  Google Scholar 

  • Postlethwait J, Yan Y, Gates M, Horne S, Amores A, Brownlie A, Donovan A, Egan E, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar T, Yelick P, Beier D, Joly J, Larhammar D, Talbot W et al. (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18: 345–349

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Maher E (1997) Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome. Trends Genet 13: 330–334

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Walter J (1998) Imprinting mechanisms in mammals. Curr Opin Genet Dev 7:154–164 Reis A, Dittrich B, Greger V, Buiting K, Lalande M, Gillessen-Kaesbach G, Anvret M, Horsthemke

    Google Scholar 

  • B (1994) Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am J Hum Genet 54: 741–747

    Google Scholar 

  • Ripoche M, Kress C, Poirier F, Dandolo L (1997) Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev 11: 1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Saitoh S, Suiting K, Rogan P, Buxton J, Driscoll D, Arnemann J, König R, Malcolm S, Hors-Themke B, Nicholls R (1996) Minimal definition of the imprinting center and fixation of a chromosome 15q11–13 epigenotype by imprinting mutations. Proc Natl Acad Sci USA 93: 7811–7815

    Article  PubMed  CAS  Google Scholar 

  • Shemer R, Birger Y, Dean WL, Reik W, Riggs AD, Razin A (1996) Dynamic methylation adjustment and counting as part of imprinting mechanisms. Proc Natl Acad Sci USA 93: 6371–6376

    Article  PubMed  CAS  Google Scholar 

  • Shemer R, Birger Y, Riggs A, Razin A (1997) Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc Natl Acad Sci USA 94: 10267–10272

    Article  PubMed  CAS  Google Scholar 

  • Shibata H, Ueda T, Kamiya M, Yoshiki A, Kusakabe M, Plass C, Held W, Sunahara S, Katsuki M, Muramatsu M, Hayashizaki Y (1997) An oocyte-specific methylation imprint center in the mouse U2afbp-rs/U2afl-rs1 gene marks the establishment of allele-specific methylation during preimplantation development. Genomics 44: 171–178

    Article  PubMed  CAS  Google Scholar 

  • Singh PB, James TC (1995) Chromobox genes and the molecular mechanisms of cellular determination. In: Ohlsson R, Hall K, Ritzen M (eds) Genomic imprinting: causes and consequences. Cambridge University Press, Cambridge, pp 71–108

    Google Scholar 

  • Stöger R, Kubicka P, Liu C-G, Kafri T, Razin A, Cedar H, Barlow D (1993) Maternal-specific methylation of the imprinted mouse Ig f2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73: 61–71

    Article  PubMed  Google Scholar 

  • Sutcliffe JS, Nakao M, Christian S, Örstavik KH, Tommerup N, Ledbetter DH, Beaudet AL (1994) Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet 8: 52–58

    Article  PubMed  CAS  Google Scholar 

  • Svensson K, Walsh C, Fundele R, Ohlsson R (1995) H19 is functionally imprinted in the mouse fetal choroid plexus and leptomeninges. Mech Dev 51: 31–37

    Google Scholar 

  • Svensson K, Mattsson R, James T, Wentzel P, Pilartz M, MacLaughlin J, Miller S, Olsson T, Eriksson U, Ohlsson R (1998) The paternal allele of the H19 gene is silenced in a stepwise manner during early mouse development: the acetylation status of histones may be involved in the generation of variegated expression patterns. Development 125: 61–69

    PubMed  CAS  Google Scholar 

  • Szabo P, Mann J (1995) Allele-specific expression and total expression levels of imprinted genes during early mouse development: implications for imprinting. Genes Dev 9: 3097–3108

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Tada T, Lefebvre L, Barton S, Surani M (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 16: 6510–6520

    Article  PubMed  CAS  Google Scholar 

  • Tada T, Tada M, Hilton K, Barton S, Sado T, Takagi N, Surani M (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207: 551–562

    Article  PubMed  CAS  Google Scholar 

  • Tremblay K, Duran K, Bartolomei MS (1997) A 5’ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Biol 17: 4322–4329

    PubMed  CAS  Google Scholar 

  • Triolo T, Sternglanz R (1996) Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381: 251–253

    Article  PubMed  CAS  Google Scholar 

  • Tucker K, Beard C, Dausmann J, Jackson-Grusby L, Laird P, Lei H, Li E, Jaenisch R (1996) Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev 10: 1008–1020

    Article  PubMed  CAS  Google Scholar 

  • Tweedie S, Charlton J, Clark V, Bird A (1997) Methylation of genomes and genes at the invertebrate-vertebrate boundary. Mol Cell Biol 17: 1469–1475

    PubMed  CAS  Google Scholar 

  • Vashee S, Melcher K, Ding W, Johnston S, Kodadek T (1998) Evidence for two modes of cooperative DNA binding in vivo that do not involve direct protein-protein interactions. Curr Biol 8: 452–458

    Article  PubMed  CAS  Google Scholar 

  • Webber A, Ingram R, Levorse J, Tilghman S (1998) Location of enhancers is essential for the imprinting of H19 and Igf2 genes. Nature 391: 711–715

    Article  PubMed  CAS  Google Scholar 

  • White L, Rogan P, Nicholls R, Wu B, Korf B, Knoll J (1996) Allele-specific replication of 15q11-q13 loci: adiagnostic test for detection of uniparental disomy. Am J Hum Genet 59: 423–430

    PubMed  CAS  Google Scholar 

  • Willard H, Salz H (1997) Remodelling chromatin with RNA. Nature 386: 228–229

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Smrzka O, Schweifer N, Schellander K, Wagner E, Barlow D (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389: 745–749

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Bestor T (1997) Cytosine methylation targetted to pre-determined sequences. Nat Genet 17: 376–378

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Bestor TH (1996) Genetic analysis of genomic methylation patterns in plants and mammals. Biol Chem 377: 605–610

    PubMed  CAS  Google Scholar 

  • Yoder J, Bestor T (1998) A candidate mammalian DNA methyltransferase related to pmtlp of fission yeast. Hum Mol Genet 7: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Yoder J, Walsh C, Bestor T (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13: 335–340

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horsthemke, B., Surani, A., James, T., Ohlsson, R. (1999). The Mechanisms of Genomic Imprinting. In: Ohlsson, R. (eds) Genomic Imprinting. Results and Problems in Cell Differentiation, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69111-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69111-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21956-0

  • Online ISBN: 978-3-540-69111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics