Skip to main content

Accumulation and Detoxification of Metals by Plants and Microbes

  • Chapter
Environmental Bioremediation Technologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–524

    Article  Google Scholar 

  • Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338

    Article  Google Scholar 

  • Bae W, Mulchandani A, Chen W (2002) Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J Inorganic Biochem 88:223–227

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulatemetallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross species microarray transcript profiling reveals constitutive overexpression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Google Scholar 

  • Begley TP, Walts AE, Walsh CT (1986) Mechanistic studies of a protonolytic organomercurial cleaving enzyme: bacterial organomercurial lyase. Biochemistry 25:7192–7200

    Article  Google Scholar 

  • Berka T, Shatzman A, Zimmerman J, Strickler J, Rosenberg M (1988) Efficient expression of the yeast metallothionein gene in Escherichia coli. J Bacteriol 170:21–26

    Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:6808–6813

    Article  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  Google Scholar 

  • Blaylock MI, Salt DE, Dushenkov S, Zakharova O, Gussman C (1997) Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Blaudez P, Kohler A, Martin F, Sanders D, Chalot M (2003) Poplar metal tolerance protein1 confers Zinc tolerance and is an oligomeric vacuole zinc transporter with an essential leucine zipper motif. The Plant Cell 15:2911–2928

    Article  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ Sci Technol 29:1581–1585

    Article  Google Scholar 

  • Burken JG, Schnoor JL (1996) Phytoremediation:plant uptake of atrazine and role of root exudates. J Environ Eng 122:958–963

    Article  Google Scholar 

  • Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  Google Scholar 

  • Chen S, Wilson DB (1997) Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg2+-contaminated environments. Appl Environ Microbiol 63:2442–2445

    Google Scholar 

  • Chen W, Li GS, Qi YL, Wang ET, Yuan HL, Li L, (1991) Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280

    Google Scholar 

  • Chevalier C, Bourgeois E, Pradet A, Raymond P (1995) Molecular cloning and characterization of six cDNAs expressed during glucose starvation in excised maize(Zea mays L.) root tips. Plant Mol Biol 28:473–485

    Article  Google Scholar 

  • Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci USA 95:12043–12048

    Article  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and theirs roles in heavy metal detoxification. Plant Physiol 123:825–832.

    Article  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    Article  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and ?-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  Google Scholar 

  • Downie A (1997) Fixing a symbiotic circle. Nature 387:352–353

    Article  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl AcadSci USA 93:5624–5628

    Article  Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Mol Biol 20:1019–1028

    Article  Google Scholar 

  • Fisher FF, Long SR (1992) Rhizobium-plant signal exchange. Nature 357:655–660

    Article  Google Scholar 

  • Fox B, Walsh CT (1982) Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation reduction active disulfide. J Biol Chem 257:2498–2503

    Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118–10123

    Article  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224

    Article  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198.

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki T (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196:277–281

    Article  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2_in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Google Scholar 

  • Hsieh HM, Liu WK, Huang PC (1995) A novel stress-inducible metallothionein-like gene from rice. Plant Mol Biol 28:381–389

    Article  Google Scholar 

  • Hong SH, Gohya M, Ono H, Murakami H, Yamashita M, Hirayama N, Murooka Y (2000) Molecular design of novel metal-binding oligomeric human mrtallothioneins. Appl Microbiol Biotechnol 54:84–89

    Article  Google Scholar 

  • Hong S-H, Toyama M, Maret W, Murooka Y (2001) High yield expression and single step purification of heman thionein/metallothionein. Protein Expres Purifi 21:243–250

    Article  Google Scholar 

  • Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Isolation of prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7:177–187

    Article  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    Google Scholar 

  • Kagi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    Google Scholar 

  • Kashiwa M, Ike M, Mihara H, Esaki N, Fujita M (2001) Removal of soluble selenium by a selenate-reducing bacterium Bacillus sp. SF-1. J Ferment Bioeng 83:517–522

    Google Scholar 

  • Karenlampi S, Schat H, Vangronsveld J, Verkleij JAC, Van Der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  Google Scholar 

  • Kille P, Winge DR, Harwood JL, Kay J (1990) A plant metallothionein produced in Escherichia coli. FEBS Lett 295:171–175

    Article  Google Scholar 

  • Korshunova Y, Eide D, Clark G, Guerinot M, Pakrasi H (1999) The IRT1 protein from Arabidopsis thaliana. Plant Mol Biol 40:37–44

    Article  Google Scholar 

  • Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  Google Scholar 

  • Kramer U, Pickering IJ, Raskin I, Salt DE (2000) Prince Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  Google Scholar 

  • Krotz RM, Evangelou BP, Wagner GJ (1989) Relationship between cadmium, zinc, Cdpeptide, and organic acid in tobacco suspension cell. Plant Physiol 91:780–787

    Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol29:1232–1238

    Article  Google Scholar 

  • Lasat MM, Baker A, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722

    Google Scholar 

  • Loeffler S, Hochberger A, Grill E, Winnacker EL, Zenk MH (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett 258:42–46

    Article  Google Scholar 

  • Lovley DR (1995) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Indust Microbiol 14:85–93

    Article  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  Google Scholar 

  • Maiti IB, Hunt AG, Wagner GJ (1988) Seed-transmissible expression of mammalian metallothionein in transgenic tobacco. Biochem Biophys Res Commun 150:640–647

    Article  Google Scholar 

  • Maiti IB, Wagner GI, Yeargan R, Hunt AG (1989) Inheritance and expression of the mouse metallothionein gene in tobacco. Plant Physiol 91:1020–1024

    Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a Pseudomonas isolated from a site contaminated with chromate copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  Google Scholar 

  • Mehra RK, Winge D (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  Google Scholar 

  • Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotecnol 19:67–73

    Article  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theo App Genet 78:161–168

    Article  Google Scholar 

  • Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin NJ, Becana M (2000) Glutathione and homoglutathione synthetases of legume; cloning expression and subcellular localization. Plant Physiol 124:1381–1392

    Article  Google Scholar 

  • Murooka Y, Nagaoka T (1987) Expression of cloned monkey metallothionein in Escherichia coli. Appl Environ Microbiol 53:204–207

    Google Scholar 

  • Murooka Y, Toyama M, Hong S-H, Gohya M, Ono H, Yamashita M, Hirayama N (2001) Genetic design of stable metal-binding biomolecules, Oligomeric metallothioneins. Biocatal Biotransform 19:399–412

    Google Scholar 

  • Murooka Y, Xu Y, Sanada K, Araki M, Morinaga T, Yokota A (1993) Formation of root nodules by Rhizobium huakuii biovar. Renge bv. Nov on Astragalus sincicus cv. Japan. J Ferment Bioeng 76:38–44

    Google Scholar 

  • Mylona P, Powlowski K, Bisseling T, (1995) Symbiotic nitrogen fixation. Plant Cell 7:869–885

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  Google Scholar 

  • Nuswantara S, Fujie M, Yamada T, Malek W, Inaba M, Kaneko Y, Murooka Y (1999) Phylogenic position of Mesorhizobium huakuii subsp. rengei, a symbiont of Astragalus sinicus cv. Japan. J Biosci Bioeng87:49–55

    Article  Google Scholar 

  • Olafson RW, Mccubbin W, Kay C (1988) Primary and secondary structural analysis of a unique prokaryotic metallothionein from Synechococcus sp. Cyanobacterium. Biochem J 251:691–699

    Google Scholar 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavymetal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499

    Google Scholar 

  • Oritz DF, Ruseitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type B vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  Google Scholar 

  • Odawara F, Kurasaki M, Suzuki-Kurasaki M, Oikawa S, Emoto T, Yamasaki F, Arias ARL, Kojima Y (1995) Expression of human metallothionein-2 in Escherichia coli: cadmium tolerance of transformed cells. J Biochem 118:1131–1137

    Google Scholar 

  • Pan A, Tie F, Duau Z, Yang M, Wang Z, Li L, Chen Z, Ru B (1994a) Alpha-domain of human metallothionein IA can bind to metals in transgenic tobacco plants. Mol Gen Genet 242:666–674

    Article  Google Scholar 

  • Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994b) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    Article  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulation Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    Article  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995–10000

    Article  Google Scholar 

  • Raina S, Missiakas D (1997) Making and breaking disulfide bonds. Annu Rev Microbiol 51:179–202

    Article  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997a) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  Google Scholar 

  • Robinson BH, Chiarucci A, Brooka RR, Petit D, Kirkman JH, Gregg PEH, DeDominicis V (1997b) The nickel hyperaccunulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA 97:12356–12360

    Article  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302

    Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  Google Scholar 

  • Sayers Z, Brouillon P, Vorgias CE, Nolting HF, Hermes C, Koch MH (1993) Cloning and expression of Saccharomyces cerevisiae copper-metallothionein gene in Escherichia coli and characterization of the recombinant protein. Eur J Biochem 212:521–528

    Article  Google Scholar 

  • Schachtman DP, Kumar R, Schroeder JI, Marsh EL (1997) Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc Natl Acad USA 94:11079–11084

    Article  Google Scholar 

  • Senden MHMN, Van Paassen FJM, VanDerMeer AJGM, Wolterbeek HTH (1992) Cadmium-citric acid-xylem cell wall interactions in tomato plants. Plant Cell Environ 15:71–79

    Article  Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang Y, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  Google Scholar 

  • Sousa C, Cebolla A, de Lorenzo V (1996) Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat Biotechnol 14:1017–1020

    Article  Google Scholar 

  • Sousa C, Kotrba P, Ruml T, Cebolla A, de Lorenzo V (1998) Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180:2280–2284

    Google Scholar 

  • Speiser DM, Ortiz DF, Kreppel L, Scheel G, McDonald G, Ow DW (1992) Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Mol Cell Biol 12:5301–5310

    Google Scholar 

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P)H-dependent chromium (VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174:5340–5345

    Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    Article  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagai M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Article  Google Scholar 

  • Toyama M, Yamashita M, Hirayama N, Murooka Y (2002) Interactions of arsenic with human metallothionein-2. J Biochem 132:217–221

    Google Scholar 

  • Vassil A, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117:447–453

    Article  Google Scholar 

  • Valls M, Atrian S, de Lorenzo V, Fernandez LA (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665

    Article  Google Scholar 

  • Wang P, Mori T, Komori K, Sasatsu K, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55:1665–1669

    Google Scholar 

  • Wang YT, Shen H (1995) Bacterial reduction of hexavalent chromium. J Indust Microbiol 14:159–183

    Article  Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identified nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  Google Scholar 

  • Winge DR, Nielson KB, Gray W, Hamer D (1985) Yeast metallothionein: sequence and metal-binding properties. J Biol Chem 260:14464–14470

    Google Scholar 

  • Yamashita M, Kuwata H, Murakami H, Murooka Y (1994) Genetic design of a gene for human metallothionein II and its expression as an active fusion protein in Escherichia coli. J Ferment Bioeng 77:113–118

    Article  Google Scholar 

  • Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884

    Article  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gammaglutamylcysteine synthetase. Plant Physiol 121:1169–1178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sriprang, R., Murooka, Y. (2007). Accumulation and Detoxification of Metals by Plants and Microbes. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_4

Download citation

Publish with us

Policies and ethics