Skip to main content
Log in

Hoechst 33258 fluorescent staining of Drosophila chromosomes

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Metaphase chromosomes of D. melanogaster, D. virilis and D. eohydei were sequentially stained with quinacrine, 33258 Hoechst and Giemsa and photographed after each step. Hoechst stained chromosomes fluoresced much brighter and with different banding patterns than quinacrine stained ones. In contrast to mammalian chromosomes, Drosophila's quinacrine and Hoechst bright bands are all in centric heterochromatin and the banding patterns seem more taxonomically divergent than external morphological characteristics. Hoechst stained D. melanogaster chromosomes show unprecedented longitudinal differentiation in the heterochromatic regions; each arm of each autosome can be unambiguously identified and the Y shows eleven bright bands. The Hoechst stained Y can also be identified in polytene chromocenters. Centric alpha heterochromatin of each D. virilis autosome is composed of two blocks which can be differentiated by a combination of quinacrine and Hoechst staining. The distal block is always QH while the proximal block is, for the various autosomes, either QH, Q+H or Q+H+. With these permutations of Hoechst and quinacrine staining, D. virilis autosomes can be unambiguously distinguished. The X and two autosomes have H+ heterochromatin which can easily be seen in polytene and interphase nuclei where it seems to aggregate and exclude H heterochromatin. This affinity of fluorochrome similar heterochromatin was best seen in colcemid induced multiple somatic non-disjunctions where H+ chromosomes were distributed to one rosette and H chromosomes were distributed to another. Knowing the base composition and base sequences of Drosophila satellites, we conclude that AT richness may be a necessary but is certainly an insufficient requirement for quinacrine bright chromatin while GC richness may be a sufficient requirement for the absence of quinacrine or Hoechst brightness. Condensed euchromatin is almost as bright as Q+ heterochromatin. While chromatin condensation has little effect on Hoechst staining, it appears to be “the most important factor responsible for quinacrine brightness”. All existing data from D. virilis indicate that each fluorochrome distinct block of alpha heterochromatin may contain a single DNA molecule which is one heptanucleotide repeated two million times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkisson, K. P., Perreault, W. J., Gay, H.: Differential fluorescent staining of Drosophila chromosomes with quinacrine mustard. Chromosoma (Berl.) 34, 190–205 (1971)

    Google Scholar 

  • Barr, H. J., Ellison, J.: Ectopic pairing of chromosome regions containing chemically similar DNA. Chromosoma (Berl.) 39, 53–61 (1972)

    Google Scholar 

  • Blumenfeld, M.: The evolution of satellite DNA in Drosophila virilis. Cold Spr. Harb. Symp. quant. Biol. 38, 423–428 (1973)

    Google Scholar 

  • Caspersson, T., Farber, S., Foley, G., Kudynowski, J., Modest, E., Simonsson, E., Wagh, U., Zech, L.: Chemical differentiation along metaphase chromosomes. Exp. Cell. Ees. 49, 219–222 (1968)

    Google Scholar 

  • Comings, D. E.: The structure and function of chromatin, p. 237–431. Advanc. Human Genet., vol. 3 (H. Harris and K. Hirschhorn, eds.). New York: Plenum Press 1972

    Google Scholar 

  • Comings, D. E., Avelino, E., Okada, T. A., Wyandt, H. E.: The mechanism of C- and G-banding of chromosomes. Exp. Cell Res. 77, 469–493 (1973)

    Google Scholar 

  • Comings, D. E., Kovacs, B. W., Avelino, E., Harris, D. C.: Mechanisms of chromosome banding. III. Quinacrine banding. (Submitted, 1974)

  • Cooper, K. W.: Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster and the theory of heterochromatin. Chromosoma (Berl.) 10, 535–588 (1959)

    Google Scholar 

  • Cox, D. M.: A quantitative analysis of colcemid induced chromosomal nondisjunction in Chinese hampster cells in vitro. Cytogenet. Cell Genet. 12, 165–174 (1973)

    Google Scholar 

  • Ellison, J. R., Barr, H. J.: Differences in the quinacrine staining of the chromosomes of a pair of sibling species: Drosophila melanogaster and Drosophila simulans. Chromosoma (Berl.) 34, 424–435 (1971a)

    Google Scholar 

  • Ellison, J. R., Barr, H. J.: Chromosome variation within Drosophila simulans detected by quinacrine staining. Genetics 69, 119–122 (1971b)

    Google Scholar 

  • Gall, J. G., Atherton, D. D.: Satellite DNA sequences in Drosophila virilis. J. molec. Biol. 85, 633–664 (1974)

    Google Scholar 

  • Gall, J. G., Cohen, E. H., Atherton, D. D.: The satellite DNAs of Drosophila virilis. Cold Spr. Harb. Symp. quant. Biol. 38, 417–422 (1973)

    Google Scholar 

  • Gall, J. G., Cohen, E. H., Polan, M. L.: Repetitive DNA sequences in Drosophila. Chromosoma (Berl.) 33, 319–344 (1971)

    Google Scholar 

  • Gall, J. G., Pardue, M. L.: Nucleic acid hybridization in cytological preparations. In: Methods in enzymology, vol. 12c (L. Grossman and K. Moldave, eds.). New York: Academic Press 1971

    Google Scholar 

  • Glatzer, K. H.: The status of Drosophila “pseudoneohydei”. Dros. Inf. Serv. 50, 47 (1973)

    Google Scholar 

  • Golomb, H. M., Bahr, G. F.: Correlation of the fluorescent banding pattern and ultrastructure of a human chromosome. Exp. Cell Res. 84, 121–126 (1974)

    Google Scholar 

  • Gottesfeld, J. M., Bonner, J., Radda, G. K., Walker, I. O.: Biophysical studies on the mechanism of quinacrine staining of chromosomes. Biochemistry (Wash.) 13, 2937–2945 (1974)

    Google Scholar 

  • Gropp, A., Hilwig, I., Seth, P. K.: Eluorescence chromosome banding patterns produced by a benzimidazole derivative. Proc. 23rd Nobel Symp. (T. Caspersson and L. Zech, eds.). New York: Academic Press 1973

    Google Scholar 

  • Hannah-Alava, Aloha: Localization and function of heterochromatin in Drosophila melanogaster. Advanc. Genet. 4, 87–125 (1951)

    Google Scholar 

  • Hennig, W.: A remarkable status of Drosophila pseudoneohydei. Dros. Inf. Serv. 50, 121 (1973)

    Google Scholar 

  • Hennig, W., Hennig, I., Stein, H.: Repeated sequences in the DNA of Drosophila and their localization in giant chromosomes. Chromosoma (Berl.) 32, 31–63 (1970)

    Google Scholar 

  • Hilwig, L, Gropp, A.: Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome. Exp. Cell Res. 75, 122–126 (1972)

    Google Scholar 

  • Holmquist, G., Steffensen, D.: Evidence for a specific three dimensional arrangement of polytene chromosomes by nuclear membrane attachments. J. Cell Biol. 59, 147a (1973)

  • Hsu, T. C.: Heterochromatin patterns in metaphase chromosomes of D. melanogaster. J. Hered. 62, 285–287 (1971)

    Google Scholar 

  • Hsu, T. C.: Longitudinal differentiation of chromosomes. Ann. Rev. Genet. 7, 153–176 (1973)

    Google Scholar 

  • Kavenoff, R., Klots, L., Zimm, B.: On the nature of chromosome-sized DNA molecules. Cold Spr. Harb. Symp. quant. Biol. 38, 1–8 (1973)

    Google Scholar 

  • Kram, R., Botchan, M., Hearst, J. E.: Arrangement of the highly reiterated DNA sequences in the centric heterochromatin of Drosophila melanogaster. Evidence for interspersed spacer DNA. J. molec. Biol. 64, 103–118 (1972)

    Google Scholar 

  • Kurnit, D. M., Shafit, B. R., Maio, J. J.: Multiple satellite deoxyribonucleic acids in the calf and their relation to the sex chromosomes. J. molec. Biol. 81, 273–284 (1973)

    Google Scholar 

  • Laird, C. D.: DNA of Drosophila chromosomes. Ann. Rev. Genet. 7, 177–204 (1973)

    Google Scholar 

  • Latt, S. A.: Microfluorometric detection of DNA replication in human metaphase chromosomes. Proc. nat. Acad. Sci. (Wash.) 70, 3395–3399 (1973)

    Google Scholar 

  • Lewis, E. B., Craymer, L.: Quinacrine fluorescence of Drosophila chromosomes. Dros. Inf. Serv. 47, 133–134 (1971)

    Google Scholar 

  • Lindsley, D. L., Grell, E. H.: Genetic variations of Drosophila melanogaster. Carnegie Inst. Publ. 627 (1968)

  • Macgregor, H. C., Kezer, J.: The chromosomal localization of a heavy satellite DNA in the testes of Plethodon c. cinereus. Chromosoma (Berl.) 33, 167–182 (1971)

    Google Scholar 

  • Michelson, A. M., Monny, C., Kovoor, A.: Action of quinacrine mustard on polynucleotides. Biochimie 54, 1129–1136 (1972)

    Google Scholar 

  • Pachmann, U., Rigler, R.: Quantum yield of acridines interacting with DNA of defined base sequence. Exp. Cell Res. 72, 602–608 (1972)

    Google Scholar 

  • Painter, T. S.: The morphology of the X-chromosome in salivary glands of Drosophila melanogaster and a new type of chromosome map for this element. Genetics 19, 448–469 (1934)

    Google Scholar 

  • Patterson, J. T., Stone, W. S.: Evolution in the genus Drosophila. New York: Macmillan 1952

    Google Scholar 

  • Peacock, W. J., Brutlag, D., Goldring, E., Appels, R., Hinton, C. W., Lindsley, D. L.: The organization of highly repeated DNA sequences in Drosophila melanogaster chromosomes. Cold Spr. Harb. Symp. quant. Biol. 38, 405–416 (1973)

    Google Scholar 

  • Schalet, A., Lefevre, G.: The localization of “ordinary” sex-linked genes in section 20 of the polytene X chromosome of Drosophila melanogaster. Chromosoma (Berl.) 44, 183–202 (1973)

    Google Scholar 

  • Schnedl, W.: Giemsa banding quinacrine fluorescence and DNA replication in chromosomes of cattle (Bos taurus). Chromosoma (Berl.) 38, 319–328 (1972)

    Google Scholar 

  • Selander, R. K., de la Chapelle, A.: The fluorescence of quinacrine mustard with nucleic acids. Nature (Lond.) New Biol. 245, 240–243 (1973)

    Google Scholar 

  • Tishler, P. V., Javier, C.: Fluorescent identification of Y and X chromatin bodies in human tissues. J. Histochem. Cytochem. 21, 587–591 (1973)

    Google Scholar 

  • Vosa, C. G.: The discriminating fluorescence patterns of the chromosomes of Drosophila melanogaster. Chromosoma (Berl.) 31. 446–451 (1970)

    Google Scholar 

  • Weisblum, B.: Fluorescent probes of chromosomal DNA structure: three classes of acridines. Cold Spr. Harb. Symp. quant. Biol. 38, 441–449 (1973)

    Google Scholar 

  • Weisblum, B., Haenssler, B.: Fluorometric properties of the bibenzimidazol derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma (Berl.) 46, 255–260 (1974)

    Google Scholar 

  • Weisblum, B., Haseth, P. de: Quinacrine, a chromosome stain specific for deoxyadenylate- deoxythymidylate- rich regions in DNA. Proc. nat. Acad. Sci. (Wash.) 69, 629–632 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmquist, G. Hoechst 33258 fluorescent staining of Drosophila chromosomes. Chromosoma 49, 333–356 (1975). https://doi.org/10.1007/BF00285127

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285127

Keywords

Navigation