Skip to main content

Insect-Fungus Interactions in Dead Wood Systems

  • Chapter
  • First Online:
Saproxylic Insects

Part of the book series: Zoological Monographs ((ZM,volume 1))

Abstract

Fungi can provide insects with nutrients and essential elements, detoxify plant defenses in recently dead wood, and protect or, in contrast, attack and digest insects. Insects can affect fungi through feeding or propagule dispersal. Fungal grazing may induce changes in fungal chemistry, morphology, and growth. Insect-fungus interactions in dead wood span a wide gradient of specificity from indirect interactions through shared habitats to obligate mutualisms. When based on insects reared from polypores, insect-fungi interaction networks may exhibit a degree of specialization similar to that of pollinators and plants , whereas when based on wood-decay fungi isolated from insects sampled at dead wood, the degree of specialization appears closer to animal-mediated seed dispersal. Exchange of dispersal and nutrition is the basis for most obligate insect-fungus mutualisms. Adaptations to these mutualisms seem to have evolved rapidly, and for some insects there has been a feedback between the evolution of fungus farming and sociality. Several recent studies indicate that insect-vectored dispersal might be an important complement to wind dispersal also for non-mutualistic saproxylic fungi, potentially providing targeted dispersal to suitable substrates. We propose a theoretical framework for the effectiveness of insect-vectored spore dispersal. Insect-fungus interactions are an essential component of forest ecosystems, influencing species richness, wood decay, and nutrient cycling. Several aspects of insect-fungus interactions are unknown and require further study, but availability and development of molecular methods may rapidly advance this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A fungus spore-carrying organ was first discovered and termed mycetangium by Francke-Grosmann (1956). Batra (1963) coined the term mycangium for the same structure. Although mycangium is now commonly used in the literature, it is incorrect from an etymological point of view [see discussion about this in Francke-Grosmann (1967)]. Therefore, we use mycetangium in our research and suggest others to do so too.

References

  • Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Froslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA 99(23):14887–14892. https://doi.org/10.1073/pnas.222313099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abrahamsson M, Lindbladh M, Ronnberg J (2008) Influence of butt rot on beetle diversity in artificially created high-stumps of Norway spruce. For Ecol Manag 255(8–9):3396–3403. https://doi.org/10.1016/j.foreco.2008.01.010

    Article  Google Scholar 

  • Allison JD, Borden JH, Seybold SJ (2004) A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14(3):123–150. https://doi.org/10.1007/s00049-004-0277-1

    Article  CAS  Google Scholar 

  • Amburgey TL (1979) Review and checklist of the literature on interactions between wood-inhabiting fungi and subterranean termites: 1960–1978. Sociobiology 4:279–296

    Article  Google Scholar 

  • Ayres MP, Wilkens RT, Ruel JJ, Lombardero MJ, Vallery E (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81(8):2198–2210. https://doi.org/10.1890/0012-9658(2000)081[2198,Nbopfb]2.0.Co;2

    Article  Google Scholar 

  • Batra LR (1963) Ecology of ambrosia fungi and their dissemination by beetles. Trans KS Acad Sci (1903–) 66(2):213–236

    Article  Google Scholar 

  • Batra LR, Michie MD (1963) Pleomorphism in some ambrosia and related fungi. Trans KS Acad Sci (1903–) 66(3):470–481. https://doi.org/10.2307/3626545

    Article  Google Scholar 

  • Beaver RA (1989) Insect-fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic Press, London, pp 121–143

    Chapter  Google Scholar 

  • Becker G (1964) Termiten-anlockende Wirkung einiger bei Basidiomyceten-Angriff in Holz entstehender Verbindungen. Holzforschung-Int J Biol Chem Phys Technol Wood 18(6):168–172. https://doi.org/10.1515/hfsg.1964.18.6.168

    CAS  Google Scholar 

  • Becker G (1965) Versuche über den Einfluß von Braunfäulepilzen auf Wahl und Ausnutzung der Holznahrung durch Termiten. Mater Organismen 1:95–156

    Google Scholar 

  • Becker G, Kerner-Gang W (1963) Schädigung und Förderung von Termiten durch Schimmelpilze. Z Angew Entomol 53:429–448

    Article  Google Scholar 

  • Biedermann PHW (2012) The evolution of cooperation in ambrosia beetles. University of Bern

    Google Scholar 

  • Biedermann PHW, Kaltenpoth M (2014) New synthesis: the chemistry of partner choice in insect-microbe mutualisms. J Chem Ecol 40(2):99–99. https://doi.org/10.1007/s10886-014-0382-8

    Article  PubMed  CAS  Google Scholar 

  • Biedermann PHW, Rohlfs M (2017) Evolutionary feedbacks between insect sociality and microbial management. Curr Opin Insect Sci 22:92–100

    Article  PubMed  Google Scholar 

  • Biedermann PHW, Taborsky M (2011) Larval helpers and age polyethism in ambrosia beetles. Proc Natl Acad Sci USA 108(41):17064–17069. https://doi.org/10.1073/pnas.1107758108

    Article  PubMed  PubMed Central  Google Scholar 

  • Birkemoe T (2002) Structural infestations of ants (Hymenoptera, Formicidae) in southern Norway. Norw J Entomol 49:139–142

    Google Scholar 

  • Blackwell M, Bridges JR, Moser JC, Perry TJ (1986) Hyperphoretic dispersal of a Pyxidiophora anamorph. Science 232(4753):993–995. https://doi.org/10.1126/science.232.4753.993

    Article  PubMed  CAS  Google Scholar 

  • Blanchette RA, Shaw CG (1978) Associations among bacteria, yeasts, and basidiomycetes during wood decay. Phytopathology 68(4):631–637

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Curr Biol 17(4):341–346. https://doi.org/10.1016/j.cub.2006.12.039

    Article  PubMed  CAS  Google Scholar 

  • Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31(3):185–194

    Article  PubMed  CAS  Google Scholar 

  • Boddy L (2001) Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. Ecol Bull 49:43–56

    Google Scholar 

  • Boddy L, Jones TH (2008) Chapter 9: Interactions between basidiomycota and invertebrates. In: Lynne Boddy JCF, Pieter van W (eds) British Mycological Society Symposia Series, vol 28. Academic Press, London, pp 155–179. doi:https://doi.org/10.1016/S0275-0287(08)80011-2

    Chapter  Google Scholar 

  • Boddy L, Hynes J, Bebber DP, Fricker MD (2009) Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50(1):9–19

    Article  Google Scholar 

  • Boucher DH, James S, Keeler KH (1982) The ecology of mutualism. Annu Rev Ecol Syst 13(1):315–347. https://doi.org/10.1146/annurev.es.13.110182.001531

    Article  Google Scholar 

  • Bourke AFG (2011) Principles of social evolution. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bracewell RR, Six DL (2015) Experimental evidence of bark beetle adaptation to a fungal symbiont. Ecol Evol 5(21):5109–5119. https://doi.org/10.1002/ece3.1772

    Article  PubMed  PubMed Central  Google Scholar 

  • Bronstein JL (2015) Mutualism. OUP, Oxford

    Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12(3):168–180. https://doi.org/10.1038/nrmicro3182

    Article  PubMed  CAS  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant-like microorganisms. Wiley Interscience, New York

    Google Scholar 

  • Castello J, Shaw C, Furniss M (1976) Isolation of Cryptoporus volvatus and Fomes pinicola from Dendroctonus pseudotsugae. Phytopathology 66(12):1431–1434

    Article  Google Scholar 

  • Castrillo LA, Griggs MH, Vandenberg JD (2016) Competition between biological control fungi and fungal symbionts of ambrosia beetles Xylosandrus crassiusculus and X. germanus (Coleoptera: Curculionidae): mycelial interactions and impact on beetle brood production. Biol Control 103:138–146. https://doi.org/10.1016/j.biocontrol.2016.09.005

    Article  Google Scholar 

  • Cease KR, Juzwik J (2001) Predominant nitidulid species (Coleoptera: Nitidulidae) associated with spring oak wilt mats in Minnesota. Can J For Res 31(4):635–643

    Article  Google Scholar 

  • Ceja-Navarro JA, Nguyen NH, Karaoz U, Gross SR, Herman DJ, Andersen GL, Bruns TD, Pett-Ridge J, Blackwell M, Brodie EL (2014) Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J 8(1):6–18. https://doi.org/10.1038/ismej.2013.134

    Article  PubMed  CAS  Google Scholar 

  • Chapela IH, Boddy L (1988) Fungal colonization of attached beech branches 2. Spatial and temporal organization of fungal communities arising from latent invaders in bark and functional sapwood, under different moisture regimes. New Phytol 110(1):47–57. https://doi.org/10.1111/j.1469-8137.1988.tb00236.x

    Article  Google Scholar 

  • Chen Y, Hansen LD, Brown JJ (2002) Nesting sites of the carpenter ant, Camponotus vicinus (Mayr) (Hymenoptera: Formicidae) in Northern Idaho. Environ Entomol 31(6):1037–1042. https://doi.org/10.1603/0046-225X-31.6.1037

    Article  Google Scholar 

  • Clark AJ, Block K (1959) The absence of sterol synthesis in insects. J Biol Chem 234:2578–2582

    PubMed  CAS  Google Scholar 

  • Coates D, Rayner A (1985) Fungal population and community development in cut beech logs. New Phytol 101(1):153–171

    Article  PubMed  Google Scholar 

  • Cobb TP, Hannam KD, Kishchuk BE, Langor DW, Quideau SA, Spence JR (2010) Wood-feeding beetles and soil nutrient cycling in burned forests: implications of post-fire salvage logging. Agric For Entomol 12(1):9–18. https://doi.org/10.1111/j.1461-9563.2009.00440.x

    Article  Google Scholar 

  • Cornelius ML, Daigle DJ, Connick Jr WJ, Parker A, Wunch K (2002) Responses of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae) to three types of wood rot fungi cultured on different substrates. J Econ Entomol 95(1):121–128. https://doi.org/10.1603/0022-0493-95.1.121

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, Scarff F, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fates across the globe: rotted, burned, or consumed? Glob Change Biol 15(10):2431–2449. https://doi.org/10.1111/j.1365-2486.2009.01916.x

    Article  Google Scholar 

  • Cramer JM, Mesquita RC, Williamson GB (2007) Forest fragmentation differentially affects seed dispersal of large and small-seeded tropical trees. Biol Conserv 137(3):415–423

    Article  Google Scholar 

  • Crowther TW, A'Bear AD (2012) Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol 5(2):277–281. https://doi.org/10.1016/j.funeco.2011.07.006

    Article  Google Scholar 

  • Crowther TW, Boddy L, Jones TH (2011a) Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecol Lett 14(11):1134–1142

    Article  PubMed  Google Scholar 

  • Crowther TW, Boddy L, Jones TH (2011b) Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia 167(2):535–545

    Article  PubMed  Google Scholar 

  • Crowther TW, Boddy L, Jones TH (2012) Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME J 6(11):1992–2001. https://doi.org/10.1038/ismej.2012.53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahlberg A, Stokland J (2004) Vedlevande arters krav på substrat - sammanställning och analys av 3 600 arter. Skogsstyrelsen, Rapport:7–04

    Google Scholar 

  • Davis T (2014) The ecology of yeasts in the bark beetle holobiont: a century of research revisited. Microb Ecol:1–10. https://doi.org/10.1007/s00248-014-0479-1

  • De Fine Licht HH, Biedermann PHW (2012) Patterns of functional enzyme activity in fungus farming ambrosia beetles. Front Zool 9(1):13. https://doi.org/10.1186/1742-9994-9-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dighton J (2003) Fungi in ecosystem processes. CRC, Boca Raton

    Book  Google Scholar 

  • Doebeli M, Knowlton N (1998) The evolution of interspecific mutualisms. Proc Natl Acad Sci Biol 95(15):8676–8680

    Article  CAS  Google Scholar 

  • Dowd PF (1992) Insect fungal symbionts - a promising source of detoxifying enzymes. J Ind Microbiol 9(3–4):149–161

    Article  CAS  Google Scholar 

  • Drenkhan T, Kasanen R, Vainio EJ (2016) Phlebiopsis gigantea and associated viruses survive passing through the digestive tract of Hylobius abietis. Biocontrol Sci Technol 26(3):320–330

    Article  Google Scholar 

  • Dybas HS (1976) The larval characters of featherwing and limulodid beetles and their family relationships in the Staphylinoidea (Coleoptera: Ptilidae and Limulodidae). Fieldiana Zool 70:29–78

    Google Scholar 

  • Dyer HC, Boddy L, Preston-Meek CM (1992) Effect of the nematode Panagrellus redivivus on growth and enzyme production by Phanerochaete velutina and Stereum hirsutum. Mycol Res 96(12):1019–1028. https://doi.org/10.1016/S0953-7562(09)80110-X

    Article  CAS  Google Scholar 

  • Fäldt J, Jonsell M, Nordlander G, Borg-Karlson A-K (1999) Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol 25(3):567–590. https://doi.org/10.1023/a:1020958005023

    Article  Google Scholar 

  • Farrell BD, Sequeira AS, O'Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae : Scolytinae and Platypodinae). Evolution 55(10):2011–2027

    Article  PubMed  CAS  Google Scholar 

  • Filipiak M (2018) Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: the ecological stoichiometry of saproxylophagous insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 429–469

    Google Scholar 

  • Filipiak M, Weiner J (2014) How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory. PLoS One 9(12):e115104. https://doi.org/10.1371/journal.pone.0115104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filipiak M, Weiner J (2017) Nutritional dynamics during the development of xylophagous beetles related to changes in the stoichiometry of 11 elements. Physiol Entomol 42(1):73–84. https://doi.org/10.1111/phen.12168

    Article  CAS  Google Scholar 

  • Filipiak M, Sobczyk Ł, Weiner J (2016) Fungal transformation of tree stumps into a suitable resource for xylophagous beetles via changes in elemental ratios. Insects 7(2):13

    Article  PubMed Central  Google Scholar 

  • Fisher RC (1940) Studies on the biology of the death-watch beetle, Xestobium rufovillosum De G. III. Fungal decay in timber in relation to the occurrence and rate of developmemt of the insect. Ann Appl Biol 27(4):12

    Article  Google Scholar 

  • Fisher RC (1941) Studies of the biology of the death-watch beetle, Xestobium rufovillosum De G. IV. The effect of type and extent of fungal decay in timber upon the rate of development of the insect. Ann Appl Biol 28(13):16

    Google Scholar 

  • Florez LV, Biedermann PH, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32(7):904–936. https://doi.org/10.1039/c5np00010f

    Article  PubMed  CAS  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St. John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715–1719. https://doi.org/10.1126/science.1221748

    Article  PubMed  CAS  Google Scholar 

  • Francke-Grosmann H (1956) Hautdrüsen als Träger der Pilzsymbiose bei Ambrosiakäfern. ZMorphuÖkolTiere 45:275–308

    Google Scholar 

  • Francke-Grosmann H (1967) Ectosymbiosis in wood-inhabiting beetles. In: Henry SM (ed) Symbiosis. Academic Press, New York, pp 141–205

    Chapter  Google Scholar 

  • French JRJ, Roeper RA (1972) Interactions of ambrosia beetle, Xyleborus dispar (Coleoptera-Scolytidae), with its symbiotic fungus Ambrosiella hartigii (Fungi Imperfecti). Can Entomol 104(10):1635

    Article  Google Scholar 

  • Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MD, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci Biol 105(35):12932–12937

    Article  Google Scholar 

  • Gibb H, Pettersson RB, Hjälten J, Hilszczanski J, Ball JP, Johansson T, Atlegrim O, Danell K (2006) Conservation-oriented forestry and early successional saproxylic beetles: responses of functional groups to manipulated dead wood substrates. Biol Conserv 129(4):437–450

    Article  Google Scholar 

  • Gilbertson RL (1984) Relationships between insects and wood-rotting basidiomycetes. In: Wheeler Q, Blackwell M (eds) Fungus-insect relationships. Perspectives in ecology and evolution. Columbia University Press, New York, pp 130–165

    Google Scholar 

  • Gilbertson RL, Ryvarden L (1986) North American polypores, vol 1. Fungiflora AS, Oslo

    Google Scholar 

  • Gimmel ML, Ferro ML (2018) General overview of saproxylic Coleoptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 51–128

    Google Scholar 

  • Graves RC (1965) Observations on the ecology, behavior and life cycle of the fungus-feeding beetle, Cypherotylus californicus, with a description of the pupa (Coleoptera: Erotylidae). Coleopter Bull 19(4):117–122

    Google Scholar 

  • Grebennikov VV, Leschen RA (2010) External exoskeletal cavities in Coleoptera and their possible mycangial functions. Entomol Sci 13(1):81–98

    Article  Google Scholar 

  • Greif MD, Currah RS (2003) A functional interpretation of the role of the reticuloperidium in whole-ascoma dispersal by arthropods. Mycol Res 107:77–81

    Article  PubMed  Google Scholar 

  • Greif MD, Currah RS (2007) Patterns in the occurrence of saprophytic fungi carried by arthropods caught in traps baited with rotted wood and dung. Mycologia 99(1):7–19

    Article  PubMed  CAS  Google Scholar 

  • Guevara R, Rayner ADM, Reynolds SE (2000) Effects of fungivory by two specialist ciid beetles (Octotemnus glabriculus and Cis boleti) on the reproductive fitness of their host fungus, Coriolus versicolor. New Phytol 145(1):137–144. https://doi.org/10.1046/j.1469-8137.2000.00552.x

    Article  Google Scholar 

  • Hackman W, Meinander M (1979) Diptera feeding as larvae on macrofungi in Finland. Ann Zool Fenn 16:50–83

    Google Scholar 

  • Hågvar S (1999) Saproxylic beetles visiting living sporocarps of Fomitopsis pinicola and Fomes fomentarius. Norw J Entomol 46:25–32

    Google Scholar 

  • Hågvar S, Økland B (1997) Saproxylic beetle fauna associated with living sporocarps of Fomitopsis pinicola (Fr.) Karst. in four spruce forests with different management histories. Norw J Entomol 44(2):95–105

    Google Scholar 

  • Halbwachs H, Bâssler C (2015) Gone with the wind – a review on basidiospores of lamellate agarics. Mycosphere 6(1):78

    Article  Google Scholar 

  • Hall WE (1999) Generic revision of the tribe Nanosellini (Coleoptera: Ptiliidae: Ptiliinae). Trans Am Entomol Soc (1890–) 125(1/2):39–126

    Google Scholar 

  • Halme P, Vartija N, Salmela J, Penttinen J, Norros V (2013) High within- and between-trunk variation in the nematoceran (Diptera) community and its physical environment in decaying aspen trunks. Insect Conserv Divers 6(4):502–512

    Article  Google Scholar 

  • Hansen LO, Akre RD (1985) Biology of carpenter ants in Washington state (Hymenoptera: Formicidae: Camponotus). Melanderia 43:1–61

    Google Scholar 

  • Hanski I (1989) Fungivory: fungi, insects and ecology. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic Press, London, pp 25–86

    Chapter  Google Scholar 

  • Harrington TC (2005) Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega FE, Blacwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, Oxford, pp 257–291

    Google Scholar 

  • Harrington T, Furniss M, Shaw C (1981) Dissemination of hymenomycetes by Dendroctonus pseudotsugae (Coleoptera: Scolytidae). Phytopathology 71(5):551–554

    Article  Google Scholar 

  • Hayslett M, Juzwik J, Moltzan B (2008) Three Colopterus beetle species carry the oak wilt fungus to fresh wounds on red oak in Missouri. Plant Dis 92(2):270–275

    Article  PubMed  Google Scholar 

  • Hedlund K, Öhrn MS (2000) Tritrophic interactions in a soil community enhance decomposition rates. Oikos 88(3):585–591

    Article  Google Scholar 

  • Hofstetter RW, Moser JC (2014) The role of mites in insect-fungus associations. Annu Rev Entomol 59:537–557. https://doi.org/10.1146/annurev-ento-011613-162039

    Article  PubMed  CAS  Google Scholar 

  • Holmer L, Renvall P, Stenlid J (1997) Selective replacement between species of wood-rotting basidiomycetes, a laboratory study. Mycol Res 101(6):714–720. https://doi.org/10.1017/S0953756296003243

    Article  Google Scholar 

  • Hulcr J, Stelinski LL (2017) The ambrosia symbiosis: from evolutionary ecology to practical management. Annu Rev Entomol 62(62):285–303. https://doi.org/10.1146/annurev-ento-031616-035105

    Article  PubMed  CAS  Google Scholar 

  • Ingold CT, Hudson HJ (1993) Dispersal in fungi. In: The biology of fungi. Springer Netherlands, Dordrecht, pp 119–131. https://doi.org/10.1007/978-94-011-1496-7_7

    Chapter  Google Scholar 

  • Jacobs JM, Work TT (2012) Linking deadwood-associated beetles and fungi with wood decomposition rates in managed black spruce forests. Can J For Res 42(8):1477–1490. https://doi.org/10.1139/x2012-075

    Article  Google Scholar 

  • Jacobsen RM, Birkemoe T, Sverdrup-Thygeson A (2015) Priority effects of early successional insects influence late successional fungi in dead wood. Ecol Evol 5(21):4896–4905. https://doi.org/10.1002/ece3.1751

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobsen RM, Kauserud H, Sverdrup-Thygeson A, Bjorbækmo MM, Birkemoe T (2017) Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol 29:76–84. https://doi.org/10.1016/j.funeco.2017.06.006

    Article  Google Scholar 

  • Jacobsen RM, Sverdrup-Thygeson A, Kauserud H, Birkemoe T (2018a) Revealing hidden insect-fungus interactions; moderately specialized, modular and anti-nested detritivore networks. Proc R Soc B 285:20172833

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobsen RM, Sverdrup-Thygeson A, Kauserud H, Mundra S, Birkemoe T (2018b) Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. (submitted)

    Google Scholar 

  • Jakovlev J (2011) Fungus gnats (Diptera: Sciaroidea) associated with dead wood and wood growing fungi: new rearing data from Finland and Russian Karelia and general analysis of known larval microhabitats in Europe. Entomol Fenn 22:157–189

    Google Scholar 

  • Jaworski T (2018) Diversity of saproxylic Lepidoptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 319–338

    Google Scholar 

  • Johansson T, Olsson J, Hjältén J, Jonsson BG, Ericson L (2006) Beetle attraction to sporocarps and wood infected with mycelia of decay fungi in old-growth spruce forests of northern Sweden. For Ecol Manage 237(1):335–341

    Article  Google Scholar 

  • Johansson T, Hjälten J, Hilszczanski J, Stenlid J, Ball JP, Alinvi O, Danell K (2007) Variable response of different functional groups of saproxylic beetles to substrate manipulation and forest management: implications for conservation strategies. For Ecol Manage 242(2–3):496–510

    Article  Google Scholar 

  • Jonsell M, Nordlander G (1995) Field attraction of Coleoptera to odours of the wood-decaying polypores Fomitopsis pinicola and Fomes fomentarius. In: Ann Zool Fenn, 1995. vol 4. Suomen Biologian Seura Vanamo, Helsinki, 1964–, pp 391–402

    Google Scholar 

  • Jonsell M, Nordlander G (2004) Host selection patterns in insects breeding in bracket fungi. Ecol Entomol 29(6):697–705

    Article  Google Scholar 

  • Jonsell M, Schroeder M, Weslien J (2005) Saproxylic beetles in high stumps of spruce: fungal flora important for determining the species composition. Scand J For Res 20(1):54–62

    Article  Google Scholar 

  • Jönsson MT, Edman M, Jonsson BG (2008) Colonization and extinction patterns of wood-decaying fungi in a boreal old-growth Picea abies forest. J Ecol 96(5):1065–1075

    Article  Google Scholar 

  • Jordal B, Cognato A (2012) Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evol Biol 12(1):133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jordal BH, Beaver RA, Kirkendall LR (2001) Breaking taboos in the tropics: incest promotes colonization by wood-boring beetles. Global Ecol Biogeogr 10:345–357

    Article  Google Scholar 

  • Jordal BH, Sequeira AS, Cognato AI (2011) The age and phylogeny of wood boring weevils and the origin of subsociality. Mol Phylogenet Evo 59(3):708–724

    Article  Google Scholar 

  • Jørgensen HB, Elmholt S, Petersen H (2003) Collembolan dietary specialisation on soil grown fungi. Biol Fertil Soils 39(1):9–15. https://doi.org/10.1007/s00374-003-0674-6

    Article  Google Scholar 

  • Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol 47(4):215–222. https://doi.org/10.1016/j.ejsobi.2011.05.005

    Article  Google Scholar 

  • Junninen K, Komonen A (2011) Conservation ecology of boreal polypores: a review. Biol Conserv 144(1):11–20

    Article  Google Scholar 

  • Jusino MA, Lindner DL, Banik MT, Rose KR, Walters JR (2016) Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi. Proc R Soc B Biol Sci 283(1827). https://doi.org/10.1098/rspb.2016.0106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kadowaki K, Leschen RA, Beggs JR (2011a) No evidence for a Ganoderma spore dispersal mutualism in an obligate spore-feeding beetle Zearagytodes maculifer. Fungal Biol-UK 115(8):768–774

    Article  Google Scholar 

  • Kadowaki K, Leschen RAB, Beggs JR (2011b) Competition–colonization dynamics of spore-feeding beetles on the long-lived bracket fungi Ganoderma in New Zealand native forest. Oikos 120(5):776–786. https://doi.org/10.1111/j.1600-0706.2011.19302.x

    Article  Google Scholar 

  • Kaila L, Martikainen P, Punttila P, Yakovlev E (1994) Saproxylic beetles (Coleoptera) on dead birch trunks decayed by different polypore species. Ann Zool Fenn 31:97–107

    Google Scholar 

  • Kaneko T, Takagi K (1966) Biology of some scolytid ambrosia beetles attacking tea plants: VI. A comparative study of two ambrosia fungi associated with Xyleborus compactus EICHHOFF and Xyleborus germanus BLANFORD (Coleoptera: Scolytidae). Appl Entomol Zool 1(4):173–176. https://doi.org/10.1303/aez.1.173

    Article  Google Scholar 

  • Kasson MT, Wickert KL, Stauder CM, Macias AM, Berger MC, Simmons DR, Short DPG, DeVallance DB, Hulcr J (2016) Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles. Fungal Ecol 23:86–96. https://doi.org/10.1016/j.funeco.2016.07.002

    Article  Google Scholar 

  • Keeling CI, Yuen MM, Liao NY, Roderick Docking T, Chan SK, Taylor GA, Palmquist DL, Jackman SD, Nguyen A, Li M, Henderson H, Janes JK, Zhao Y, Pandoh P, Moore R, Sperling FA, W Huber DP, Birol I, Jones SJ, Bohlmann J (2013) Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol 14(3):R27. https://doi.org/10.1186/gb-2013-14-3-r27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirisits T (2004) Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Springer Netherlands, Dordrecht, pp 181–236. https://doi.org/10.1007/978-1-4020-2241-8_10

    Chapter  Google Scholar 

  • Kirkendall LR, Biedermann PHW, Jordal BH (2015) Evolution and diversity of bark and ambrosia beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles: biology and ecology of native and invasive species. Academic Press, London, pp 85–156

    Chapter  Google Scholar 

  • Klepzig KD, Adams AS, Handelsman J, Raffa KF (2009) Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ Entomol 38(1):67–77. https://doi.org/10.1603/022.038.0109

    Article  PubMed  CAS  Google Scholar 

  • Klironomos JN, Hart MM (2001) Food-web dynamics: animal nitrogen swap for plant carbon. Nature 410(6829):651–652

    Article  PubMed  CAS  Google Scholar 

  • Koehler F (2000) Saproxylic beetles in nature forests of the northern Rhineland. Comparative studies on the saproxylic beetles of Germany and contributions to German nature forest research. Schrr LÖBF/LAfAO NRW (Recklinghausen) 18:1–351

    Google Scholar 

  • Komonen A, Jonsell M, Okland B, Sverdrup-Thygeson A, Thunes K (2004) Insect assemblage associated with the polypore Fomitopsis pinicola: a comparison across Fennoscandia. Entomol Fenn 15(2):102–112

    Google Scholar 

  • Krasutskii B (2006) Beetles (Coleoptera) associated with the birch fungus Piptoporus betulinus (Bull.: Fr.) P. Karst.(Basidiomycetes, Aphyllophorales) in forests of the Urals and Transurals. Entomol Rev 86(8):889–900

    Article  Google Scholar 

  • Krasutskii B (2007a) Coleoptera associated with Fomitopsis pinicola (Sw.: Fr.) Karst. (Basidiomycetes, Aphyllophorales) in the forests of the Urals and Transurals. Entomol Rev 87(7):848–858

    Article  Google Scholar 

  • Krasutskii BV (2007b) Beetles (Coleoptera) associated with the polypore Daedaleopsis confragosa (Bolton: Fr.) J. Schrot (Basidiomycetes, Aphyllophorales) in forests of the Urals and Transurals. Entomol Rev 87(5):512–523. https://doi.org/10.1134/s0013873807050028

    Article  Google Scholar 

  • Krasutskii B (2010) Coleoptera associated with the tree fungus Trichaptum biforme (Fr. in Klotzsch) (Basidiomycetes, Aphyllophorales) in the forests of the Urals and the Trans-Ural area. Entomol Rev 90(6):679–688

    Article  Google Scholar 

  • Krokene P (2015) Conifer defense and resistance to bark beetles. In: Hofstetter RW, Vega FE (eds) Bark beetles. Academic Press, San Diego, pp 177–207. https://doi.org/10.1016/B978-0-12-417156-5.00005-8

    Chapter  Google Scholar 

  • Kubartova A, Ottosson E, Dahlberg A, Stenlid J (2012) Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol Ecol 21(18):4514–4532

    Article  PubMed  CAS  Google Scholar 

  • Kubartová A, Ottosson E, Stenlid J (2015) Linking fungal communities to wood density loss after 12 years of log decay. FEMS Microbiol Ecol 91(5)

    Google Scholar 

  • Kukor JJ, Martin MM (1983) Acquisition of digestive enzymes by siricid woodwasps from their fungal symbiont. Science 220(4602):1161–1163

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JF (1973) Host preference in ciid beetles (Coleoptera: ciidae) inhabiting the fruiting bodies of Basidiomycetes in North America. Bull Mus Comp Zool Harv Univ 138(2):29–51

    Google Scholar 

  • Lawrence JF (1989) Mycophagy in the Coleoptera: feeding strategies and morphological adaptations. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic Press, London, pp 1–23

    Google Scholar 

  • Lawrence JF, Powell JA (1969) Host relationships in North American fungus-feeding moths (Oecophoridae, Oinophilidae, Tineidae). Bull Mus Comp Zool Harv Univ 138(2):29–51

    Google Scholar 

  • Leach JG, Orr L, Christensen C (1937) Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. J Agric Res 55(2)

    Google Scholar 

  • Leather SR, Baumgart EA, Evans HF, Quicke DLJ (2014) Seeing the trees for the wood-beech (Fagus sylvatica) decay fungal volatiles influence the structure of saproxylic beetle communities. Insect Conserv Divers 7(4):314–326. https://doi.org/10.1111/icad.12055

    Article  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97(4):762–769

    Article  PubMed  Google Scholar 

  • Lim T (1977) Production, germination and dispersal of basidiospores of Ganoderma pseudoferreum on Hevea. J Rubber Res I Malay 25(2):93–99

    Google Scholar 

  • Lindblad I (1998) Wood-inhabiting fungi on fallen logs of Norway spruce: relations to forest management and substrate quality. Nord J Bot 18(2):243–255

    Article  Google Scholar 

  • Makipaa R, Rajala T, Schigel D, Rinne KT, Pennanen T, Abrego N, Ovaskainen O (2017) Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J. https://doi.org/10.1038/ismej.2017.57

  • Malloch D, Blackwell M (1992) Dispersal of fungal diaspores. In: Carroll G, Wicklow D (eds) The fungal community: its organization and role in the ecosystem, vol 9. Mycology. Marcel Dekker, New York, pp 147–171

    Google Scholar 

  • Maraun M, Martens H, Migge S, Theenhaus A, Scheu S (2003) Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39(2):85–95

    Article  Google Scholar 

  • Marini L, Bruun HH, Heikkinen RK, Helm A, Honnay O, Krauss J, Kuhn I, Lindborg R, Partel M, Bommarco R (2012) Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Divers Distrib 18(9):898–908

    Article  Google Scholar 

  • Martin MM (1979) Biochemical implications of insect mycophagy. Biol Rev Camb Philos 54(1):1–21

    Article  CAS  Google Scholar 

  • Martin MM (1983) Cellulose digestion in insects. Comp Biochem Phys A 75(3):313–324. https://doi.org/10.1016/0300-9629(83)90088-9

    Article  Google Scholar 

  • Martin MM (1992) The evolution of insect-fungus associations - from contact to stable symbiosis. Am Zool 32(4):593–605

    Article  Google Scholar 

  • Mayers CG, Mcnew DL, Harrington TC, Roeper RA, Fraedrich SW, Biedermann PHW, Castrillo LA, Reed SE (2015) Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biol-UK 119(11):1075–1092. https://doi.org/10.1016/j.funbio.2015.08.002

    Article  Google Scholar 

  • McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, Mitchell RF, Waterhouse RM, Ahn S-J, Arsala D, Benoit JB, Blackmon H, Bledsoe T, Bowsher JH, Busch A, Calla B, Chao H, Childers AK, Childers C, Clarke DJ, Cohen L, Demuth JP, Dinh H, Doddapaneni H, Dolan A, Duan JJ, Dugan S, Friedrich M, Glastad KM, Goodisman MAD, Haddad S, Han Y, Hughes DST, Ioannidis P, Johnston JS, Jones JW, Kuhn LA, Lance DR, Lee C-Y, Lee SL, Lin H, Lynch JA, Moczek AP, Murali SC, Muzny DM, Nelson DR, Palli SR, Panfilio KA, Pers D, Poelchau MF, Quan H, Qu J, Ray AM, Rinehart JP, Robertson HM, Roehrdanz R, Rosendale AJ, Shin S, Silva C, Torson AS, Jentzsch IMV, Werren JH, Worley KC, Yocum G, Zdobnov EM, Gibbs RA, Richards S (2016) Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol 17(1):227. https://doi.org/10.1186/s13059-016-1088-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Micó E (2018) Saproxylic insects in tree hollows. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 693–727

    Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TKF, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346(6210):763–767. https://doi.org/10.1126/science.1257570

    Article  PubMed  CAS  Google Scholar 

  • Montoya D, Zavala MA, Rodriguez MA, Purves DW (2008) Animal versus wind dispersal and the robustness of tree species to deforestation. Science 320(5882):1502–1504

    Article  PubMed  CAS  Google Scholar 

  • Mound L (1974) Spore-feeding thrips (Phlaeothripidae) from leaf litter and dead wood in Australia. Aust J Zool Suppl Ser 22(27):1–106. https://doi.org/10.1071/AJZS027

    Article  Google Scholar 

  • Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol S 36:563–595. https://doi.org/10.1146/annurev.ecolsys.36.102003.152626

    Article  Google Scholar 

  • Müller MM, Varama M, Heinonen J, Hallaksela A-M (2002) Influence of insects on the diversity of fungi in decaying spruce wood in managed and natural forests. For Ecol Manag 166(1):165–181

    Article  Google Scholar 

  • Müller DWH, Codron D, Meloro C, Munn A, Schwarm A, Hummel J, Clauss M (2013) Assessing the Jarman–Bell principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp Biochem Phys A 164(1):129–140. https://doi.org/10.1016/j.cbpa.2012.09.018

    Article  CAS  Google Scholar 

  • Nakashima T, Iizuka T, Ogura K, Maeda M, Tanaka T (1972) Isolation of some microorganisms associated with five species of ambrosia beetles and two kinds of antibiotics produced by Xv-3 strain in this isolates. J Fac Agric Hokkaido Univ 61:60–72

    Google Scholar 

  • N'Dri AB, Gignoux J, Konaté S, Dembélé A, Aïdara D (2011) Origin of trunk damage in West African savanna trees: the interaction of fire and termites. J Trop Ecol 27(3):269–278

    Article  Google Scholar 

  • Neger FW (1909) Ambrosiapilze. ii. Die Ambrosia der Holzbohrkafer. Berlin Ber D bot Ges 27(372-389)

    Google Scholar 

  • Newell K (1984) Interaction between two decomposer basidiomycetes and a collembolan under Sitka spruce: grazing and its potential effects on fungal distribution and litter decomposition. Soil Biol Biochem 16(3):235–239. https://doi.org/10.1016/0038-0717(84)90007-5

    Article  Google Scholar 

  • Nielsen MT, Klejnstrup ML, Rohlfs M, Anyaogu DC, Nielsen JB, Gotfredsen CH, Andersen MR, Hansen BG, Mortensen UH, Larsen TO (2013) Aspergillus nidulans synthesize insect juvenile hormones upon expression of a heterologous regulatory protein and in response to grazing by Drosophila melanogaster larvae. PLoS One 8(8):e73369. https://doi.org/10.1371/journal.pone.0073369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikitsky NB, Schigel DS (2004) Beetles in polypores of the Moscow region: checklist and ecological notes. Entomol Fenn 15(1):6–22

    Google Scholar 

  • Nilsson T (1976) Soft-rot fungi - decay patterns and enzyme production. In: Becker G, Liese W (eds) Organismen und Holz. Duncker und Humblot, Berlin, pp 103–112

    Google Scholar 

  • Nobre T, Rouland-Lefèvre C, Aanen DK (2011) Comparative biology of fungus cultivation in termites and ants. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer Netherlands, Dordrecht, pp 193–210. https://doi.org/10.1007/978-90-481-3977-4_8

    Chapter  Google Scholar 

  • Norros V (2013) Measuring and modelling airborne dispersal in wood decay fungi. University of Helsinki

    Google Scholar 

  • Norros V, Penttila R, Suominen M, Ovaskainen O (2012) Dispersal may limit the occurrence of specialist wood decay fungi already at small spatial scales. Oikos 121(6):961–974

    Article  Google Scholar 

  • Nuss I (1982) Die Bedeutung der Proterosporen: Schlußfolgerungen aus Untersuchungen anGanoderma (Basidiomycetes). Plant Syst Evol 141(1):53–79

    Article  Google Scholar 

  • Økland B (1995) Insect fauna compared between six polypore species in a southern Norwegian spruce forest. Fauna Norv Ser B 42:21–26

    Google Scholar 

  • Økland B (1996) Unlogged forests: important sites for preserving the diversity of mycetophilids (Diptera: Sciaroidea). Biol Conserv 76(3):297–310. https://doi.org/10.1016/0006-3207(95)00129-8

    Article  Google Scholar 

  • Orledge GM, Reynolds SE (2005) Fungivore host-use groups from cluster analysis: patterns of utilisation of fungal fruiting bodies by ciid beetles. Ecol Entomol 30(6):620–641. https://doi.org/10.1111/j.0307-6946.2005.00727.x

    Article  Google Scholar 

  • Ottosson E (2013) Succession of wood-inhabiting fungal communities, PhD thesis. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Ottosson E, Kubartová A, Edman M, Jönsson M, Lindhe A, Stenlid J, Dahlberg A (2015) Diverse ecological roles within fungal communities in decomposing logs of Picea abies. FEMS Microbiol Ecol 91(3):fiv012

    Google Scholar 

  • Ovaskainen O, Schigel D, Ali-Kovero H, Auvinen P, Paulin L, Norden B, Norden J (2013) Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME J 7(9):1696–1709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owen-Smith RN (1988) Megaherbivores. The influence of very large body size on ecology, Cambridge studies in ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Parfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3(4):338–346

    Article  Google Scholar 

  • Park MS, Fong JJ, Lee H, Shin S, Lee S, Lee N, Lim YW (2014) Determination of coleopteran insects associated with spore dispersal of Cryptoporus volvatus (Polyporaceae: Basidiomycota) in Korea. J Asia-Pac Entomol 17(4):647–651

    Article  Google Scholar 

  • Paviour-Smith K (1960) The fruiting-bodies of macrofungi as habitats for beetles of the family Clidae (Coleoptera). Oikos 11 (1):43–71. https://doi.org/10.2307/3564883

    Article  Google Scholar 

  • Persiani AM, Audisio P, Lunghini D, Maggi O, Granito VM, Biscaccianti AB, Chiavetta U, Marchetti M (2010) Linking taxonomical and functional biodiversity of saproxylic fungi and beetles in broad-leaved forests in southern Italy with varying management histories. Plant Biosyst 144(1):250–261. https://doi.org/10.1080/11263500903561114

    Article  Google Scholar 

  • Persson Y, Ihrmark K, Stenlid J (2011) Do bark beetles facilitate the establishment of rot fungi in Norway spruce? Fungal Ecol 4(4):262–269

    Article  Google Scholar 

  • Pettey TM, Shaw CG (1986) Isolation of Fomitopsis pinicola from in-flight bark beetles (Coleoptera: Scolytidae). Can J Bot 64(7):1507–1509

    Article  Google Scholar 

  • Poldmaa K, Kaasik A, Tammaru T, Kurina O, Jurgenstein S, Teder T (2016) Polyphagy on unpredictable resources does not exclude host specialization: insects feeding on mushrooms. Ecology 97(10):2824–2833

    Article  PubMed  Google Scholar 

  • Pollierer MM, Langel R, Scheu S, Maraun M (2009) Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (N-15/N-14 and C-13/C-12). Soil Biol Biochem 41(6):1221–1226

    Article  CAS  Google Scholar 

  • Rajala T, Peltoniemi M, Hantula J, Makipaa R, Pennanen T (2011) RNA reveals a succession of active fungi during the decay of Norway spruce logs. Fungal Ecol 4(6):437–448. https://doi.org/10.1016/j.funeco.2011.05.005

    Article  Google Scholar 

  • Rajala T, Peltoniemi M, Pennanen T, Makipaa R (2012) Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol Ecol 81(2):494–505. https://doi.org/10.1111/j.1574-6941.2012.01376.x

    Article  PubMed  CAS  Google Scholar 

  • Rajala T, Tuomivirta T, Pennanen T, Mäkipää R (2015) Habitat models of wood-inhabiting fungi along a decay gradient of Norway spruce logs. Fungal Ecol 18:48–55. https://doi.org/10.1016/j.funeco.2015.08.007

    Article  Google Scholar 

  • Ranius T, Jansson N (2000) The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol Conserv 95(1):85–94. https://doi.org/10.1016/S0006-3207(00)00007-0

    Article  Google Scholar 

  • Rawlins JE (1984) Mycophagy in Lepidoptera. In: Wheeler Q, Blackwell M (eds) Fungus-insect relationships: perspectives in ecology and evolution. Columbia University Press, New York

    Google Scholar 

  • Rayner A, Boddy L (1988) Fungal communities in the decay of wood. In: Advances in microbial ecology, vol 10. Springer, Berlin, pp 115–166

    Chapter  Google Scholar 

  • Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT, Göker M, Salamov AA, Wisecaver JH, Long TM, Calvey CH, Aerts AL, Barry KW, Choi C, Clum A, Coughlan AY, Deshpande S, Douglass AP, Hanson SJ, Klenk H-P, LaButti KM, Lapidus A, Lindquist EA, Lipzen AM, Meier-Kolthoff JP, Ohm RA, Otillar RP, Pangilinan JL, Peng Y, Rokas A, Rosa CA, Scheuner C, Sibirny AA, Slot JC, Stielow JB, Sun H, Kurtzman CP, Blackwell M, Grigoriev IV, Jeffries TW (2016) Comparative genomics of biotechnologically important yeasts. Proc Natl Acad Sci Biol 113(35):9882–9887. https://doi.org/10.1073/pnas.1603941113

    Article  CAS  Google Scholar 

  • Rohlfs M (2015) Fungal secondary metabolite dynamics in fungus-grazer interactions: novel insights and unanswered questions. Front Microbiol 5

    Google Scholar 

  • Rösch R, Liese W (1971) Untersuchungen über die Enzyme von Bläuepilzen. Archiv für Mikrobiologie 76(3):212–218. https://doi.org/10.1007/bf00409117

    Article  PubMed  Google Scholar 

  • Saucedo JR, Ploetz RC, Konkol JL, Ángel M, Mantilla J, Menocal O, Carrillo D (2017) Nutritional symbionts of a putative vector, Xyleborus bispinatus, of the laurel wilt pathogen of avocado, Raffaelea lauricola. Symbiosis. https://doi.org/10.1007/s13199-017-0514-3

  • Schigel DS (2011) Polypore-beetle associations in Finland. Ann Zool Fenn 48(6):319–348

    Article  Google Scholar 

  • Schigel D (2012) Fungivory of saproxylic Coleoptera: the mystery of rejected polypores. Stud For Slov 137:53–58

    Google Scholar 

  • Schigel D, Niemelä T, Kinnunen J (2006) Polypores of western Finnish Lapland and seasonal dynamics of polypore beetles. Karstenia 46:37–64

    Article  Google Scholar 

  • Schlick-Steiner BC, Steiner FM, Konrad H, Seifert B, Christian E, Moder K, Stauffer C, Crozier RH (2008) Specificity and transmission mosaic of ant nest-wall fungi. Proc Natl Acad Sci USA 105(3):940–943. https://doi.org/10.1073/pnas.0708320105

    Article  PubMed  PubMed Central  Google Scholar 

  • Schupp EW, Jordano P, Gomez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188(2):333–353

    Article  PubMed  Google Scholar 

  • Seibold S, Mueller J, Baldrian P, Cadotte MW, Stursova M, Biedermann PHW, Baessler C (2018) Vectoring of fungi by beetles dispersing from dead wood – Let’s take the beetle bus! Am Nat (submitted)

    Google Scholar 

  • Seifert B (2006) Social cleptogamy in the ant subgenus Chthonolasius - survival as a minority. Abhandlungen und Berichte des Naturkundemuseums Görlitz 77:251–276

    Google Scholar 

  • Sevcik J (2001) Diptera (excluding Mycetophilidae S. str.) associated with fungi in Czech and Slovak Republics: a survey of rearing records from 1998-2000. Acta Universitatis Carolinae Biologica 45:157–168

    Google Scholar 

  • Sevcik J (2003) Insects associated with wood-decaying fungi in the Czech and Slovak republics: a review of present knowledge. Biol Ecol:9

    Google Scholar 

  • Shaw PJA (1992) Fungi, fungivores and fungal food webs. In: Carroll G, Wicklow D (eds) The fungal community: its organisation and role in ecosystems. CRC Press, New York, pp 295–310

    Google Scholar 

  • Sherwood-Pike MA, Gray J (1985) Silurian fungal remains: probable records of the Class Ascomycetes. Lethaia 18(1):1–20. https://doi.org/10.1111/j.1502-3931.1985.tb00680.x

    Article  Google Scholar 

  • Siitonen J, Ranius T (2015) The importance of veteran trees for saproxylic insects. In: Kirby KJ, Watkins C (eds) Europe’s changing woods and forests: from wildwood to managed landscapes. CABI, Oxfordshire

    Google Scholar 

  • Six DL (2003) A comparison of mycangial and phoretic fungi of individual mountain pine beetles. Can J For Res 33(7):1331–1334. https://doi.org/10.1139/X03-047

    Article  Google Scholar 

  • Six DL (2012) Ecological and evolutionary determinants of bark beetle-fungus symbioses. Insects 3(1):339–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Six D (2013) The bark beetle holobiont: why microbes matter. J Chem Ecol:1–14. https://doi.org/10.1007/s10886-013-0318-8

  • Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stötefeld L, Scheu S, Rohlfs M (2012) Fungal chemical defence alters density-dependent foraging behaviour and success in a fungivorous soil arthropod. Ecol Entomol 37(5):323–329. https://doi.org/10.1111/j.1365-2311.2012.01373.x

    Article  Google Scholar 

  • Strid Y, Schroeder M, Lindahl B, Ihrmark K, Stenlid J (2014) Bark beetles have a decisive impact on fungal communities in Norway spruce stem sections. Fungal Ecol 7:47–58. https://doi.org/10.1016/j.funeco.2013.09.003

    Article  Google Scholar 

  • Suh SO, Blackwell M (2005) Four new yeasts in the Candida mesenterica clade associated with basidiocarp-feeding beetles. Mycologia 97(1):167–177

    Article  PubMed  Google Scholar 

  • Suh SO, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109(Pt 3):261–265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sverdrup-Thygeson A, Skarpaas O, Odegaard F (2010) Hollow oaks and beetle conservation: the significance of the surroundings. Biodivers Conserv 19(3):837–852. https://doi.org/10.1007/s10531-009-9739-7

    Article  Google Scholar 

  • Swift MJ, Boddy L (1984) Animal-microbial interactions during wood decomposition. In: Anderson JM, Rayner ADM, Walton DWH (eds) Invertebrate-microbe interactions. Cambridge University Press, Cambridge, pp 89–131

    Google Scholar 

  • Talbot P (1952) Dispersal of fungus spores by small animals inhabiting wood and bark. Trans Br Mycol Soc 35(2):123–128

    Article  Google Scholar 

  • Tanahashi M, Hawes CJ (2016) The presence of a mycangium in European Sinodendron cylindricum (Coleoptera: Lucanidae) and the associated yeast symbionts. J Insect Sci 16(1):76. https://doi.org/10.1093/jisesa/iew054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanahashi M, Matsushita N, Togashi K (2009) Are stag beetles fungivorous? J Insect Physiol 55(11):983–988. https://doi.org/10.1016/j.jinsphys.2009.07.002

    Article  PubMed  CAS  Google Scholar 

  • Tanahashi M, Kubota K, Matsushita N, Togashi K (2010) Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften 97(3):311–317

    Article  PubMed  CAS  Google Scholar 

  • Thompson BM, Grebenok RJ, Behmer ST, Gruner DS (2013) Microbial symbionts Shape the sterol profile of the xylem-feeding woodwasp, Sirex noctilio. J Chem Ecol 39(1):129–139. https://doi.org/10.1007/s10886-012-0222-7

    Article  PubMed  CAS  Google Scholar 

  • Thompson BM, Bodart J, McEwen C, Gruner DS (2014) Adaptations for symbiont-mediated external digestion in Sirex noctilio (Hymenoptera: Siricidae). Ann Entomol Soc Am 107(2):453–460. https://doi.org/10.1603/An13128

    Article  Google Scholar 

  • Thorn S, Müller J, Bässler C, Gminder A, Brandl R, Heibl C (2015) Host abundance, durability, basidiome form and phylogenetic isolation determine fungivore species richness. Biol J Linn Soc 114(3):699–708. https://doi.org/10.1111/bij.12447

    Article  Google Scholar 

  • Thunes KH, Midtgaard F, Gjerde I (2000) Diversity of coleoptera of the bracket fungus Fomitopsis pinicola in a Norwegian spruce forest. Biodivers Conserv 9(6):833–852

    Article  Google Scholar 

  • Toong YC, Schooley DA, Baker FC (1988) Isolation of insect juvenile hormone III from a plant. Nature 333(6169):170–171

    Article  CAS  Google Scholar 

  • Tordoff GM, Boddy L, Jones TH (2008) Species-specific impacts of collembola grazing on fungal foraging ecology. Soil Biol Biochem 40(2):434–442. https://doi.org/10.1016/j.soilbio.2007.09.006

    Article  CAS  Google Scholar 

  • Tuno N (1999) Insect feeding on spores of a bracket fungus, Elfvingia applanata (Pers.) Karst. (Ganodermataceae, Aphyllophorales). Ecol Res 14(2):97–103

    Article  Google Scholar 

  • Ulyshen MD (2015) Insect-mediated nitrogen dynamics in decomposing wood. Ecol Entomol 40:97–112

    Article  Google Scholar 

  • Ulyshen MD (2018) Saproxylic Diptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 167–192

    Google Scholar 

  • Ulyshen MD, Muller J, Seibold S (2016) Bark coverage and insects influence wood decomposition: direct and indirect effects. Appl Soil Ecol 105:25–30. https://doi.org/10.1016/j.apsoil.2016.03.017

    Article  Google Scholar 

  • Urbina H, Blackwell M (2012) Multilocus phylogenetic study of the scheffersomyces yeast clade and characterization of the N-terminal region of xylose reductase gene. PLoS One 7(6). https://doi.org/10.1371/journal.pone.0039128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urbina H, Schuster J, Blackwell M (2013) The gut of Guatemalan passalid beetles: a habitat colonized by cellobiose- and xylose-fermenting yeasts. Fungal Ecol 6(5):339–355. https://doi.org/10.1016/j.funeco.2013.06.005

    Article  Google Scholar 

  • van der Wal A, Ottosson E, de Boer W (2015) Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology 96(1):124–133

    Article  PubMed  Google Scholar 

  • Vega FE, Blacwell M (eds) (2005) Insect-fungal associations: ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Vega FE, Dowd PF (2005) The role of yeasts as insect endosymbionts. In: Vega FE, Blackwell M (eds) Insect-fungal assocations: ecology and evolution. Oxford University Press, New York, pp 211–243

    Google Scholar 

  • Walker LP, Wilson DB (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 36(1):3–14. https://doi.org/10.1016/0960-8524(91)90095-2

    Article  CAS  Google Scholar 

  • Watkinson SC, Boddy L, Money N (2015) The fungi. Academic Press, London

    Google Scholar 

  • Werner PA, Prior LD (2007) Tree-piping termites and growth and survival of host trees in savanna woodland of north Australia. J Trop Ecol 23(06):611–622

    Article  Google Scholar 

  • Weslien J, Djupström LB, Schroeder M, Widenfalk O (2011) Long-term priority effects among insects and fungi colonizing decaying wood. J Anim Ecol 80(6):1155–1162

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler Q, Blackwell M (eds) (1984) Fungus-insect relationships. Columbia University Press, New York

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci Biol 95(12):6578–6583

    Article  CAS  Google Scholar 

  • Wilding N, Collins NM, Hammond PM, Webber JF (eds) (1989) Insect-fungus interactions. Academic Press, London

    Google Scholar 

  • Wood TG, Thomas JR (1989) The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins CD, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic Press, London, pp 69–92

    Chapter  Google Scholar 

  • Yamashita S, Ando K, Hoshina H, Ito N, Katayama Y, Kawanabe M, Maruyama M, Itioka T (2015) Food web structure of the fungivorous insect community on bracket fungi in a Bornean tropical rain forest. Ecol Entomol 40(4):390–400. https://doi.org/10.1111/een.12200

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Fonck M, van Hal J, Cornelissen JHC, Berg MP (2014) Diversity of macro-detritivores in dead wood is influenced by tree species, decay stage and environment. Soil Biol Biochem 78:288–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tone Birkemoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Birkemoe, T., Jacobsen, R.M., Sverdrup-Thygeson, A., Biedermann, P.H.W. (2018). Insect-Fungus Interactions in Dead Wood Systems. In: Ulyshen, M. (eds) Saproxylic Insects. Zoological Monographs, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75937-1_12

Download citation

Publish with us

Policies and ethics