Skip to main content

Abstract

Biochar is a carbon (C) enriched by-product of bioenergy production obtained during pyrolysis (heating under limited supply of oxygen) of plant-derived feedstock including organic matter (OM). Biochar is defined as ‘charcoal for application to soils.’ It may be enriched in polycondensed aromatic C forms which enhance soil organic carbon (SOC) sequestration after soil application. For SOC sequestration to occur, all of the SOC sequestered must originate from the atmospheric CO2 pool and be transferred into the soil humus through land unit plants, plant residues, and other organic solids. Biochar can also be described as an anthropogenically produced black carbon (BC) material. BC also known as pyrogenic organic carbon (PyOC), fire -derived organic matter or wildfire charcoal , constitutes certain ranges in the combustion continuum ranging from slightly charred plant material to highly condensed soot. Application of biochar to soil has recently received increased attention as a means to sequester C and to produce secondary agronomic benefits. In particular, it is thought that application of charcoal together with organic wastes, dung, and bones is the cause of high SOC concentrations and sustained soil fertility by ancient agricultural management practices that created terra preta de Índio, deep black soils in the Brazilian Amazon. However, natural charcoal and biochar are not well suited as proxies for each other. Also, whether new terra preta can be generated by biochar application (together with organic wastes) to soils under other land uses, for different soil types and climates, is not known. In particular, the properties of organic materials (e.g., wood, manure , leaves) used as feedstock for biochar production and charring conditions (e.g., temperature, charring time) vary widely. Thus, the biological, chemical, and physical properties among biochars also vary widely. Biochar may be the most stable soil amendment with estimated mean residence times (MRTs) of several hundreds to thousands of years, and may increase nutrient availability beyond the fertilizer effect. Thus, applying biochar to the soil potentially improves soil productivity, SOC storage, and infiltration of percolating soil water in the long term through its porous structure and stability. However, interactions between soils and biochar are diverse and difficult to predict. For example, yield-stimulating effects of biochar are not universal, and may be restricted to the tropics as biochar increases yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. Relatively few studies provide a quantitative assessment of biochar soil management scenarios. Needed are, in particular, large-scale long-term field studies on different crops at diverse locations designed to test effects of application of different biochar types on SOC sequestration and secondary agronomic benefits. Similarly, a routine standard method to quantify soil biochar C is essential but not yet available. This chapter begins with a comparison of biological, chemical, and physical properties of charred OM relevant to agricultural application. This is followed by a discussion about effects of application of charred OM on SOC sequestration. The chapter concludes with an overview of research gaps that need to be addressed to realize the full potential of biochar for SOC sequestration in agricultural soils. In this chapter, BC, char, charcoal , and PyOC are used interchangeably, whereas the term biochar will be used when anthropogenically charred biomass is purposefully applied to soil for agricultural and environmental benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiven S, Schmidt MWI, Lehmann J (2014) Biochar by design. Nat Geosci 7:326–327

    Article  CAS  Google Scholar 

  • Agblevor FA, Beiss S, Kim SS, Tarrant R, Mante NO (2010) Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Manage 30:298–307

    Article  CAS  Google Scholar 

  • Agegnehu G, Srivastava AK, Bird MI (2017) The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl Soil Ecol 119:156–170

    Article  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  PubMed  CAS  Google Scholar 

  • Almendros G, Knicker H, González-Vila FJ (2003) Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy. Org Geochem 34:1559–1568

    Article  CAS  Google Scholar 

  • Amonette JE, Joseph S (2009) Characteristics of biochar: microchemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, U.K., pp 33–52

    Google Scholar 

  • Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640

    Article  CAS  Google Scholar 

  • Ascough PL, Bird MI, Brock F, Higham TFG, Meredith W, Snape CE, Vane CH (2009) Hydropyrolysis as a new tool for radiocarbon pre-treatment and the quantification of black carbon. Quat Geochronol 4:140–147

    Article  Google Scholar 

  • Awad YM, Wang J, Igalavithana AD et al (2018) Biochar effects on rice paddy: meta-analysis. Adv Agron. https://doi.org/10.1016/bs.agron.2017.11.005

    Article  Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33:1093–1109

    Article  CAS  Google Scholar 

  • Baveye PC, Berthelin J, Tessier D, Lemaire G (2018) The “4 per 1000” initiative: a credibility issue for the soil science community? Geoderma 309:118–123

    Article  Google Scholar 

  • Bird MI, Moyo C, Veenendaal EM, Lloyd J, Frost P (1999) Stability of elemental carbon in a savanna soil. Global Biogeochem Cycles 13:923–932

    Article  CAS  Google Scholar 

  • Blackwell P, Riethmuller G, Collins M (2009) Biochar application to soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, U.K., pp 207–226

    Google Scholar 

  • Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81:687–711. https://doi.org/10.2136/sssaj2017.01.0017

    Article  CAS  Google Scholar 

  • Bornemann L, Welp G, Brodowski S, Rodionov A, Amelung W (2008) Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy. Org Geochem 39:1537–1544

    Article  CAS  Google Scholar 

  • Bossuyt H, Six J, Hendrix PF (2005) Protection of soil carbon by microaggregates within earthworm casts. Soil Biol Biochem 37:251–258

    Article  CAS  Google Scholar 

  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sus Energ 28:386–396

    Article  CAS  Google Scholar 

  • Bridle TR, Pritchard D (2004) Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci Technol 50:169–175

    Article  PubMed  CAS  Google Scholar 

  • Brodowski S, Amelung W, Haumaier L, Zech W (2007) Black carbon contribution to stable humus in German arable soils. Geoderma 139:220–228

    Article  CAS  Google Scholar 

  • Brodowski S, John B, Flessa H, Amelung W (2006) Aggregate-occluded black carbon in soil. Eur J Soil Sci 57:539–546

    Article  Google Scholar 

  • Brodowski S, Rodionov A, Haumaier L, Glaser G, Amelung W (2005) Revised black carbon assessment using benzene polycarboxylic acids. Org Geochem 36:1299–1310

    Article  CAS  Google Scholar 

  • Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem 37:321–333

    Article  CAS  Google Scholar 

  • Bruun S, Jensen ES, Jensen LS (2008) Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration. Org Geochem 39:839–845

    Article  CAS  Google Scholar 

  • Busscher WJ, Novak JM, Evans DE, Watts DW, Niandou MAS, Ahmedna M (2010) Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci 175:10–14

    Article  CAS  Google Scholar 

  • Cayuela ML, Jeffery S, van Zwieten L (2015) The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agric Ecosyst Environ 202:135–138

    Article  CAS  Google Scholar 

  • Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16

    Article  CAS  Google Scholar 

  • Cetin E, Moghtaderi B, Gupta R, Wall TF (2004) Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83:2139–2150

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Austr J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, U.K., pp 67–84

    Google Scholar 

  • Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143

    Article  PubMed  CAS  Google Scholar 

  • Cheng C-H, Lehmann J (2009) Ageing of black carbon along a temperature gradient. Chemosphere 75:1021–1027

    Article  PubMed  CAS  Google Scholar 

  • Cheng C-H, Lehmann J, Engelhard MH (2008a) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Ac 72:1598–1610

    Article  CAS  Google Scholar 

  • Cheng C-H, Lehmann J, Thies JE, Burton SD (2008b) Stability of black carbon in soils across a climatic gradient. J Geophys Res 113:G02027. https://doi.org/10.1029/2007JG000642

    Article  CAS  Google Scholar 

  • Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488

    Article  CAS  Google Scholar 

  • Clough TJ, Bertram JE, Ray JL, Condron LM, O’Callaghan M, Sherlock RR, Wells NS (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Soc Am J 74:852–860

    Article  CAS  Google Scholar 

  • Crane-Droesch A, Abiven S, Jeffery S, Torn MS (2013) Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environ Res Lett 8:044049. https://doi.org/10.1088/1748-9326/8/4/044049

    Article  Google Scholar 

  • Cui X, Wang H, Lou L, Chen X, Yu Y, Shi J, Xu L, Khan MI (2009) Sorption and genotoxicity of sediment-associated pentachlorophenol and pyrene influenced by crop residue ash. J Soils Sediments 9:604–612

    Article  CAS  Google Scholar 

  • Currie LA, Benner BA, Kessler JD, Klinedinst DB, Klouda GA, Marolf JV, Slater JF, Wise SA, Cachier H, Cary R, Chow JC, Watson J, Druffel ERM, Masiello CA, Eglinton TI, Pearson A, Reddy CM, Gustafsson O, Hartmann PC, Quinn JG, Hedges JI, Prentice KM, Kirchstetter TW, Novakov T, Puxbaum H, Schmid H (2002) A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a. J Res Natl Inst Stand Technol 107:279–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Global Biogeochem Cycles 21, GB3005. https://doi.org/10.1029/2006gb002798

    Article  CAS  Google Scholar 

  • De la Rosa JM, Knicker H, López-Capél E, Manning DAC, González-Pérez JA, González-Vila FJ (2008) Direct detection of black carbon in soils by Py-GC/MS, carbon-13 NMR spectroscopy and thermogravimetric techniques. Soil Sci Soc Am J 72:258–267

    Article  CAS  Google Scholar 

  • De la Rosa JM, Rosado M, Paneque M, Miller AZ, Knicker H (2018) Effects of aging under field conditions on biochar structure and composition: implications for biochar stability in soils. Sci Tot Environ 613–614:969–976

    Article  CAS  Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, U.K., pp 13–32

    Google Scholar 

  • Dutta T, Kwon E, Bhattacharya SS et al (2017) Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review. GCB Bioenerg 9:990–1004. https://doi.org/10.1111/gcbb.12363

    Article  CAS  Google Scholar 

  • Fang X, Chua T, Schmidt-Rohr K, Thompson ML (2010) Quantitative 13C NMR of whole and fractionated Iowa Mollisols for assessment of organic matter composition. Geochim Cosmochim Ac 74:584–598

    Article  CAS  Google Scholar 

  • Fidel RB, Laird DA, Thompson ML, Lawrinenko M (2017) Characterization and quantification of biochar alkalinity. Chemosphere 167:367–373

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Perez M (2008) The formation of polyaromatic hydrocarbons and dioxins during pyrolysis. Washington State University Biological Systems Engineering Department, Washington State University Extension Energy Program

    Google Scholar 

  • Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Phil Trans R Soc B 362:187–196

    Article  PubMed  CAS  Google Scholar 

  • Glaser B, Knorr K-H (2008) Isotopic evidence for condensed aromatics from non-pyrogenic sources in soils—implications for current methods for quantifying soil black carbon. Rapid Commun Mass Sp 22:935–942

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Griscom BW, Adams J, Ellis PW, et al (2017) Natural climate solutions. Proc Natl Acad Sci USA Early Edition

    Google Scholar 

  • Guggenberger G, Rodionov A, Shibistova O, Grabe M, Kasansky OA, Fuchs H, Mikheyeva N, Zrazhevskaya G, Flessa H (2008) Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Glob Change Biol 14:1367–1381

    Article  Google Scholar 

  • Guo M, He Z, Uchimiya SM (2016) Introduction to biochar as an agricultural and environmental amendment. In: Guo M, He Z, Uchimiya SM (eds) Agricultural and environmental applications of biochar: advances and barriers. SSSA Special Publication 63, SSSA, Madison, WI, USA, pp 1–14. https://doi.org/10.2136/sssaspecpub63.2014.0034

    Google Scholar 

  • Hagemann N, Joseph S, Schmidt HP et al (2017) Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Commun 8:1089. https://doi.org/10.1038/s41467-017-01123-0

    Article  CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralization. Org Geochem 35:823–830

    Article  CAS  Google Scholar 

  • Hammes K, Abiven S (2013) Identification of black carbon in the earth system. In: Belcher CM (ed) Fire phenomena and the earth system: an interdisciplinary guide to fire science. Wiley, Hoboken, NJ, USA, pp 157–176

    Chapter  Google Scholar 

  • Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP, Nguyen TH, Louchouran P, Houel S, Gustafsson Ö, Elmquist M, Cornelissen G, Skjemstad JO, Masiello CA, Song J, Peng P’A, Mitra S, Dunn JC, Hatcher PG, Hockaday WC, Smith DM, Hartkopf-Fröder C, Böhmer A, Lüer B, Huebert BJ, Amelung W, Brodowski S, Huang L, Zhang W, Gschwend PM, Xana Flores-Cervantes D, Largeau C, Rouzaud J-N, Rumpel C, Guggenberger G, Kaiser K, Rodionov A, Gonzalez-Vila FJ, Gonzalez-Perez JA, de la Rosa JM, Manning DAC, López-Capél E, Ding L (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere Global Biogeochem Cycles 21, GB3016. https://doi.org/10.1029/2006gb002914

  • Hammes K, Torn MS, Lapenas AG, Schmidt MWI (2008) Centennial black carbon turnover in a Russian steppe soil. Biogeosciences 5:1339–1350

    Article  CAS  Google Scholar 

  • Hanke UM, Reddy CM, Braun ALL et al (2017) What on earth have we been burning? Deciphering sedimentary records of pyrogenic carbon. Environ Sci Technol 51:12972–12980. https://doi.org/10.1021/acs.est.7b03243

    Article  PubMed  CAS  Google Scholar 

  • Haumaier L (2010) Benzene polycarboxylic acids—a ubiquitous class of compounds in soils. J Plant Nutr Soil Sci in press

    Article  CAS  Google Scholar 

  • He Y, Zhou X, Jiang L et al (2017) Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. Glob Change Biol 9:743–755

    Article  CAS  Google Scholar 

  • Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958

    Article  CAS  Google Scholar 

  • Hernandez-Soriano MC, Kerré B, Goos P, Hardy B, Duffey J, Smolders E (2016) Long-term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal. GCB Bioenerg 8:371–381

    Article  CAS  Google Scholar 

  • Hilber I, Mayer P, Gouliarmou V et al (2017) Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons from (post-pyrolytically treated) biochars. Chemosphere 174:700–707

    Article  PubMed  CAS  Google Scholar 

  • Hileman B (2007) Arsenic in chicken production. Chem Eng News 85:34–35

    Article  Google Scholar 

  • Hilscher A, Heister K, Siewert C, Knicker H (2009) Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org Geochem 40:332–342

    Article  CAS  Google Scholar 

  • Hockaday WC, Grannas AM, Kim S, Hatcher PG (2006) Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org Geochem 37:501–510

    Article  CAS  Google Scholar 

  • Hockaday WC, Grannas AM, Kim S, Hatcher PG (2007) The transformation and mobility of charcoal in a fire-impacted watershed. Geochim Cosmochim Ac 71:3432–3445

    Article  CAS  Google Scholar 

  • Hofrichter M, Fakoussa RM (2001) Microbial degradation and modification of coal. In: Hofrichter M, Steinbüchel A (eds) Biopolymers-volume 1: lignin, humic substances and coal. Wiley-VCH, Weinheim, Germany, pp 393–429

    Google Scholar 

  • Janik LJ, Skjemstad JO, Sheperd KD, Spouncer LR (2007) The prediction of soil carbon fractions using mid-infrared-partial least square analysis. Aust J Soil Res 45:73–81

    Article  CAS  Google Scholar 

  • Jeffery S, Abalos D, Prodana M et al (2017) Biochar boosts tropical but not temperate crop yields. Environ Res Lett 12:053001

    Article  CAS  Google Scholar 

  • Jegajeevagan K, Mabilde L, Gebremikael MT, Ameloot N, De Neve S, Leinweber P, Sleutel S (2016) Artisanal and controlled pyrolysis-based biochars differ in biochemical composition, thermal recalcitrance, and biodegradability in soil. Biomass Bioenerg 84:1–11

    Article  CAS  Google Scholar 

  • Jin H, Lehmann J, Thies JE (2008) Soil microbial community response to amending maize soils with maize stover charcoal. In: Proceedings of the 2008 conference of international biochar initiative, 8–10 September 2008, Newcastle, UK

    Google Scholar 

  • Johnson JMF, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636

    Article  CAS  Google Scholar 

  • Joseph S, Peacocke C, Lehmann J, Munroe P (2009) Developing a biochar classification and test methods. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, U.K., pp 107–126

    Google Scholar 

  • Kammann C, Ippolito J, Hagemann N et al (2017) Biochar as tool to reduce the agricultural greenhouse-gas burden—knowns, unknowns and future research needs. J Environ Eng Landsc 25:114–139

    Article  Google Scholar 

  • Kane ES, Hockaday WC, Turetsky MR, Masiello CA, Valentine DW, Finney BP, Baldock JA (2010) Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: implications for organic matter dynamics. Biogeochemistry 100:39–56

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black barbon (biochar). Environ Sci Technol 44:1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Kleber M, Rößner J, Chenu C, Glaser B, Knicker H, Jahn R (2003) Prehistoric alteration of soil properties in a Central German Chernozemic soil: in search of pedologic indicators for prehistoric activity. Soil Sci 168:292–306

    CAS  Google Scholar 

  • Knicker H, Hilscher A, González-Vila FJ, Almendros G (2008) A new conceptual model for the structural properties of char produced during vegetation fires. Org Geochem 39:935–939

    Article  CAS  Google Scholar 

  • Koelmans AA, Jonker MTO, Cornelissen G, Bucheli TD, Van Noort PCM, Gustafsson Ö (2006) Black carbon: the reverse of its dark side. Chemosphere 63:265–277

    Article  CAS  Google Scholar 

  • Koutcheiko S, Monreal CM, Kodama H, McCracken T, Kotlyar L (2007) Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresource Technol 98:2459–2464

    Article  CAS  Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO, Smernik RJ (2009) Characteristics of biochar: organo-chemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, U.K., pp 53–65

    Google Scholar 

  • Krull E, Lehmann J, Skjemstad J, Baldock J, Spouncer L (2008) The global extent of black C in soils: is it everywhere? In: Schröder HG (ed) Grasslands: ecology, management and restoration. Nova Science Publishers, New York, pp 13–17

    Google Scholar 

  • Krull ES, Swanston CW, Skjemstad JO, McGowan JA (2006) Importance of charcoal in determining the age and chemistry of organic carbon in surface soils. J Geophys Res 111:G04001. https://doi.org/10.1029/2006JG000194

    Article  CAS  Google Scholar 

  • Kuhlbusch TAJ (1998) Black carbon and the carbon cycle. Science 280:1903–1904

    Article  CAS  Google Scholar 

  • Kuhlbusch TA, Crutzen PJ (1995) Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem Cycles 9:491–501

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Bogomolova I, Glaser B (2014) Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem 70:229–236

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

    Article  Google Scholar 

  • Laird DA, Chappell MA, Martens DA, Wershaw RL, Thompson M (2008) Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143:115–122

    Article  CAS  Google Scholar 

  • Landry JS, Matthews HD (2017) The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries. Glob Change Biol 23:3205–3218. https://doi.org/10.1111/gcb.13603

    Article  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J, Czimczik CI, Laird DA, Sohi S (2009) Stability of biochar in the soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, U.K., pp 183–205

    Google Scholar 

  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, U.K., pp 1–12

    Google Scholar 

  • Lehmann J, Liang B, Solomon D, Lerotic M, Luizão F, Kinyangi J, Schäfer T, Wirick S, Jacobsen C (2005) Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Global Biogeochem Cyc 19, GB1013. https://doi.org/10.1029/2004gb002435

  • Lehmann J, Skjemstad J, Sohi S, Carter J, Barson M, Falloon P, Coleman K, Woodbury P, Krull E (2008) Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geosci 1:832–835

    Article  CAS  Google Scholar 

  • Lehmann J, Sohi S (2008) Comment on “Fire-derived charcoal causes loss of forest humus”. Science 321:1295c

    Article  CAS  Google Scholar 

  • Leifeld J, Fenner S, Müller M (2007) Mobility of black carbon in drained peatland soils. Biogeosciences 4:425–432

    Article  CAS  Google Scholar 

  • Li Y, Hu S, Chen J et al (2017) Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J Soils Sediments. https://doi.org/10.1007/s11368-017-1906-y

    Article  Google Scholar 

  • Lian F, Xing B (2017) Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk. Environ Sci Technol 51:13517–13532. https://doi.org/10.1021/acs.est.7b02528

    Article  PubMed  CAS  Google Scholar 

  • Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizao FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Liu S, Zhang Y, Zong Y, Hu Z, Wu S, Zhou J, Jin Y, Zou (2016) Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenerg 8:392–406

    Article  CAS  Google Scholar 

  • Llorente M, Turrión MB, Glaser B (2018) Rapid and economical quantification of black carbon in soils using a modified benzene polycarboxylic acids (BPCA) method. Org Geochem 115:197–204

    Article  CAS  Google Scholar 

  • Loganathan VA, Feng Y, Sheng GD, Clement TP (2009) Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils. Soil Sci Soc Am J 73:967–974

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2014) Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J Plant Nutr Soil Sci 177:651–670

    Article  CAS  Google Scholar 

  • Luo Y, Zang H, Yu Z et al (2017) Priming effects in biochar enriched soils using a three-source partitioning approach: 14C labelling and 13C natural abundance. Soil Biol Biochem 106:28–35

    Article  CAS  Google Scholar 

  • Lutfalla S, Abiven S, Barré P et al (2017) Pyrogenic carbon lacks long-term persistence in temperate arable soils. Front Earth Sci 5:96. https://doi.org/10.3389/feart.2017.00096

    Article  Google Scholar 

  • Macías F, Arbestain MC (2010) Soil carbon sequestration in a changing global environment. Mitig Adapt Strateg Glob Change 15:511–529

    Article  Google Scholar 

  • Maestrini B, Nannipieri P, Abiven S (2015) A meta-analysis on pyrogenic organic matter induced priming effect. GCB Bioenergy 7:577–590. https://doi.org/10.1111/gcbb.12194

    Article  CAS  Google Scholar 

  • Magrini-Bair KA, Czernik S, Pilath HM, Evans RJ, Maness PC, Leventhal J (2009) Biomass derived, carbon sequestering, designed fertilizers. Ann Environ Sci 3:217–225

    CAS  Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied back carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366–1379

    Article  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010b) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil in press

    Article  CAS  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110

    Article  CAS  Google Scholar 

  • Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92:201–213

    Article  CAS  Google Scholar 

  • Mehmood K, Garcia EC, Schirrmann M et al (2017) Biochar research activities and their relation to development and environmental quality. A meta-analysis. Agron Sustain Dev 37:22. https://doi.org/10.1007/s13593-017-0430-1

    Article  Google Scholar 

  • Meyer S, Genesio L, Vogel I et al (2017) Biochar standardization and legislation harmonization. J Environ Eng Landsc 25:175–191

    Article  Google Scholar 

  • Mia S, Dijkstra FA, Singh B (2017) Long-term aging of biochar: a molecular understanding with agricultural and environmental implications. Adv Agron 141:1–50

    Article  Google Scholar 

  • Mitra S, Bianchi TS, McKee BA, Sutula M (2002) Black carbon from the Mississippi River: quantities, sources, and potential implications for the global carbon cycle. Environ Sci Technol 36:2296–2302

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Lal R (2014) The biochar dilemma. Soil Res 52:217–230

    Article  CAS  Google Scholar 

  • Murage EW, Voroney P, Beyaert RP (2007) Turnover of carbon in the free light fraction with and without charcoal as determined using the 13C natural abundance method. Geoderma 138:133–143

    Article  CAS  Google Scholar 

  • Muralidhara HS (1982) Conversion of tannery waste to useful products. Resour Conserv 8:43–59

    Article  CAS  Google Scholar 

  • Naisse C, Girardin C, Davasse B, Chabbi A, Rumpel C (2015) Effect of biochar addition on C mineralisation and soil organic matter priming in two subsoil horizons. J Soils Sediments 15:825–832. https://doi.org/10.1007/s11368-014-1002-5

    Article  CAS  Google Scholar 

  • Nelson PN, Baldock JA (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analysis. Biogeochemistry 72:1–34

    Article  CAS  Google Scholar 

  • Neves EG, Petersen JB, Bartone RN, Silva CAD (2003) Historical and socio-cultural origins of Amazonian Dark Earths. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian Dark Earths: origin, properties, management. Kluwer Academic Press, Dordrecht, The Netherlands, pp 29–50

    Google Scholar 

  • Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40:846–853

    Article  CAS  Google Scholar 

  • Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2008) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 89:295–308

    Article  CAS  Google Scholar 

  • Novak JM, Busscher WJ, Laird DA, Ahmedna M, Watts DW, Niandou MAS (2009a) Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci 174:105–112

    Article  CAS  Google Scholar 

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009b) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206

    CAS  Google Scholar 

  • Oguntunde PG, Abiodun BJ, Ajayi AE, van de Giesen N (2008) Effects of charcoal production on soil physical properties in Ghana. J Plant Nutr Soil Sci 171:591–596

    Article  CAS  Google Scholar 

  • Oguntunde PG, Fosu M, Ajayi AE, van de Giesen N (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fertil Soils 39:295–299

    Article  CAS  Google Scholar 

  • Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nature Geosci 2:692–695

    Article  CAS  Google Scholar 

  • Olson KR, Al-Kaisi MM, Lal R, Lowery B (2014) Experimental consideration, treatments, and methods in determining soil organic carbon sequestration rates. Soil Sci Soc Am J 78:348–360. https://doi.org/10.2136/sssaj2013.09.0412

    Article  CAS  Google Scholar 

  • Paetsch L, Mueller CW, Rumpel C et al (2017) A multi-technique approach to assess the fate of biochar in soil and to quantify its effect on soil organic matter composition. Org Geochem 112:177–186

    Article  CAS  Google Scholar 

  • Pignatello JJ, Mitch WA, Xu W (2017) Activity and reactivity of pyrogenic carbonaceous matter toward organic compounds. Environ Sci Technol 51:8893–8908. https://doi.org/10.1021/acs.est.7b01088

    Article  PubMed  CAS  Google Scholar 

  • Ponge JF, Topoliantz S, Ballof S, Rossi JP, Lavelle P, Betsch JM, Gaucher P (2006) Ingestion of charcoal by the Amazonian earthworm Pontoscolex corethrurus: a potential for tropical soil fertility. Soil Biol Biochem 38:2008–2009

    Article  CAS  Google Scholar 

  • Ponomarenko EV, Anderson DW (2001) Importance of charred organic matter in Black Chernozem soils of Saskatchewan. Can J Soil Sci 81:285–297

    Article  Google Scholar 

  • Preston CM, Schmidt MWI (2006) Black(pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397–420

    Article  CAS  Google Scholar 

  • Purevsuren B, Avida B, Gerelmaa T, Davaajava Y, Morgan TJ, Herod AA, Kandiyoti R (2004) The characterization of tar from the pyrolysis of animal bones. Fuel 83:799–805

    Article  CAS  Google Scholar 

  • Pyle LA, Hockaday WC, Boutton T et al (2015) Chemical and isotopic thresholds in charring: implications for the interpretation of charcoal mass and isotopic data. Environ Sci Technol 49:14057–14064. https://doi.org/10.1021/acs.est.5b03087

    Article  PubMed  CAS  Google Scholar 

  • Qi F, Kuppusamy S, Naidu R et al (2017) Pyrogenic carbon and its role in contaminant immobilization in soils. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2017.1328918

    Article  Google Scholar 

  • Qiu G, Guo M (2010) Quality of poultry litter-derived granular activated carbon. Bioresour Technol 101:379–386

    Article  PubMed  CAS  Google Scholar 

  • Raveendran K, Ganesh A, Khilart KC (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74:1812–1822

    Article  CAS  Google Scholar 

  • Reisser M, Purves RS, Schmidt MWI, Abiven S (2016) Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front Earth Sci 4:80. https://doi.org/10.3389/feart.2016.00080

    Article  Google Scholar 

  • Renner R (2007) Rethinking biochar. Environ Sci Technol 41:5932–5933

    Article  PubMed  CAS  Google Scholar 

  • Rodionov A, Amelung W, Haumaier L, Urusevskaja I, Zech W (2006) Black carbon in the zonal steppe soils of Russia. J Pant Nutr Soil Sci 169:363–369

    Article  CAS  Google Scholar 

  • Rodionov A, Amelung W, Peinemann N, Haumaier L, Zhang X, Kleber M, Glaser B, Urusevskaya I, Zech W (2010) Black carbon in grassland ecosystems of the world. Global Biogeochem Cyc 24, GB3013. https://doi.org/10.1029/2009gb003669

    Article  CAS  Google Scholar 

  • Rondon MA, Molina D, Hurtado M, Ramirez J, Amezquita E, Major J, Lehmann J (2005) Enhancing the productivity of crop and grasses while reducing greenhouse gas emissions through bio-char amendments to unfertile tropical soils. CIAT annual report Cali, Colombia

    Google Scholar 

  • Rumpel C, Alexis M, Chabbi A, Chaplot V, Rasse DP, Valentin C, Mariotti A (2006a) Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 130:35–46

    Article  CAS  Google Scholar 

  • Rumpel C, Chaplot V, Planchon O, Bernadou J, Valentin C, Mariotti A (2006b) Preferential erosion of black carbon on steep slopes with slash and burn agriculture. CATENA 65:30–40

    Article  Google Scholar 

  • Rumpel C, Ba A, Darboux F, Chaplot V, Planchon O (2009) Erosion budget and process selectivity of black carbon at meter scale. Geoderma 154:131–137

    Article  CAS  Google Scholar 

  • Rumpel C, Chaplot V, Chabbi A, Largeau C, Valentin C (2008) Stabilisation of HF soluble and HCl resistant organic matter in sloping tropical soils under slash and burn agriculture. Geoderma 145:347–354

    Article  CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I (2004) Microbial use of lignite compared to recent plant litter as substrates in reclaimed coal mine soils. Soil Biol Biochem 36:67–75

    Article  CAS  Google Scholar 

  • Santín C, Doerr SH, Merino A et al (2017) Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Sci Rep 7:11233. https://doi.org/10.1038/s41598-017-10455-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmid E-M, Skjemstad JO, Glaser B, Knicker H, Kögel-Knabner I (2002) Detection of charred organic matter in soils from a Neolithic settlement in Southern Bavaria, Germany. Geoderma 107:71–91

    Article  CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob Biogeochem Cyc 14:777–793

    Article  CAS  Google Scholar 

  • Scott HL, Ponsonby D, Atkinson CJ (2014) Biochar: an improver of nutrient and soil water availability—what is the evidence? CAB Reviews 9:019. https://doi.org/10.1079/PAVSNNR20149019

    Article  Google Scholar 

  • Shindo H (1991) Elementary composition, humus composition, and decomposition in soil of charred grassland plants. Soil Sci Plant Nutr 37:651–657

    Article  CAS  Google Scholar 

  • Shneour EA (1966) Oxidation of graphitic carbon in certain soils. Science 151:991–992

    Article  PubMed  CAS  Google Scholar 

  • Sigmund G, Huber D, Bucheli TD et al (2017) Cytotoxicity of biochar: a workplace safety concern? Environ Sci Technol Lett 4:362–366. https://doi.org/10.1021/acs.estlett.7b00267

    Article  CAS  Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual in press

    Article  CAS  Google Scholar 

  • Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA (2002) Charcoal carbon in U.S. agricultural soils. Soil Sci Soc Am J 66:1249–1255

    Article  CAS  Google Scholar 

  • Smernik RJ (2009) Biochar and sorption of organic compounds. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic Press, Dordrecht, The Netherlands, pp 289–300

    Google Scholar 

  • Soentgen J, Hilbert K, von Groote-Bidlingmaier C et al (2017) Terra preta de índio: commodification and mythification of the Amazonian Dark Earths. GAIA 26:136–143

    Article  Google Scholar 

  • Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Sohi S, Lopez-Capel E, Krull E, Bol R (2009) Biochar’s roles in soil and climate change: a review of research needs. CSIRO Land and Water Science Report 05/09

    Google Scholar 

  • Sombroek WG, Nachtergaele FO, Hebel A (1993) Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio 22:417–426

    Google Scholar 

  • Song J, Peng P’A (2010) Characterisation of black carbon materials by pyrolysis–gas chromatography–mass spectrometry. J Anal Appl Pyrol 87:129–137

    Article  CAS  Google Scholar 

  • Spokas KA, Baker JM, Reicosky DC (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil in press

    Article  CAS  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  PubMed  CAS  Google Scholar 

  • Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  • Steiner C, Das KC, Garcia M, Förster B, Zech W (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macêdo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Tammeorg P, Bastos AC, Jeffery S et al (2017) Biochars in soils: towards the required level of scientific understanding. J Environ Eng Landsc 25:192–207

    Article  Google Scholar 

  • Tan Z, Lin CSK, Ji X, Rainey TJ (2017) Returning biochar to fields: a review. Appl Soil Ecol 116:1–11

    Article  Google Scholar 

  • Thies JE, Rillig MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, U.K., pp 85–105

    Google Scholar 

  • Titiz B, Sanford RL (2007) Soil charcoal in old-growth rain forests from sea level to the continental divide. Biotropica 39:673–682

    Article  Google Scholar 

  • Topoliantz S, Ponge JF (2005) Charcoal consumption and casting activity by Pontoscolex corethrurus (Glossoscolecidae). Appl Soil Ecol 28:217–224

    Article  Google Scholar 

  • Topoliantz S, Ponge JF, Ballof S (2005) Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics. Biol Fertil Soils 41:15–21

    Article  CAS  Google Scholar 

  • van der Wal A, de Boer W (2017) Dinner in the dark: illuminating drivers of soil organic mat-ter decomposition. Soil Biol Biochem 105:45–48

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Van Zwieten L, Sing B, Joseph S, Kimber S, Cowie A, Chan KY (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, U.K., pp 227–249

    Google Scholar 

  • Verheijen FGA, Jeffery S, Bastos AC, van der Velde M, Diafas I (2009) Biochar application to soils—a critical scientific review of effects on soil properties, processes and functions. EUR 24099 EN, Office for the Official Publications of the European Communities, Luxembourg, 149pp

    Google Scholar 

  • Verheijen FGA, Mankasingh U, Penizek V et al (2017) Representativeness of European biochar research: Part I—field experiments. J Environ Eng Landsc 25:140–151

    Article  Google Scholar 

  • Verhoeven E, Pereira E, Decock C et al (2017) Toward a better assessment of biochar–nitrous oxide mitigation potential at the field scale. J Environ Qual 46:237–246

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Wanga Y, Herath HMSK (2017a) Polycyclic aromatic hydrocarbons (PAHs) in biochar—their formation, occurrence and analysis: A review. Org Geochem 114:1–11

    Article  CAS  Google Scholar 

  • Wang D, Fonte SJ, Parikh SJ, Six J, Scow KM (2017b) Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303:110–117

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Lin K, Hou Z, Richardson B, Gan J (2010) Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J Soils Sediments 10:283–289

    Article  CAS  Google Scholar 

  • Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

    Article  PubMed  CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soilconcepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Weng Z, Van Zwieten L, Singh BP et al (2017) Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat Clim Change 7:371–379

    Article  CAS  Google Scholar 

  • Wornat MJ, Hurt RH, Yang NYC (1995) Structural and compositional transformations of biomass chars during combustion. Combustion Flame 100:131–143

    Article  CAS  Google Scholar 

  • Xiang Y, Deng Q, Duan H, Guo Y (2017) Effects of biochar application on root traits: a meta-analysis. GCBBioenerg 9:1563–1572. https://doi.org/10.1111/gcbb.12449

    Article  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori F, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Zhang P, Sheng G, Wolf DC, Feng Y (2004) Reduced biodegradation of benzonitrile in soil containing wheat-residue-derived ash. J Environ Qual 33:868–872

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenz, K., Lal, R. (2018). Biochar. In: Carbon Sequestration in Agricultural Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-92318-5_8

Download citation

Publish with us

Policies and ethics