Skip to main content

Redox Homeostasis in Plants Under Arsenic Stress

  • Chapter
  • First Online:
Redox Homeostasis in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Cellular and intracellular redox balance is a key factor for smooth functioning of enzymes and protein involved in essential metabolic pathways. Metalloid arsenic (As) is toxic to almost all forms of life and is a serious environmental concern due to its wide natural and anthropogenic contamination around the world. Arsenic severely impacts growth of plants and yield of crops grown in As-contaminated soils. Additionally, it gets accumulated in cereal grains, leading to contamination of food, and also hampers the nutrient (essential amino acids and minerals) accumulation grains. Redox imbalance and oxidative stress has been shown to be major cause of As toxicity. Some studies have reported that As also initiates nitrosative stress by inducing reactive nitrogen species. Therefore, understanding the mechanism of redox homeostasis in plants under As stress is important to develop tolerant plants. In the current chapter, the response of known pathways and molecules involved in maintaining cellular redox balance in plant has been discussed in relation to As stress tolerance. Furthermore, the recent studies showing the role of various plant growth regulators (signaling molecules) and glutaredoxins in As stress tolerance has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali B, Qian P, Jin R, Ali S, Khan M, Aziz R, Tian T, Zhou WJ (2014) Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol Plant 58:131–138

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Anawar HM, Akai J, Mostofa KM, Safiullah S, Tareq SM (2002) Arsenic poisoning in ground water: health risk and geochemical sources in Bangladesh. Environ. Intl. 27:597–604

    Article  CAS  Google Scholar 

  • Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants. Physiol Planta 85:235–241

    Article  CAS  Google Scholar 

  • Asada K (1999) The water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Asher CJ, Reay PF (1979) Arsenic uptake by barley seedlings. Aust J Plant Physiol 6:459–466

    CAS  Google Scholar 

  • Bag MK, Adhikari B, Dwivedi S, Tripathi RD (2014). Consequences of arsenate exposure on important yield-associated traits of rice (Oryza sativa L.) J Plant Sci Res 1(2):109

    Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66(2):250–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W (2001) Arsenic contamination of ground water and drinking water in Vietnam: a human health threat. Environ Sci Technol 35:2621–2626

    Article  CAS  PubMed  Google Scholar 

  • Bianucci E, Furlan A, Tordable MDC, Hernandez LE, Carpena-Ruiz RO, Castro S (2017) Antioxidant responses of peanut roots exposed to realistic groundwater doses of arsenate: identification of glutathione S-transferase as a suitable biomarker for metalloid toxicity. Chemosphere 181:551–561

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As (OH)3 and Sb(OH)3 across membranes. BMC Plant Biol 6:26

    Article  CAS  Google Scholar 

  • Cai Y, Su J, Ma LQ (2004) Low molecular weight thiols in arsenic hyperaccumulatorPteris vittata upon exposure to arsenic and other trace elements. Environ Pollut 129:69–78

    Article  CAS  PubMed  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaki M, Fernández-Ocaña AM, Valderrama R, Carreras A, Esteban FJ, Luque F, Gómez-Rodríguez MV, Begara-Morales JC, Corpas FJ, Barroso JB (2009) Involvement of reactive nitrogen and oxygen species (RNS and ROS) insunflower mildew interaction. Plant Cell Physiol 50:265–279

    Article  CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, Pedradas JR, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) Mechanical wounding induces a nitrosative stress by downregulation of GSNO reductase and a rise of Snitrosothiolsin sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Arsenic calamity in the Indian sub-continent-what lesions have been learned? Talanta 58:3–22

    Article  CAS  PubMed  Google Scholar 

  • Chandrakar V, Dubey A, Keshavkant S (2016) Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J Soil Sci Plant Nutri 16(3):662–676

    CAS  Google Scholar 

  • Chen Y, Sun SK, Tang Z, Liu G, Moore KL, Maathuis FJM, Miller AJ, McGrath SP, Zhao FJ (2017) The nodulin 26-like intrinsic membrane protein OsNIP3;1 is involved in arsenite uptake by lateral roots in rice. J Exp Bot 68(11):3007–3016

    Article  CAS  PubMed  Google Scholar 

  • Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD (2006) AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J Biol Chem 281:26280–26288

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, delRío LA, Barroso JB (2007) Need of biomarkers of nitrosative stressin plants. Trends Plant Sci 12:436–438

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Chaki M, Leterrier M, Barroso JB (2009) Protein tyrosine nitration: a new challenge in plants. Plant Signal Behav 4:920–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response inplants under abiotic stress. Plant Sci 181:604–611

    Article  CAS  PubMed  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89(4):713–764

    Article  CAS  Google Scholar 

  • Cuypers A, Smeets K, Vangronsveld J (2009) Heavy metal stress in plants. In: Hirt H (ed) Plant stress biology: from genomics to systems biology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 161–178

    Chapter  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    Article  CAS  PubMed  Google Scholar 

  • da-Silva CJ, Canatto RA, Cardoso AA, Ribeiro C, Oliveira JA (2017) Arsenic-hyperaccumulation and antioxidant system in the aquatic macrophyte Spirodela intermedia W. Koch (Lemnaceae). Theo Exp Plant Physiol 29:203–213

    Google Scholar 

  • del Amor FM, Cuadra-Crespo P (2011) Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition. Plant Growth Regul 63:55–62

    Article  CAS  Google Scholar 

  • DiTusa SF, Fontenot EB, Wallace RW, Silvers MA, Steele TN, Elnagar AH, Dearman KM, Smith AP (2016) A member of the phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209:762–772

    Article  CAS  PubMed  Google Scholar 

  • Douglas KT (1987) Mechanism of action of glutathione-dependent enzymes. In: Meister A (ed) Advances in Enzymology. Wiley, New York, pp 103–167

    Google Scholar 

  • Dwivedi S, Tripathi RD, Tripathi P, Kumar A, Dave R, Mishra S, Singh R, Sharma D, Rai UN, Chakrabartya D, Trivedi PK, Adhikari B, Bag MK, Dhankher OP, Tuli R (2010) Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environ Sci Technol 44:9542–9549

    Article  CAS  PubMed  Google Scholar 

  • Farnese FS, Oliveira JA, Paiva EAS, Menezes-Silva PE, da Silva AA, Campos FV, Ribeiro C (2017) The involvement of nitric oxide in integration of plant physiological and ultrastructural adjustments in response to arsenic. Front Plant Sci 8:516

    PubMed  PubMed Central  Google Scholar 

  • Farooq MA, Islam F, Yang C, Nawaz A, Athar HR, Gill RA, Ali B, Song W, Zhou W (2018) Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate-glutathione cycle in oilseed rape roots. Plant Growth Regul 84:135–148

    Article  CAS  Google Scholar 

  • Fontenot EB, Ditusa SF, Kato N, Olivier DM, Dale R, Lin WY, Chiou TJ, Macnaughtan MA, Smith AP (2015) Increased phosphate transport of Arabidopsis thaliana Pht1; 1 by site-directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions. Plant, Cell Environ 38:2012–2022

    Article  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  CAS  PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001a) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant, Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W, Schat H, Meharg AA (2001b) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess JL (1994) Free radical scavenging. In: Alscher RG, Wellburn AR (eds) Plant responses to the gaseous environment. Chapman and Hall, London, pp 165–180

    Google Scholar 

  • Holmgren A, Johansson C, Berndt C, Lonn ME, Hudemann C, Lillig CH (2005). Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 33:1375–1377

    Google Scholar 

  • Isayenkov SV, Maathuis FJ (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7; 1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Jin J-W, Xu Y-F, Huang Y-F (2010) Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves. African J Biotechnol 9(11):1619–1627

    Article  CAS  Google Scholar 

  • Kamiya T, Fujiwara T (2009) Arabidopsis NIP1; 1 transports antimonite and determines antimonite sensitivity. Plant Cell Physiol 50:1977–1981

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Islam MR, Duan GL, Uraguchi S, Fujiwara T (2013) Phosphated efficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in as accumulation in shoots of rice. Soil Sci Plant Nutr 59:580–590

    Article  CAS  Google Scholar 

  • Katsuhara M, Sasano S, Horie T, Matsumoto T, Rhee J, Shibasaka M (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogenperoxide and arsenite. Plant Biotechnol. 31:213–219

    Article  CAS  Google Scholar 

  • Keramat B, Kalantari KM, Arvin MJ (2010) Effects of methyl jasmonate treatment on alleviation of cadmium damages in soybean. J Plant Nutr 33:1016–1025

    Article  CAS  Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant, Cell Environ 36:1838–1849

    Article  CAS  Google Scholar 

  • Kumari A, Pandey N, Pandey-Rai S (2018) Exogenous salicylic acid-mediated modulation of arsenic stress tolerance with enhanced accumulation of secondary metabolites and improved size of glandular trichomes in Artemisia annua L. Protoplasma 255:139–152

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163:1–9

    Article  CAS  PubMed  Google Scholar 

  • Leterrier M, Airaki M, Palma JM, Chaki M, Barroso JB, Corpas FJ (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO)metabolism in Arabidopsis. Environ Pollut 166:136–143

    Article  CAS  PubMed  Google Scholar 

  • Lindsay ER, Maathuis FJM (2017) New molecular mechanisms to reduce arsenic in crops. Trends Plant Sci 22(12):1016–1026

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu X-Y, Su Y-H, McGrath SP, Zhao F-J (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • Marmiroli M, Mussi F, Imperiale D, Lencioni G, Marmiroli N (2017) Abiotic stress response to As andAsCSi, composite reprogrammingof fruit metabolites in tomatocultivars. Front Plant Sci 8:2201

    Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere: a review. Sci Total Environ 249(1–3):297–312

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy fields oils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    Article  CAS  PubMed  Google Scholar 

  • Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the naturalsubstrate for plant peroxidases. FEBSLett. 378:203–206

    Article  CAS  Google Scholar 

  • Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457

    Article  CAS  PubMed  Google Scholar 

  • Mika A, Lüthje S (2003) Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol 132(3):1489–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant system complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86:205–215

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Dwivedi S, Tripathi RD (2013a) Investigation of biochemical responses of Bacopa monnieri L. upon exposure to arsenate. Environ Toxicol 28(8):419–430

    Google Scholar 

  • Mishra S, Wellenreuther G, Mattusch J, Stärk H-J, Küpper H (2013b) Speciation and distribution of arsenic in thenon-hyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiol 163:1396–1408

    Google Scholar 

  • Mishra S, Stärkb HJ, Küpper H (2014). A different sequence of events than previously reported leads to arsenic-induced damage in Ceratophyllum demersum L. Metallomics 6: 444–454

    Google Scholar 

  • Mishra S, Alfeld M, Sobotka R, Andresen E, Falkenberg G, Küpper H (2016a) Analysis of sub-lethal arsenic toxicity to Ceratophyllum demersum: sub-cellular distribution of arsenic and inhibition of chlorophyll biosynthesis. J Exp Bot 67(15):4639–4646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Dwivedi S, Kumar A, Chauhan R, Awasthi S, Mattusch J, Tripathi RD (2016b) Current status of ground water arsenic contamination in India and recent advancements in removal techniques from drinking water. Int J Plant Environ 2(1–2):1–15

    Google Scholar 

  • Mishra S, Mattusch J, Wennrich R (2017) Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Sci Rep 7:40522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Moons A (2003) Osgstu3 and Osgstu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett 553:427–432

    Article  CAS  PubMed  Google Scholar 

  • Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Rad Biol Med 25(4/5):576–585

    Article  CAS  PubMed  Google Scholar 

  • Namdjoyan S, Kermanian H (2013) Exogenous nitric oxide (as sodium nitroprusside) ameliorates arsenic-induced oxidative stress in watercress (Nasturtium officinale R. Br.) plants. Sci Hortic 161:350–356

    Article  CAS  Google Scholar 

  • Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49(321):623–647

    CAS  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 29(6):2143–2144

    Article  Google Scholar 

  • Odjegba VJ (2012) Exogenous salicylic acid alleviates arsenic toxicity in Arabidopsis thaliana. Indian J Innov Dev 1(7):515–522

    Google Scholar 

  • Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyper accumulating fern. Environ Sci Technol 40:5010–5014

    Article  CAS  PubMed  Google Scholar 

  • Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Mill sp. seedlings under copper stress. Am J Plant Sci 4:817–823

    Article  CAS  Google Scholar 

  • Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 58:209–220

    Article  CAS  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatincomplexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocationand transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Ferreira K, Meharg AA, Feldmann J (2007) Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus? J Exp Bot 58:1333–1338

    Article  CAS  PubMed  Google Scholar 

  • Raskin I (1992) Salicylate, a new plant hormone. Plant Physiol 99:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remy E, Cabrito TR, Batista RA, Teixeira MC, Sa-Correia I, Duque P (2012) The Pht1; 9 and Pht1; 8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371

    Article  CAS  PubMed  Google Scholar 

  • Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot JP (2004) CMLS cell Mol. Life Sci 61:1266–1277

    Article  CAS  Google Scholar 

  • Rouhier N, Couturier J, Jacquot JP (2006) Genome-wide analysis of plant glutaredoxin systems. J Exp Bot 57:1685–1696

    Article  CAS  PubMed  Google Scholar 

  • Ryu H, Cho YG (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155

    Article  CAS  Google Scholar 

  • Saidi I, Yousfi N, Borgi MA (2017) Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. J Plant Nutri 40(16):2326–2335

    Article  CAS  Google Scholar 

  • Schlebusch CM, Gattepaille LM, Engstrom K, Vahter M, Jakobsson M, Broberg K (2015) Human adaptation to arsenic-rich environments. Mol Biol Evol 32(6):1544–1555

    Article  CAS  PubMed  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Google Scholar 

  • Shin H, Shin HS, Gary R, Harrison MJ (2004) Phosphate transportin Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low-and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K, Nakajima A, Rajshekar K, Dixon RA, Lamb C (1997) Salicylic acidpotentiates an agonist-dependent gain control that amplifies pathogen signalin the activation of defence mechanism. Plant Cell 9:261–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots ofOryza sativa (rice). Nitric Oxide 20:289–297

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Dixit D, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V, Dhankher OP, Tripathi RD (2016) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272

    Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S, Singh PK, Dwivedi S, Trivedi PK, Pandey V, Dhankher OP, Norton GJ, Chakrabarty D, Tripathi RD (2017) A protective role for nitric oxide and silicic acid for arsenite phytotoxicity in rice (O. sativa L.). Plant Physiol Biochem 115:163–173

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192

    Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936

    Article  CAS  PubMed  Google Scholar 

  • Sundaram S, Rathinasabapathi B, Ma LQ., Rosen BP (2008) An arsenate-activated glutaredoxin from the arsenic hyper accumulator fern Pteris vittata L. regulates intracellular arsenite. J Biol Chem 283(10):6095–6101

    Google Scholar 

  • Talukdar D (2013) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19(1):69–79

    Google Scholar 

  • Talukdar T, Talukdar D (2013) Response of antioxidative enzymes to arsenic-induced phytotoxicity in leaves of a medicinal daisy, Wedelia chinensis Merrill. J Nat Sci Biol Med 4(2):383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Fernández-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez MV, Colmenero-Varea P, del Río LA, Barroso JB (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    Article  CAS  PubMed  Google Scholar 

  • Verma PK, Verma S, Meher AK, Pande V, Mallick S, Bansiwal AK, Tripathi RD, Dhankher OP, Chakrabarty D (2016a) Overexpression of rice glutaredoxins (OsGrxs) significantly reducesarsenite accumulation by maintaining glutathione pool andmodulating aquaporins in yeast. Plant Physiol Biochem 106:208–217

    Article  CAS  PubMed  Google Scholar 

  • Verma PK, Verma S, Pande V, Mallick S, Tripathi RD, Dhankher OP, Chakrabarty D (2016b) Overexpression of rice glutaredoxinOsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front Plant Sci 7:740

    Google Scholar 

  • Wojas S, Clemens S, Skłodowska A, Antosiewicz DA (2010) Arsenic responseof AtPCS1- and CePCS-expressing plants—effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    Article  CAS  PubMed  Google Scholar 

  • Wu ZC, Ren HY, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing S, Rosso MG, Zachgo S (2005) Development (Camb.) 132:1555–1565

    Article  CAS  Google Scholar 

  • Xu W, Dai1 W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M (2015) Arabidopsis NIP3;1 plays an important role inarsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mole Plant 8:722–733

    Google Scholar 

  • Yalpani N, Enyedi AJ, Leon J, Raskin I (1994) Ultravioletlight and ozone stimulate accumulation of salicylic acidand pathogenesis-related proteins and virus resistance intobacco. Planta 193:373–376

    Article  Google Scholar 

  • Yan Z, Chen J, Li X (2013) Methyl jasmonates modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol Environ Saf 98:203–209

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulatorPteris vittata. New Phytol 159:403–410

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zutshi S, Bano F, Ningthoujam M, Habib K, Fatma T (2014) Metabolic adaptations to arsenic-induced oxidative stress in Hapalosiphon fontinalis-339. Int J Innov Res Sci Eng Technol 3(2):9386–9394

    Google Scholar 

Download references

Acknowledgement

Seema Mishra and Rudra Deo Tripathi are grateful to CSIR for the award of Scientist Pool and Emeritus Scientist scheme, respectively. SM is also grateful to Department of Science and Technology, New Delhi (DST-SERB) for financial support under Fast Track Scheme (SB/YS/LS-381/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seema Mishra or Rudra Deo Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, S., Dwivedi, S., Mallick, S., Tripathi, R.D. (2019). Redox Homeostasis in Plants Under Arsenic Stress. In: Panda, S., Yamamoto, Y. (eds) Redox Homeostasis in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-95315-1_9

Download citation

Publish with us

Policies and ethics