Skip to main content
Log in

Bioremediation of organic and metal contaminants with dissimilatory metal reduction

  • Published:
Journal of Industrial Microbiology

Summary

Dissimilatory metal reduction has the potential to be a helpful mechanism for both intrinsic and engineered bioremediation of contaminated environments. Dissimilatory Fe(III) reduction is an important intrinsic process for removing organic contaminants from aquifers contaminated with petroleum or landfill leachate. Stimulation of microbial Fe(III) reduction can enhance the degradation of organic contaminants in ground water. Dissimilatory reduction of uranium, selenium, chromium, technetium, and possibly other metals, can convert soluble metal species to insoluble forms that can readily be removed from contaminated waters or waste streams. Reduction of mercury can volatilize mercury from waters and soils. Despite its potential, there has as yet been limited applied research into the use of dissimilatory metal reduction as a bioremediation tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acton, D.W. and J.F. Barker. 1992. In situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters. J. Contam. Hydrol. 9: 325–352.

    Google Scholar 

  2. Adriano, D.C., A.L. Page, A.A. Elseewi, A.C. Chang and I. Straughan. 1980. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. J. Environ. Qual. 9: 333–344.

    Google Scholar 

  3. Alemi, M.H., D.A. Goldhamer and D.R. Nielsen. 1988. Elution of selenium from contaminated evaporation pond sediments. J. Environ. Qual. 17: 613–618.

    Google Scholar 

  4. Aller, R.C., J.E. Macklin and R.T.J. Cox. 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Cont. Shelf Res. 6: 263–289.

    Google Scholar 

  5. Altringer, P.B., R.H. Lien and K.R. Gardner. 1991. Biological and chemical selenium removal from precious metals solutions. In: Environmental Management for the 1990s (Lootens, D.J., W.M. Greenslade and J.M. Barker, eds), pp. 135–142, Society for Mining, Metallurgy, and Exploration, Littleton, Colorado.

    Google Scholar 

  6. Anid, P.J., P.J.J. Alvarez and T.M. Vogel. 1993. Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate. Wat. Res. 27: 685–691.

    Google Scholar 

  7. Baedecker, M.J., I.M. Cozzarelli, D.I. Siegel, P.C. Bennett and R.P. Eganhouse. 1993. Crude oil in a shallow sand and gravel aquifer. 3. Biogeochemical reactions and mass balance modeling in anoxic ground water. Appl. Geochem. 8: 569–586.

    Google Scholar 

  8. Baldi, F., A. Boudou and F. Ribeyre. 1992. Response of a fresh-water bacterial community to mercury contamination (HgCl2 and CH3HgCl) in a controlled system. Arch. Environ. Contam. Toxicol. 22: 439–444.

    Google Scholar 

  9. Baldi, F., F. Parati, F. Semplici and V. Tandoi. 1993. Biological removal of inorganic Hg(II) as gaseous elemental Hg(0) by continuous culture of a Hg-resistantPseudomonas putida strain FB-1. World J. Microbiol. Biotech. 9: 275–279.

    Google Scholar 

  10. Baldi, F., F. Semplici and M. Filippelli 1991. Environmental applications of mercury resistant bacteria. Water, Air, Soil Pollut. 56: 465–475.

    Google Scholar 

  11. Barbaro, J.R., J.F. Barker, L.A. Lemon and C.I. Mayfield. 1992. Biotransformation of BTEX under anaerobic denitrifying conditions: field and laboratory observations. J. Contam. Hydrol. 11: 245–272.

    Google Scholar 

  12. Barkay, T. 1987. Adaptation of aquatic microbial communities to Hg2+ stress. Appl. Environ. Microbiol. 53: 2725–2732.

    Google Scholar 

  13. Barkay, T. and B.H. Olson. 1986. Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress. Appl. Environ. Microbiol. 52: 403–406.

    PubMed  Google Scholar 

  14. Barkay, T., C. Liebert and M. Gillman. 1989. Environmental significance of the potential former(Tn21)-mediated reduction of Hg2+ to Hg0 in natural waters. Appl. Environ. Microbiol. 55: 1196–1202.

    PubMed  Google Scholar 

  15. Barkay, T., C. Liebert and M. Gillman. 1989. Hybridization of DNA probes with whole-community genome for detection of genes that encode microbia resonses to pollutants:mer genes and Hg2+ resistance. Appl. Environ. Microbiol. 55: 1574–1577.

    PubMed  Google Scholar 

  16. Barkay, T., R.R. Turner, A. VandenBrook and C. Liebert. 1991 The relationships of Hg(II) volatilization from a freshwater pond to the abundance ofmer genes in the gene pool of the indigenous microbial community. Microb. Ecol. 21: 151–161.

    Google Scholar 

  17. Barker, J.K., P. Major and D. Major. 1987. Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Ground Wat. Monitor. Rev. 7: 64–71.

    Google Scholar 

  18. Bautista, E.M. and M. Alexander. 1972. Reduction of inorganic compounds by soil microorganisms. Soil Sci. Soc. Amer. Proc. 36: 918–920.

    Google Scholar 

  19. Beller, H.R., D. Grbic-Galic and M. Reinhard. 1992. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process. Appl. Environ. Microbiol. 58: 786–793.

    PubMed  Google Scholar 

  20. Bopp, L.H. and H.L. Ehrlich. 1988. Chromate resistance and reduction inPseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426–431

    Google Scholar 

  21. Bouwer, E.J. 1992. Bioremdiation of organic contaminants in the subsurface. In: Environmental Microbiology (Mitchell, R., ed.), pp. 287–318, John Wiley & Sons, New York.

    Google Scholar 

  22. Bradford, G.R., D. Bakhtar and D. Westcot. 1990. Uranium, vanadium, and molybdenum in saline waters of California. J. Environ. Qual. 19: 105–108.

    Google Scholar 

  23. Brown, N.L. 1985. Bacterial resistance to mercury—reductio ad absurdum? Trends Biochem. Sci. 41: 400–403.

    Google Scholar 

  24. Brunke, M., W.-D. Deckwer, A. Frischmuth, J.M. Horn, H. Lunsdorf, M. Rhode, M. Rohricht, K.N. Timmis and P. Weppen. 1993. Micribial retention of mercury from waste streams in a laboratory column containingmerA gene bacteria. FEMS Microbiol. Rev. 11: 145–152.

    PubMed  Google Scholar 

  25. Burton Jr, G.A., T.H. Giddings, P. DeBrine and R. Fall. 1987. High incidence of selenite-resistant bacteria from a site polluted with selenium. Appl. Environ. Microbiol. 53: 185–188.

    PubMed  Google Scholar 

  26. Canfield, D., B. Thamdrup and J.W. Hansen. 1993. The anaerobic degradation of organic matter in Danish coastal sediments: Fe reduction, Mn reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57: 3867–3883.

    PubMed  Google Scholar 

  27. Cervantes, C. 1991. Bacterial interactions with chromate. Antonie van Leeuwenhoek 59: 229–233.

    PubMed  Google Scholar 

  28. Coleman, R.N. and J.H. Padran. 1991. Biofilm concentration of chromium. Environ. Technol. 12: 1079–1093.

    Google Scholar 

  29. Committee on In Situ Bioremediation, Water, Science and Technology Board, National Research Council. 1993. In Situ Bioremediation. National Academy Press, Washington, DC.

    Google Scholar 

  30. Doran, J.W. 1982. Microorganisms and the biological cycling of selenium. Adv. Microbial. Ecol. 6: 1–32.

    Google Scholar 

  31. Doran, J.W. and M. Alexander. 1977. Microbial formation of volatile Se compounds in soil. Soil Sci. Soc. Am. J. 40: 687–690.

    Google Scholar 

  32. Eary, L.E. and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22: 972–977.

    Google Scholar 

  33. Edwards, E.A. and D. Grbic-Galic. 1992. Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl. Environ. Microbiol. 58: 2663–2666.

    PubMed  Google Scholar 

  34. Ehrlich, G.G., E.M. Godsy, D.F. Goerlitz and M.F. Hult. 1983. Microbial ecology of a creosote-contaminated aquifer at St Louis Park, Minnesota. Dev. Ind. Microbiol 24: 235–245.

    Google Scholar 

  35. Flyvbjerg, J., E. Arivn, B.K. Jensen and S.K. Olsen. 1993. Microbial degradation of phenols and aromatic hydrocarbons in creosote-contaminated groundwater under nitrate-reducing conditions. J. Contam. Hydrol. 12: 133–150.

    Google Scholar 

  36. Frischmuth, A., P. Weppen and W.-D. Decker. 1993. Microbial transformation of mercury(II). I. Isolation of microbes and characterization of their transformation capabilities. J. Biotech. 29: 39–55.

    Google Scholar 

  37. Gerhardt, M.B., F.B. Green, D. Newman, T.J. Lundquist, R.B. Tresan and W.J. Oswald. 1991. Removal of selenium using a novel algal-bacterial process. Res. J. Water Pollut. Control Fed. 63: 799–805.

    Google Scholar 

  38. Gillham, R.W., R.C. Starr and D.J. Miller. 1990. A device for in situ determinations of geochemical transport parameters. 2. Biochemical reactions. Ground Water 28: 858–862.

    Google Scholar 

  39. Goldstein, R.W., B.H. Olson and D.B. Porcella. 1988. Conceptual model of genetic regulation of mercury biogeochemical cycling. Environ. Technol. Lett. 9: 957–964.

    Google Scholar 

  40. Gorby, Y.A. and D.R. Lovley. 1992. Enzymatic uranium precipitation. Environ. Sci. Technol. 26: 205–207.

    Google Scholar 

  41. Grbic-Galic, D. and T. Vogel 1987. Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254–260.

    PubMed  Google Scholar 

  42. Hansen, C.L., G. Zwolinski, D. Martin and J.W. Williams. 1984. Bacterial removal of mercury from sewage. Biotechnol. Bioeng. 26: 1330–1333.

    Google Scholar 

  43. Hardoyo, J.K. and H. Ohtake. 1991. Effects of heavy metal cations on chromate reduction byEnterobacter cloacae strain HO1. J. Gen. Appl. Microbiol. 37: 519–522.

    Google Scholar 

  44. Heijman, C.G., C. Holliger, M.A. Glaus, R.P. Schwarzenbach and J. Zeyer. 1993. Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59: 4350–4353.

    Google Scholar 

  45. Henrot, J. 1989. Bioaccumulation and chemical modification of Tc by soil bacteria. Health Physics 57: 239–245.

    PubMed  Google Scholar 

  46. Horitsu, H., S. Futo, Y. Miyazawa, S. Ogai and K. Kawai. 1987. Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerantPseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417–2420.

    Google Scholar 

  47. Horn, J.M., M. Brunke, W.-D. Deckwer and K.N. Timmis. 1994.Pseudomonas putida strains which constitutively overexpress mercury resistance for biodetoxification of organomercurial pollutants. Appl. Environ. Microbiol. 60: 357–362.

    Google Scholar 

  48. Hutchins, S.R. 1991. Optimizing BTEX biodegradation under denitrifying conditions. Environ. Toxicol. Chem. 10: 1437–1488.

    Google Scholar 

  49. Hutchins, S.R., G.W. Sewell D.A. Kovacs and G.A. Smith. 1991. Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. Technol. 25: 68–76.

    Google Scholar 

  50. Ishibashi, Y., C. Cervantes and S. Silver. 1990. Chromium reduction inPseudomonas putida. Appl. Environ. Microbiol. 56: 2268–2270.

    PubMed  Google Scholar 

  51. Kauffman, J.W., W.C. Laughlin and R.A. Baldwin. 1986. Microbiological treatment of uranium mine waters. Environ. Sci. Technol. 20: 243–248.

    Google Scholar 

  52. Komori, K., A. Rivas, K. Toda and H. Ohtake. 1990. Biological removal of toxic chromium using anEnterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol. Bioengin. 35: 951–954.

    Google Scholar 

  53. Komori, K., A. Rivas, K. Toda and H. Ohtake. 1990. A method for removal of toxic chromium using dialysis-sac cultures of a chromate-reducing strain ofEnterobacter cloacae. Appl. Microbiol. Biotechnol. 33: 117–119.

    PubMed  Google Scholar 

  54. Komori, K., P. Wang, K. Toda and H. Ohtake. 1989. Factors affecting chromate reduction inEnterobacter cloacae strain HO1. Appl. Microbiol. Biotechnol. 31: 567–570.

    Google Scholar 

  55. Kuhn, E.P., J. Zeyer, P. Eicher and R.P. Schwarzenbach. 1988. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl. Environ. Microbiol. 54: 490–496.

    PubMed  Google Scholar 

  56. Langmuir, D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 42:547–569.

    Google Scholar 

  57. Lee, M.D., J.M. Thomas, J.C. Borden, P.B. Bedient, C.H. Ward and J.T. Wilson. 1988. Biorestoration of aquifers contaminated with organic compounds. CRC Crit. Rev. Environ. Control 18: 29–89.

    Google Scholar 

  58. Lonergan, D.J. and D.R. Lovley. 1991. Microbial oxidation of natural and anthropogenic aromatic compounds coupled to Fe(III) reduction. In: Organic Substances and Sediments in Water (Baker, R.A., ed.), pp. 327–338, Lewis Publishers, Chelsea, Michigan.

    Google Scholar 

  59. Long, R.H.B., S.M. Benson, T.K. Tokunaga and A. Yee. 1990. Selenium immobilization in a pond sediment at Kesterson Researvoir. J. Environ. Qual. 19: 302–311.

    Google Scholar 

  60. Lovley, D.R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259–287.

    PubMed  Google Scholar 

  61. Lovley, D.R. 1993. Dissimilatory metal reduction. Ann. Rev. Microbiol. 47: 263–290.

    Google Scholar 

  62. Lovley, D.R. and D.J. Lonergan. 1990. Anaerobic oxidation of toluene, phenol, andp-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56: 1858–1864.

    Google Scholar 

  63. Lovley, D.R. and E.J.P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51: 683–689.

    Google Scholar 

  64. Lovley, D.R. and E.J.P. Phillips. 1992. Bioremediation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol. 26:2228–2234.

    Google Scholar 

  65. Lovley, D.R. and E.J.P. Phillips. 1992. Reduction of uranium byDesulfovibrio desulfuricans. Appl. Environ. Microbiol. 58: 850–856.

    PubMed  Google Scholar 

  66. Lovley, D.R. and E.J.P. Phillips. 1994. Reduction of chromate byDesulfovibrio vulgaris (Hildenborough) and itsc 3 cytochrome. Appl. Environ. Microbiol. 60: 726–728.

    Google Scholar 

  67. Lovley, D.R., M.J. Baedecker, D.J. Lonergan, I.M. Cozzarelli, E.J.P. Phillips and D.I. Siegel. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339: 297–299.

    Google Scholar 

  68. Lovley, D.R., E.J.P. Phillips, Y.A. Gorby and E.R. Landa. 1991. Microbial reduction of uranium. Nature 350: 413–416.

    Google Scholar 

  69. Lovley, D.R., E.E. Roden, E.J.P. Phillips and J.C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol. 113: 41–53.

    Google Scholar 

  70. Lovley, D.R., J.F. Stolz, G.L. Nord and E.J.P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330: 252–254.

    Google Scholar 

  71. Lovley, D.R., P.K. Widman, J.C. Woodward and J.P. Phillips. 1993. Reduction of uranium by cytochromec 3 ofDesulfovibrio vulgaris. Appl. Environ. Microbiol. 59: 3572–3576.

    PubMed  Google Scholar 

  72. Lovley, D.R., J.C. Woodward and F.H. Chapelle. 1994. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370: 128–131.

    PubMed  Google Scholar 

  73. Luoma, S.N., C. Johns, N.S. Fisher, N.A. Steinberg, R.S. Oremland and J.R. Reinfelder. 1992. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environ. Sci. Technol. 26: 485–491.

    Google Scholar 

  74. Lyngkilde, J. and T.H. Christensen. 1992. Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark). J. Contamin. Hydrol. 10:291–307.

    Google Scholar 

  75. Macaskie, L.E. 1991. The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit. Rev. Biotechnol. 11: 41–112.

    PubMed  Google Scholar 

  76. Macy, J.M., S. Lawson and H. DeMoll-Decker. 1993. Bioremediation of selenium oxyanions in San Joaquin drainage water usingThauera selenatis in a biological reactor system. Appl. Microbiol. Biotechnol. 40: 588–594.

    Google Scholar 

  77. Macy, J.M., T.A. Michel and D.G. Kirsch. 1989. Selenate reduction by aPseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol. Lett. 61: 195–198.

    Google Scholar 

  78. Macy, J.M., S. Rech, G. Auling, M. Dorsch, E. Stackebrandt and L.I. Sly. 1993.Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of theProteobacteria with a novel type of anaerobic respiration. Int. J. Sys. Bacteriol. 43: 135–142.

    Google Scholar 

  79. Maiers, D.T., P.L. Wichlacz, D.L. Thompson and D.F. Bruhn. 1988. Selenate reduction by bacteria from a selenium-rich environment. Appl. Environ. Microbiol. 54: 2591–2593.

    PubMed  Google Scholar 

  80. Major, D.W., C.I. Mayfield and J.F. Barker. 1988. Biotransformation of benzene by denitrification in aquifer sand. Ground Water 26: 8–14.

    Google Scholar 

  81. Moore, J.W. 1990. Inorganic Contaminants of Surface Water. Springer-Verlag, New York.

    Google Scholar 

  82. Morgan, P. and R.J. Watkinson. 1992. Factors limiting the supply and efficiency of nutrient and oxygen supplements for thein situ biotreatment of contaminated soil and groundwater. Wat. Res. 26: 73–78.

    Google Scholar 

  83. Nriagu, J.O. and H.K. Wong. 1983. Selenium pollution of lakes near the smelters at Sudbury, Ontario. Nature 301: 55–57.

    Google Scholar 

  84. Ogunseitan, O.A. and B.H. Olson. 1991. Potential for genetic enhancement of bacterial detoxification of mercury waste. In: Mineral Bioprocessing (Smith, R. W. and M. Misra, eds), pp. 325–337, The Minerals, Metals and Materials Society, Santa Barbara, California.

    Google Scholar 

  85. Ohtake, H., E. Fujii and K. Toda. 1990. Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain ofEnterobacter Cloacae. Environ. Technol. 11: 663–668.

    Google Scholar 

  86. Olson, B.H., S.M. Cayless, S. Ford and J.N. Lester. 1991. Toxic element contamination and the occurrence of mercury-resistant bacteria in Hg-contaminated soil, sediments, and sludges. Arch. Environ. Contam. Toxicol. 20: 226–233.

    Google Scholar 

  87. Oremland, R.S. 1994. Biogeochemical transformations of selenium in anoxic environments. In: Selenium in the Environment (Frankenberger Jr, W.T., ed.), pp. 389–419, Marcel Dekker, New York.

    Google Scholar 

  88. Oremland, R.W., J.T. Hollibaugh, A.S. Maest, T.S. Presser, L.G. Miller and C.W. Culbertson. 1989. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol. 55: 2333–2343.

    Google Scholar 

  89. Oremland, R.S., N.A. Steinberg, A.S. Maest, L.G. Miller and J.T. Hollibaugh. 1990. Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ. Sci. Technol. 24: 1157–1164.

    Google Scholar 

  90. Oremland, R.S., N.A. Steinberg, T.S. Presser and L.G. Miller. 1991. In situ bacterial selenate reduction in the agricultural drainage systems of western Nevada. Appl. Environ. Microbiol. 57: 615–617.

    PubMed  Google Scholar 

  91. Palmer, C.D. and P.R. Wittbrodt. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Perspect. 92:25–40.

    PubMed  Google Scholar 

  92. Phillips, E.J.P., D.R. Lovley and E.R. Landa. 1994. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J. Ind. Microbiol. 14: 202–206.

    Google Scholar 

  93. Pignolet, L., F. Auvary, K. Fonsny, F. Capot and Z. Moureau. 1989. Role of various microorganisms on Tc behavior in sediments. Health Phys. 57: 791–800.

    PubMed  Google Scholar 

  94. Presser, T.C. and I. Barnes. 1984. Selenium concentrations in water in the vicinity of Kesterson National Wildlife Refuge and the west grassland, Fresno and Merced counties, California. US Geological Water Resources Investigations Report 85-4220, US Geological Survey, Menlo Park, CA.

    Google Scholar 

  95. Regnell, O. 1990. Conversion and partitioning of radio-labelled mercury chloride in aquatic model systems. Can. J. Fish. Aquat. Sci. 47: 548–553.

    Google Scholar 

  96. Richard, F.C. and C.M. Bourg. 1991. Aqueous geochemistry of chromium: a review. Wat Res. 25: 807–816.

    Google Scholar 

  97. Robinson, J.B. and O.H. Tuovinen. 1984. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological biochemical, and genetic analyses. Microbiol. Rev. 48: 95–124.

    PubMed  Google Scholar 

  98. Rochelle, P.A., M.K. Wetherbee and B.H. Olson. 1991. Distribution of DNA sequences encoding narrow- and broad-spectrum mercury resistance. Appl. Environ. Microbiol. 57: 1581–1589.

    Google Scholar 

  99. Saiz, B.L. and L.L. Barton. 1992. Transformation of Pb II to lead colloid byMoraxella bovis. Amer. Soc. Micro. Meet. Abst. 347.

  100. Salanitro, J.P. 1993. The role of bioattenuation in the management of aromatic hydrocarbon plumes in aquifers. Ground Wat. Monitor. Remed. 13: 150–161.

    Google Scholar 

  101. Schwille, F. 1976. Anthropogenically reduced groundwaters. Hydrol. Sci. Bull. 21: 629–645.

    Google Scholar 

  102. Sheppard, S. C., M.I. Sheppard and W.G. Evenden. 1990. A novel method used to examine variation in Tc sorption among 34 soils, aerated and anoxic. J. Environ. Radioactivity 11: 215–233.

    Google Scholar 

  103. Silver, S. 1991. Resistance systems and detoxification of toxic heavy metals. In: Proceedings of the Eighth International Biodeterioration and Biodegradation Symposium (Rossmore, H., ed.), pp. 308–339, Elsevier, London.

    Google Scholar 

  104. Sorg, T.J. 1990. Removal of uranium from drinking water by conventional treatment methods. In: Radon, Radium and Uranium in Drinking Water (Cothern, C.R. and P.A. Rebers, eds), pp. 173–191, Lewis Publishers, Chelsea, Michigan.

    Google Scholar 

  105. Steinberg, N.A. and R.S. Oremland. 1990. Dissimilatory selenate reduction potentials in a diversity of sediment types. Appl. Environ. Microbiol. 56: 3550–3557.

    Google Scholar 

  106. Steinberg, N. A., J.S. Blum, L. Hochstein and R.S. Oremland. 1992. Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria. Appl. Environ. Microbiol. 58: 426–428.

    Google Scholar 

  107. Summers, A.O. and T. Barkay. 1989. Metal resistance genes in the environment. In: Gene Transfer in the Environment (Levy, S. and R. Miller, eds), pp. 287–308, McGraw-Hill, New York.

    Google Scholar 

  108. Suzuki, T., K. Furukawa and K. Tonomura. 1968. Studies on the removal of inorganic mercurial compounds in waste by the cellreused method of mercury-resistant bacterium. J. Ferment. Technol. 46: 1048–1055.

    Google Scholar 

  109. Thomas, J.M. and C.H. Ward. 1989. In situ biorestoration of organic contaminants in the subsurface. Environ. Sci. Technol. 23: 760–766.

    Google Scholar 

  110. Trabalka, J.R. and C.T. Garten. 1983. Behavior of the long-lived synthetic elements and their natural analogs in food chains. Adv. Radiat. Biol. 10: 39–104.

    Google Scholar 

  111. Wang, P., T. Mori, K. Komori, M. Sasatsu, K. Toda and H. Ohtake. 1989. Isolation and characterization of anEnterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665–1669.

    Google Scholar 

  112. Wang, P., T. Mori, K. Toda and H. Ohtake. 1990. Membrane-associated chromate reductase activity fromEnterobacter cloacae. J. Bacteriol. 172: 1670–1672.

    PubMed  Google Scholar 

  113. Welch, A.H. and L.C.S. Gundersen. 1990. Distribution and sources of uranium in the Carson river basin, Western Nevada and Eastern California, USA. Eos, Transc. Amer. Geophys. Union 71: 1305.

    Google Scholar 

  114. Wilson, B.H., G.B. Smith and J.F. Rees. 1986. Biotransformations of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study. Environ. Sci. Technol. 20: 997–1002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovley, D.R. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology 14, 85–93 (1995). https://doi.org/10.1007/BF01569889

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569889

Key words

Navigation