Skip to main content
Log in

Bacterial reduction of hexavalent chromium

  • Published:
Journal of Industrial Microbiology

Summary

Cr(VI)-reducing bacteria are widespread and Cr(VI) reduction occurs under both aerobic and anaerobic conditions. Under aerobic conditions, both NADH and endogenous cell reserves may serve as the electron donor for Cr(VI) reduction. Under anaerobic conditions, electron transport systems containing cytochromes appear to be involved in Cr(VI) reduction. High cell densities are necessary to obtain a significant rate of Cr(VI) reduction. Cr(VI) reduction by bacteria may be inhibited by Cr(VI), oxygen, heavy metals, and phenolic compounds. The optimum pH and temperature observed for Cr(VI) reduction generally coincide with the optimal growth conditions of cells. The optimum redox potential for Cr(VI) reduction has not yet been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bopp, L.H. and H.L. Ehrlich. 1988. Chromate resistance and reduction inPseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426–431.

    Google Scholar 

  2. Cervantes, C. and S. Silver. 1992. Plasmid chromate resistance and chromate reduction. Plasmid 27: 65–71.

    PubMed  Google Scholar 

  3. Enterline, P.E. 1974. Respiratory cancer among chromate workers. J. Occup. Med. 16: 523–526.

    PubMed  Google Scholar 

  4. Gvozdyak, P.I., N.F. Mogilevich, A.F. Rylskii and N.I. Grishchenko. 1986. Reduction of hexavalent chromium by collection strains of bacteria. Mikrobiologiya 55: 962–965.

    Google Scholar 

  5. Horitsu, H., S. Futo, Y. Miyazawa, S. Ogai and K. Kawai. 1987. Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerantPseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417–2420.

    Google Scholar 

  6. Ingledew, W.J. and R.K. Poole. 1984. The respiratory chains ofEscherichia coli. Microbiol. Rev. 24: 1143–1150.

    Google Scholar 

  7. Ishibashi, Y., M. Beck, C. Cervantes and S. Silver. 1989. Chromium reduction inPseudomonas putida. Abst. 89th Annu. Meeting, Am. Soc. Microbiol. 89: 361.

    Google Scholar 

  8. Ishibashi, Y., C. Cervantes and S. Silver. 1990. Chromium reduction inPseudomonas putida. Appl. Environ. Microbiol. 56: 2268–2270.

    PubMed  Google Scholar 

  9. Komori, K., A. Rivas, K. Toda and H. Ohtake. 1989. Biological removal of toxic chromium using anEnterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol. Bioeng. 35: 951–954.

    Google Scholar 

  10. Komori, K., P.C. Wang, K. Toda and H. Ohtake. 1989. Factors affecting chromate reduction inEnterobacter cloacae strain HO1. Appl. Microbiol. Biotechnol. 31: 567–570.

    Google Scholar 

  11. Kvasnikov, E.I., T.M. Klyushnikova, T.P. Kasatkina, V.V. Stepanyuk and S.L. Kuberskaya. 1988. Chromium-reducing bacteria in nature and in industrial sewage. Mikrobiologiya 57: 680–685.

    Google Scholar 

  12. Kvasnikov, E.I., V.V. Stepanyuk, T.M. Klyushnikova, N.S. Serpokrylov, G.A. Simonova, T.P. Kasatkina and L.P. Panchenko. 1985. A new chromium-reducing, gram-variable bacterium with mixed type of flagellation. Mikrobiologiya 54: 83–88.

    Google Scholar 

  13. Lebedeva, E.V. and N.N. Lyalikova. 1979. Reduction of crocoite byPseudomonas chromatophila sp. nov. Mikrobiologiya 48: 517–522.

    Google Scholar 

  14. Lehninger, A.L. 1982. Principles of Biochemistry. 4th edn, pp. 467–505, Worth Publishers, New York.

    Google Scholar 

  15. Llovera, S., R. Bonet, M. Simon-Pujol and F. Congregado. 1993. Chromate reduction by resting cells ofAgrobacterium radiobacter EPS-916. Appl. Environ. Microbiol. 59: 3516–3518.

    Google Scholar 

  16. Lovley, D.R. 1993. Dissimilatory metal reduction. Ann. Rev. Microbiol. 47: 263–290.

    Google Scholar 

  17. Lovley, D.R. and E.J.P. Phillips. 1994. Reduction of chromate byDesulfovibrio vulgaris and itsc 3 cytochrome. Appl. Environ. Microbiol. 60: 726–728.

    Google Scholar 

  18. Ohtake, H., E. Fujii and T. Toda. 1990. Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain ofEnterobacter cloacae. Environ. Technol. 11: 663–668.

    Google Scholar 

  19. Ohtake, H., E. Fujii and T. Toda. 1990. A survey of effective electron donors for reduction of toxic hexavalent chromate byEnterobacter cloacae (strain HO1). J. Gen. Appl. Microbiol. 36: 203–208.

    Google Scholar 

  20. Patterson, J.W. 1985. Industrial Wastewater Treatment Technology. Butterworth Publishers, Stoneham, MA.

    Google Scholar 

  21. Roe, F.J.C. and R.L. Carter. 1969. Chromium carcinogenesis: calcium chromate as a potent carcinogen from the subcutaneous tissues of the rat. Brit. J. Cancer 23: 172–176.

    PubMed  Google Scholar 

  22. Romanenko, V.I. and V.N. Korenkov, 1977. A pure culture of bacteria utilizing chromates and dichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 46: 414–417.

    Google Scholar 

  23. Shen, H. and Y.T. Wang. 1993. Characterization of enzymatic reduction of hexavalent chromium byEscherichia coli ATCC 33456. Appl. Environ. Microbial. 59: 3771–3777.

    Google Scholar 

  24. Shen, H. and Y.T. Wang. 1994. Modeling hexavalent chromium reduction inEscherichia coli 33456. Biotechnol. Bioeng. 43: 293–300.

    Google Scholar 

  25. Shen, H. and Y.T. Wang. 1994. Biological reduction of chromium byE. coli. J. Environ. Eng. 120: 560–572.

    Google Scholar 

  26. Shen, H. and Y.T. Wang. Hexavalent chromium removal in a two-stage bioreactor system. J. Environ. Eng. (accepted for publication).

  27. Suzuki, T., N. Miyata, H. Horitsu, K. Kawai, K. Takamizawa, Y. Tai and M. Okazaki. 1992. NAD(P)H-dependent chromium(VI) reductase ofPseudomonas ambigua G-1: a Cr(VI) intermediate is formed during the reduction of Cr(VI) to Cr(III). J. Bacteriol. 174: 5340–5345.

    PubMed  Google Scholar 

  28. Towhill, L.E., C.R. Shriner, J.S. Drury, A.S. Hammons and J.W. Holleman. 1978. Reviews of the environmental effects of pollutants. III. Chromium. EPA 600/1-78-023, US EPA, Washington, DC.

    Google Scholar 

  29. Wang, P.C., T. Mori, K. Komori, M. Sasatsu, K. Toda and H. Ohtake. 1989. Isolation and characterization of anEnterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665–1669.

    Google Scholar 

  30. Wang, P.C., K. Toda, H. Ohtake, I. Kusaka and I Yabe. 1991. Membrane-bound respiratory system ofEnterobacter cloacae strain HO1 grown anaerobically with chromate. FEMS Microbiol. Lett. 78: 11–16.

    Google Scholar 

  31. Wang, Y.T. and C. Xiao. Effect of environmental factors on biological reduction of chromium. Submitted to publication in Water Res.

  32. Wang, Y.T. and H. Shen. 1993. Biological reduction of chromium with simultaneous degradation of aromatic pollutants. Proceedings of the Water Environment Federation 66th Annual Conference and Exposition. 1: 385–394. Anaheim, CA, Oct. 3–7, 1993.

  33. Yamamoto, K., J. Kato, T. Yano and H. Ohtake. 1993. Kinetics and modeling of hexavalent chromium inEnterobacter cloacae. Biotechnol. Bioeng. 41: 129–133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YT., Shen, H. Bacterial reduction of hexavalent chromium. Journal of Industrial Microbiology 14, 159–163 (1995). https://doi.org/10.1007/BF01569898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569898

Key words

Navigation