Skip to main content
Log in

Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract.

Most techniques for determining the chemical nature of natural organic matter in soil, sediment and water require prior extraction or concentration steps that are not quantitative and that create artifacts. 13C nuclear magnetic resonance (NMR) analysis can avoid these problems, but it gives little information at the scale of molecules. Here we show that the molecular composition of a diverse range of natural organic materials could be inferred from 13C NMR analysis combined with C and N analysis. Forty-six different organic materials including undecomposed and decomposed plant materials, soil organic matter, phytoplankton, and the organic matter found in freshwater, estuarine and marine sediments were examined. A mixing model simultaneously solved a series of equations to estimate the content of four biomolecule components representing the organic materials produced in greatest abundance by plants and other organisms (carbohydrate, protein, lignin and aliphatic material) and two additional components (char and pure carbonyl). Based on defined molecular structures for each component, signal intensities for 13C NMR spectra were predicted and compared with measured values. The sum of the absolute differences in signal intensity between the measured and predicted spectral regions was <7% for the terrestrial materials. For aquatic materials the fit of the predicted to measured signal intensities was not as good. Predicted molecular compositions correlated well with independent analyses of cellulose, protein and lignin contents of plant samples and char contents of soil samples. Across all samples, carbohydrates accounted for 10-76% of the sample C (40-76% in plants and 10-42% in soils, sediments and phytoplankton), protein for 2-80% (21-80% in phytoplankton and marine water column samples and 2-36% in plants, soils and sediments), lignin for 0-36%, aliphatic materials for 2-44%, char for 0-38% and carbonyl for 0-22%. For the soils, sediments and decomposed plant materials, the close correspondence between actual signal intensities and those predicted using known biomolecular components, suggested that either‘8humic’ structures can be approximated by mixtures of common biologically derived molecules or that humic structures did not exist in significant amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CP:

cross-polarisation

DP:

Direct polarisation

MAS:

magic-angle-spinning

NMR:

nuclear magnetic resonance

UV NMR:

ultra-violet photo-oxidation of the <53 µ m fraction followed by 13C NMR analysis

References

  • Baldock J.A. and Nelson P.N. In: Sumner M. (ed), Handbook of Soil Science. CRC Press, Boca Raton, FL, USA, pp. B25-B84

  • Baldock J.A. and Skjemstad J.O. In: Peverill K.I.Sparrow L.A. and Reuter D.J. (eds), Soil Analysis: An Interpretation Manual. CSIRO Publishing, Collingswood, Vic, Australia, pp. 159-170.

  • J.A. Baldock R.J. Smernik (2002) ArticleTitleChemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood Org. Geochem. 33 1093–1109 Occurrence Handle1:CAS:528:DC%2BD38XmtlWjurk%3D

    CAS  Google Scholar 

  • J.A. Baldock B.D. Kay M. Schnitzer (1987) ArticleTitleInfluence of cropping treatments on the monosaccharide content of the hydrolysates of a soil and its aggregate fractions Can. J. Soil Sci. 67 489–499 Occurrence Handle1:CAS:528:DyaL1cXitV2mtw%3D%3D

    CAS  Google Scholar 

  • J.A. Baldock J.M. Oades A.G. Waters X. Peng A.M. Vassallo M.A. Wilson (1992) ArticleTitleAspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy Bio-geochemistry 16 1–42 Occurrence Handle1:CAS:528:DyaK38XmsFSmsbs%3D

    CAS  Google Scholar 

  • J.A. Baldock J.M. Oades P.N. Nelson T.M. Skene A. Golchin P. Clarke (1997a) ArticleTitleAssessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy Aust. J. Soil Res. 35 1061–1084

    Google Scholar 

  • J.A. Baldock T. Sewell P.G. Hatcher (1997b) Decomposition induced changes in the chemical structure of fallen red pinewhite spruce and tamarack logs G. Cadisch K.E. Giller (Eds) Driven by Nature: Plant Litter Quality and Decomposition CAB International WallingfordUK 75–83

    Google Scholar 

  • J. Beavis C.J.B. Mott (1996) ArticleTitleEffects of land use on the amino acid composition of soils: 1. Manured and unmanured soils from the Broadbalk continuous wheat experimentRothamstedEngland Geo-derma 72 259–270

    Google Scholar 

  • J. Beavis C.J.B. Mott (1999) ArticleTitleEffects of land use on the amino acid composition of soils: 2. Soils from the Park Grass experiment and Broadbalk Wilderness, RothamstedEngland Geoderma 91 173–190 Occurrence Handle1:CAS:528:DyaK1MXltleju7g%3D

    CAS  Google Scholar 

  • J. Cortez J.M. Demard P. Bottner L.J. Monrozier (1996) ArticleTitleDecomposition of Mediterranean leaf litters: a microcosm experiment investigating relationships between decomposition rates and litter quality Soil Biol. Biochem. 28 443–452 Occurrence Handle1:CAS:528:DyaK28XjvF2isLY%3D

    CAS  Google Scholar 

  • G.L. Cowie J.I. Hedges (1992) ArticleTitleSources and reactivities of amino acids in a coastal marine environment Limnol. Oceanogr. 37 703–714 Occurrence Handle1:CAS:528:DyaK38XmsFOltr4%3D

    CAS  Google Scholar 

  • R.J. DiCosty D.P. Weliky S.J. Anderson E.A. Paul (2003) ArticleTitle15N-CPMAS nuclear magnetic resonance spectroscopy and biological stability of soil organic nitrogen in whole soil and particle-size fractions Org. Geochem. 34 1635–1650 Occurrence Handle1:CAS:528:DC%2BD3sXoslOhtrY%3D

    CAS  Google Scholar 

  • Y. Gélinas J.A. Baldock J.I. Hedges (2001) ArticleTitleDemineralization of marine and freshwater sediments for CP/MAS 13C NMR analysis Org. Geochem. 32 677–693

    Google Scholar 

  • Goering H.K. and van Soest P.J. 1972. Forage fibre analyses (apparatus, reagents, procedures and some applications). Agriculture Handbook No. 379. United States Department of Agriculture.

  • Ö. Gustafsson P.M. Gschwend (1998) ArticleTitleThe flux of black carbon to surface sediments on the New England continental shelf Geochim. Cosmochim. Acta 62 465–472 Occurrence Handle1:CAS:528:DyaK1cXitFGls7c%3D

    CAS  Google Scholar 

  • Z. Hamadi Y. Steinberger P. Kutiel H. Lavee G. Barness (2000) ArticleTitleDecomposition of Avena sterilis litter under arid conditions J. Arid Environ. 46 281–293

    Google Scholar 

  • P.G. Hatcher E.C. Spiker (1988) Selective degradation of plant biomolecules F.H. Frimmel R.F. Christman (Eds) Humic Substances and Their Role in the Environment John Wiley and Sons New York, NY, USA 59–74

    Google Scholar 

  • P.G. Hatcher M.A. Nanny R.D. Minard S.D. Dible D.M. Carson (1995) ArticleTitleComparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH) Org. Geochem. 23 881–888 Occurrence Handle1:CAS:528:DyaK28XitVWks78%3D

    CAS  Google Scholar 

  • J.I. Hedges (1988) Polymerization of humic substances in natural environments F.H. Frimmel R.F. Christman (Eds) Humic Substances and Their Role in the Environment John Wiley and Sons New York, NY, USA 45–58

    Google Scholar 

  • J.I. Hedges J.R. Ertel (1982) ArticleTitleCharacterization of lignin by gas capillary chromatography of cupric oxide oxidation products Anal. Chem. 54 174–178 Occurrence Handle1:CAS:528:DyaL38XjslWitQ%3D%3D

    CAS  Google Scholar 

  • J.I. Hedges J.A. Baldock Y. Genas C. Lee M. Peterson S.G. Wakeham (2001) ArticleTitleEvidence for non-selective preservation of organic matter in sinking marine particles Nature 409 801–804 Occurrence Handle1:CAS:528:DC%2BD3MXhsFCjsbY%3D Occurrence Handle11236989

    CAS  PubMed  Google Scholar 

  • J.I. Hedges J.A. Baldock Y. Genas C. Lee M.L. Peterson S.G. Wakeham (2002) ArticleTitleThe biochemical and elemental compositions of marine plankton: a NMR perspective Mar. Chem. 78 47–63 Occurrence Handle1:CAS:528:DC%2BD38XitVyjt7w%3D

    CAS  Google Scholar 

  • S. Heng K.M. Goh (1981) ArticleTitleA rapid method for extracting lipid components from forest litter especially adapted for ecological studies Commun. Soil Sci. Plant Anal. 12 1283–1292 Occurrence Handle1:CAS:528:DyaL38XitFektr8%3D

    CAS  Google Scholar 

  • P. Kinchesh D.S. Powlson E.W. Randall (1995a) ArticleTitle13C NMR studies of organic matter in whole soils: I. Quantitation possibilities Eur. J. Soil Sci. 46 125–138 Occurrence Handle1:CAS:528:DyaK2MXmtlGgtLk%3D

    CAS  Google Scholar 

  • P. Kinchesh D.S. Powlson E.W. Randall (1995b) ArticleTitle13C NMR studies of organic matter in whole soils: II. A case study of some Rothamsted soils Eur. J. Soil Sci. 46 139–146 Occurrence Handle1:CAS:528:DyaK2MXmtlGgtLY%3D

    CAS  Google Scholar 

  • H. Knicker H.D. Ln (1995) ArticleTitleN-15 and C-13 CPMAS and solution NMR studies of N-15 enriched plant material during 600 days of microbial degradation Org. Geochem. 23 329–341 Occurrence Handle1:CAS:528:DyaK2MXmsFWms70%3D

    CAS  Google Scholar 

  • H. Knicker G. Almendros F.J. Gonz z-vila H.-D. Ln F. Martin (1995) ArticleTitle13C and 15N NMR analysis of some fungal melanins in comparison with soil organic matter Org. Geochem. 23 1023–1028 Occurrence Handle1:CAS:528:DyaK28XjsFGmt7Y%3D

    CAS  Google Scholar 

  • I. K R. Hempfling W. Zech P.G. Hatcher H.-R. Schulten (1988) ArticleTitleChemical composition of the organic matter in forest soils 1. Forest litter Soil Sci. 146 124–136

    Google Scholar 

  • I. K-Knabner W. Zech P.G. Hatcher (1988) ArticleTitleChemical composition of the organic matter in forest soils: The humus layer Z. Pflanzener. Boden. 151 331–340

    Google Scholar 

  • I. K-Knabner P.G. Hatcher E.W. Tegelarr J.W. de Leeuw (1992) ArticleTitleAliphatic components of forest soil organic matter as determined by solid-state 13C NMR and analytical pyrolysis Sci. Total Environ. 113 89–106

    Google Scholar 

  • P.E. Kolattukudy (1980) Cutin, suberin and waxes P.K. Stumpf E.E. Conn (Eds) The Biochemistry of Plants. Vol. 4. Lipids Academic Press New York, NY, USA 571–638

    Google Scholar 

  • J.N. Ladd M. van Gestel L. Jocteur Monrozier M. Amato (1996) ArticleTitleDistribution of organic 14C and 15N in particle-size fractions of soils incubated with 14C, 15N-labelled glucose/NH4and legume and wheat straw residues Soil Biol. Biochem. 28 893–905 Occurrence Handle1:CAS:528:DyaK28XlvVCrtbY%3D

    CAS  Google Scholar 

  • C. Lee D.W. Murray R.T. Barber K.O. Buesseler J. Dymond J.I. Hedges S. Honjo S.J. Manganini J. Marra C. Moser M.L. Perterson W.L. Prell S.G. Wakeham (1998) ArticleTitleParticulate organic carbon fluxes: compilation of results from the 1995 US JGOFS Arabian Sea Process Study Deep-Sea Res. Pt. II 45 2489–2501 Occurrence Handle1:CAS:528:DyaK1MXmtlSlsA%3D%3D

    CAS  Google Scholar 

  • G.C. Levy R.L. Litcher G.L. Nelson (1980) Carbon-13 Nuclear Magnetic Resonance Spectroscopy. 2nd ed John Wiley and Sons New York, NY, USA

    Google Scholar 

  • J.B. Lowry L.L. Conlan A.C. Schlink C.S. McSweeny (1994) ArticleTitleAcid detergent dispersible lignin in tropical grasses J. Sci. Food Agric. 65 41–49 Occurrence Handle1:CAS:528:DyaK2cXktVOrsrs%3D

    CAS  Google Scholar 

  • P. MacCarthy R.L. Malcolm C.E. Clapp P.R. Bloom (1990) An introduction to soil humic substances P. MacCarthy R.L. Malcolm C.E. Clapp P.R. Bloom (Eds) Humic Substances in Crop and Soil Sciences: Selected Readings Soil Science Society of America Madison, WI, USA 1–12

    Google Scholar 

  • M. Ma’shum M.E. Tate G.P. Jones J.M. Oades (1988) ArticleTitleExtraction and characterisation of water repellent materials from Australian soils J. Soil Sci. 39 99–110 Occurrence Handle1:CAS:528:DyaL1cXitVeku7s%3D

    CAS  Google Scholar 

  • R.A.A. Muzzarelli C. Muzzarelli (1998) Native and modified chitins in the biosphere B.A. Stankiewicz P.F. van Bergen (Eds) Nitrogen-Containing Macromolecules in the Bio- and Geosphere American Chemical Society Washington, DC, USA 148–162

    Google Scholar 

  • P.N. Nelson J.A. Baldock P. Clarke J.M. Oades G.J. Churchman (1999) ArticleTitleDispersed clay and organic matter in soil: their nature and associations Aust. J. Soil Res. 37 289–315

    Google Scholar 

  • J.M. Oades (1984) ArticleTitleSoil organic matter and structural stability: mechanisms and implications for management Plant Soil 76 319–337 Occurrence Handle1:CAS:528:DyaL2cXhvFSksbw%3D

    CAS  Google Scholar 

  • G. Ogner (1985) ArticleTitleA comparison of four different raw humus types in Norway using chemical degradations and CPMAS 13C NMR spectroscopy Geoderma 35 343–353 Occurrence Handle1:CAS:528:DyaL2MXlslOntLY%3D

    CAS  Google Scholar 

  • C.M. Preston J.A. Trofymow B.G. Sayer J. Niu (1997) ArticleTitle13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies Can. J. Bot. 75 1601–1613 Occurrence Handle1:CAS:528:DyaK2sXnsVyht70%3D

    CAS  Google Scholar 

  • S.A. Quideau M.A. Anderson R.C. Graham O.A. Chadwick S.E. Trumbore (2000) ArticleTitleSoil organic matter processes: characterization by 13C NMR and 14C measurements For. Ecol. Manag. 138 19–27

    Google Scholar 

  • S.A. Quideau O.A. Chadwick A. Benesi R.C. Graham M.A. Anderson (2001) ArticleTitleA direct link between forest vegetation type and soil organic matter composition Geoderma 104 41–60 Occurrence Handle1:CAS:528:DC%2BD3MXnsFGht78%3D

    CAS  Google Scholar 

  • A.D. Reeves (1995) ArticleTitleThe use of organic markers in the differentiation of organic inputs to aquatic systems Phys. Chem. Earth 20 133–140

    Google Scholar 

  • T. Sariyildiz J.M. Anderson (2003) ArticleTitleInteractions between litter quality, decomposition and soil fertility: a laboratory study Soil Biol. Biochem. 35 391–399 Occurrence Handle1:CAS:528:DC%2BD3sXhvFGrtrs%3D

    CAS  Google Scholar 

  • H.-R. Schulten M. Schnitzer (1993) ArticleTitleA state of the art structural concept for humic substances Naturwissenschaften 80 29–30 Occurrence Handle1:CAS:528:DyaK3sXhvFCrtbo%3D

    CAS  Google Scholar 

  • J.O. Skjemstad P. Clarke J.A. Taylor J.M. Oades R.H. Newman (1994) ArticleTitleThe removal of magnetic materials from surface soils-a solid-state C-13 CP/MAS NMR study Aust. J. Soil Res. 32 1215–1229 Occurrence Handle1:CAS:528:DyaK2MXis1Git7c%3D

    CAS  Google Scholar 

  • J.O. Skjemstad J.A. Taylor R.J. Smernik (1999b) ArticleTitleEstimation of charcoal (char) in soils Commun. Soil Sci. Plant Anal. 30 2283–2298 Occurrence Handle1:CAS:528:DyaK1MXmt1GltLw%3D

    CAS  Google Scholar 

  • J.O. Skjemstad D.C. Reicosky A.R. Wilts J.A. McGowan (2002) ArticleTitleCharcoal carbon in US agricultural soils Soil Sci. Soc. Am. J. 66 1249–1255 Occurrence Handle1:CAS:528:DC%2BD38XlslOrtr0%3D

    CAS  Google Scholar 

  • R.J. Smernik J.M. Oades (2000a) ArticleTitleThe use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter. 1. Model systems and the effects of paramagnetic impurities Geoderma 96 101–129 Occurrence Handle1:CAS:528:DC%2BD3cXit1WjtLw%3D

    CAS  Google Scholar 

  • R.J. Smernik J.M. Oades (2000b) ArticleTitleThe use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter. 2. HF-treated soil fractions Geoderma 96 159–171 Occurrence Handle1:CAS:528:DC%2BD3cXjt1Shtbo%3D

    CAS  Google Scholar 

  • R. Smernik J.A. Baldock J.M. Oades A.K. Whittaker (2002a) ArticleTitleDetermination of T1?H relaxation rates in charred and uncharred wood and consequences for NMR quantitation Solid State Nucl. Mag. Res. 22 50–70 Occurrence Handle1:CAS:528:DC%2BD38XmvFCltLg%3D

    CAS  Google Scholar 

  • R. Smernik J.A. Baldock J.M. Oades (2002b) ArticleTitleImpact of remote protonation on 13C CPMAS NMR quantitation of charred and uncharred wood Solid State Nucl. Mag. Res. 22 71–82 Occurrence Handle1:CAS:528:DC%2BD38XmvFCltLk%3D

    CAS  Google Scholar 

  • F.J. Stevenson (1994) Humus Chemistry. Genesis, Composition and Reactions John Wiley and Sons New York, NY, USA

    Google Scholar 

  • X. Tian H. Takeda J. Azuma (2000) ArticleTitleDynamics of organic-chemical components in leaf litters during a 3.5-year decomposition Eur. J. Soil Biol. 36 81–89 Occurrence Handle1:CAS:528:DC%2BD3cXosleitrg%3D

    CAS  Google Scholar 

  • S.G. Wakeham C. Lee J.I. Hedges P.J. Hernes M.L. Peterson (1997) ArticleTitleMolecular indicators of diagenetic status in marine organic matter Geochim. Cosmochim. Acta 61 5363–5369 Occurrence Handle1:CAS:528:DyaK1cXhvFeitw%3D%3D

    CAS  Google Scholar 

  • S.A. Waksman (1936) Humus. Origin, Chemical Composition, and Importance in Nature BalliereTindall and Cox London, UK

    Google Scholar 

  • M.A. Wilson (1987) N.M.R. Techniques and Applications in Geochemistry and Soil Chemistry Pergamon Press OxfordUK

    Google Scholar 

  • Q.-L. Wu U. Schleuss H.P. Blume (1995) ArticleTitleInvestigation on soil lipid extraction with different organic solvents Z. Pflanzener. Boden. 158 347–350

    Google Scholar 

  • J.L. Zelibor L. Romankiw P.G. Hatcher R.R. Colwell (1988) ArticleTitleComparative analysis of the chemical composition of mixed and pure cultures of green algae and their decomposition residues by 13C nuclear magnetic resonance spectroscopy Appl. Envion. Microb. 54 1051–1060 Occurrence Handle1:CAS:528:DyaL1cXktF2qtLo%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Baldock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, P.N., Baldock, J.A. Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses. Biogeochemistry 72, 1–34 (2005). https://doi.org/10.1007/s10533-004-0076-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-004-0076-3

Keywords

Navigation