Skip to main content
Log in

Microbial Symbionts Shape the Sterol Profile of the Xylem-Feeding Woodwasp, Sirex noctilio

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The symbiotic fungus Amylostereum areolatum is essential for growth and development of larvae of the invasive woodwasp, Sirex noctilio. In the nutrient poor xylem of pine trees, upon which Sirex feeds, it is unknown whether Amylostereum facilitates survival directly through consumption (mycetophagy) and/or indirectly through digestion of recalcitrant plant polymers (external rumen hypothesis). We tested these alternative hypotheses for Amylostereum involvement in Sirex foraging using the innate dependency of all insects on dietary sources of sterol and the unique sterols indicative of fungi and plants. We tested alternative hypotheses by using GC-MS to quantify concentrations of free and bound sterol pools from multiple life-stages of Sirex, food sources, and waste products in red pine (Pinus resinosa). Cholesterol was the primary sterol found in all life-stages of Sirex. However, cholesterol was not found in significant quantities in either plant or fungal resources. Ergosterol was the most prevalent sterol in Amylostereum but was not detectable in either wood or insect tissue (<0.001 μg/g). Phytosterols were ubiquitous in both pine xylem and Sirex. Therefore, dealkylation of phytosterols (sitosterol and campesterol) is the most likely pathway to meet dietary demand for cholesterol in Sirex. Ergosterol concentrations from fungal-infested wood demonstrated low fungal biomass, which suggests mycetophagy is not the primary source of sterol or bulk nutrition for Sirex. Our findings suggest there is a potentially greater importance for fungal enzymes, including the external digestion of recalcitrant plant polymers (e.g., lignin and cellulose), shaping this insect-fungal symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aanen, D. K. 2002. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl. Acad. Sci. U. S. A. 99:14887–14892.

    Article  PubMed  CAS  Google Scholar 

  • Adams, A. S., Jordan, M. S., Adams, S. M., Suen, G., Goodwin, L. A., Davenport, K. W., Currie, C. R., and Raffa, K. F. 2011. Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J. 5:1323–1331.

    Article  PubMed  CAS  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.

    PubMed  CAS  Google Scholar 

  • Batra, L. R. 1966. Ambrosia fungi: Extent of specificity to ambrosia beetles. Science 153:193–195.

    Article  PubMed  CAS  Google Scholar 

  • Behmer, S. and Grebenok, R. 1998. Impact of dietary sterols on life-history traits of a caterpillar. Physiol. Entomol. 23:165–175.

    Article  CAS  Google Scholar 

  • Behmer, S. T., and Nes, D. 2003. Insect Sterol Nutrition and Physiology: A Global Overview, pp. 1–72, Advances in Insect Physiology. Elsevier.

  • Behmer, S. T., Elias, D. O., and Grebenok, R. J. 1999. Phytosterol metabolism and absorption in the generalist grasshopper, Schistocerca americana (Orthoptera: Acrididae). Arch. Insect Biochem. Physiol. 42:13–25.

    Article  PubMed  CAS  Google Scholar 

  • Bentz, B. J. and Six, D. L. 2006. Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). Ann. Entomol. Soc. Am. 99:189–194.

    Article  CAS  Google Scholar 

  • Blanchette, R. A. 1991. Delignification by wood-decay fungi. Annu. Rev. Phytopathol. 29:381–403.

    Article  CAS  Google Scholar 

  • Bordeaux, J. M. 2008. Characterization of growth conditions for production of a laccase-like phenoloxidase by Amylostereum areolatum, a fungal pathogen of pines and other conifers. Masters thesis. University of Georgia.

  • Böröczky, K., Crook, D. J., Jones, T. H., Kenny, J. C., Zylstra, K. E., Mastro, V. C., and Tumlinson, J. H. 2009. Monoalkenes as contact sex pheromone components of the woodwasp Sirex noctilio. J. Chem. Ecol. 35:1202–1211.

    Article  PubMed  Google Scholar 

  • Carnegie, A. J., Matsuki, M., Haugen, D. A., Hurley, B. P., Ahumada, R., Klasmer, P., Sun, J., and Iede, E. T. 2006. Predicting the potential distribution of Sirex noctilio (Hymenoptera: Siricidae), a significant exotic pest of Pinus plantations. Ann. For. Sci. 63:10.

    Article  Google Scholar 

  • Cartwright, K. S. G. 1938. A Further note on fungus association in the Siricidae. Ann. Appl. Biol. 25:430–432.

    Article  Google Scholar 

  • Ciufo, L. F., Murray, P. A., Thompson, A., Rigden, D. J., and Rees, H. H. 2011. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori. PLoS One 6:e21316.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, R. B. 1964. The utilization of sterols by insects. J. Lipid Res. 5:3–19.

    CAS  Google Scholar 

  • Cooperband, M. F., Böröczky, K., Hartness, A., Jones, T. H., Zylstra, K. E., Tumlinson, J. H., and Mastro, V. C. 2012. Male-produced pheromone in the European woodwasp, Sirex noctilio. J. Chem. Ecol. 38:52–62.

    Article  PubMed  CAS  Google Scholar 

  • Coutts, M. P. 1969. The mechanism of pathogenicity of Sirex noctilio on Pinus radiata.: Effects of the symbiotic fungus Amylostereum spp. (Thelophoraceae). Aust. J. Biol. Sci. 22:915–924.

    Google Scholar 

  • Currie, C. R., Wong, B., Stuart, A. E., Schultz, T. R., Rehner, S. A., Mueller, U. G., Sung, G.-H., Spatafora, J. W., and Straus, N. A. 2003. Ancient tripartite coevolution in the Attine ant-microbe symbiosis. Science 299:386–388.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, A. E. 2009. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23:38–47.

    Article  Google Scholar 

  • Eliyahu, D., Nojima, S., Capracotta, S., Comins, D., and Schal, C. 2008. Identification of cuticular lipids eliciting interspecific courtship in the German cockroach, Blattella germanica. Naturwissenschaften 95:403–412.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, B. D., Sequeira, A. S., O’Meara, B. C., Normark, B. B., Chung, J. H., and Jordal, B. H. 2001. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027.

    PubMed  CAS  Google Scholar 

  • Francke-Grosman, H. 1939. On the symbiosis of woodwasps (Siricinae) with fungi. Z. Angew. Entomol. 25:647–679.

    Article  Google Scholar 

  • Gardes, M. and Bruns, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 2:113–118.

    Article  PubMed  CAS  Google Scholar 

  • Geib, S. M., Filley, T. R., Hatcher, P. G., Hoover, K., Carlson, J. E., del Mar Jimenez-Gasco, M., Nakagawa-Izumi, A., Sleighter, R. L., and Tien, M. 2008. Lignin degradation in wood-feeding insects. Proc. Natl. Acad. Sci. U. S. A. 105:12932–12937.

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez, A., del Río, J. C., Martínez-Íñigo, M. J., Martínez, M. J., and Martínez, Á. T. 2002. Production of new unsaturated lipids during wood decay by ligninolytic Basidiomycetes. Appl. Environ. Microbiol. 68:1344–1350.

    Article  PubMed  Google Scholar 

  • Hajek, A. E., Long, S., and Zylstra, K. E. 2009. Rearing Sirex noctilio from red pine in central New York, 19th U.S. Department of Agriculture interagency research forum on invasive species 2008. Annapolis, MD.

  • Hartmann, M.-A. 1998. Plant sterols and the membrane environment. Trends Plant Sci. 3:170–175.

    Article  Google Scholar 

  • Heyer, J., Parker, B., Becker, D., Ruffino, J., Fordyce, A., Witt, M. D., Bedard, M., and Grebenok, R. 2004. Steroid profiles of transgenic tobacco expressing an Actinomyces 3-hydroxysteroid oxidase gene. Phytochemistry 65:2967–2976.

    Article  PubMed  CAS  Google Scholar 

  • Ikekawa, N., Morisaki, M., and Fujimoto, Y. 1993. Sterol metabolism in insects: Dealkylation of phytosterol to cholesterol. Acc. Chem. Res. 26:139–146.

    Article  CAS  Google Scholar 

  • Jing, X., Vogel, H., Grebenok, R., Zhu-Salzman, K., and Behmer, S. 2012. Dietary sterol/steroids and the generalist caterpillar Helicoverpa zea: Physiology, biochemistry and midgut gene expression. Insect. Biochem. Mol. Biol. in press.

  • Jonsell, M. and Nordlander, G. 2004. Host selection patterns in insects breeding in bracket fungi. Ecol. Entomol. 29:697–705.

    Article  Google Scholar 

  • Kaiser, W., Huguet, E., Casas, J., Commin, C., and Giron, D. 2010. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. R. Soc. B 277:2311–2319.

    Article  PubMed  CAS  Google Scholar 

  • Kaltenpoth, M., Goettler, W., Herzner, G., and Strohm, E. 2005. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 15:475–479.

    Article  PubMed  CAS  Google Scholar 

  • Kobune, S., Kajimura, H., Masuya, H., and Kubono, T. 2011. Symbiotic fungal flora in leaf galls induced by Illiciomyia yukawai (Diptera: Cecidomyiidae) and in its mycangia. Microb. Ecol. 63:619–627.

    Article  PubMed  Google Scholar 

  • Kukor, J. J. and Martin, M. M. 1983. Acquisition of Digestive enzymes by Siricid woodwasps from their fungal symbiont. Science 220:1161–1163.

    Article  PubMed  CAS  Google Scholar 

  • Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtas-Wasilewska, M., Cho, N.-S., Hofrichter, M., and Rogalski, J. 1999. Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 27:175–185.

    Article  PubMed  CAS  Google Scholar 

  • Leonowicz, A., Cho, N., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., Hofrichter, M., Wesenberg, D., and Rogalski, J. 2001. Fungal laccase: Properties and activity on lignin. J. Basic Microbiol. 41:185–227.

    Article  PubMed  CAS  Google Scholar 

  • Madden, J. L. 1977. Physiological reactions of Pinus radiata to attack by woodwasp, Sirex noctilio F. (Hymenoptera: Siricidae). Bull. Entomol. Res. 67:405–426.

    Article  Google Scholar 

  • Madden, J. 1981. Egg and larval development in the woodwasp, Sirex Noctilio F. Aust. J. Zool. 29:493–506.

    Article  Google Scholar 

  • Martin, M. M. 1979. Biochemical implications of insect mycophagy. Biol. Rev. Camb. Philos. Soc. 54:1–21.

    Article  CAS  Google Scholar 

  • Martin, M. M. 1987. Invertebrate-microbial interactions: Ingested fungal enzymes in arthropod biology. Cornell University Press, Ithaca, New York. 176 pp.

    Google Scholar 

  • Mattson, W. J. 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11:119–161.

    Article  Google Scholar 

  • Maurer, P., Debieu, D., Leroux, P., Malosse, C., and Riba, G. 1992. Sterols and symbiosis in the leaf–cutting ant Acromyrmex octospinosus (Reich) (Hymenoptera, Formicidae: Attini). Arch. Insect Biochem. Physiol. 20:13–21.

    Article  CAS  Google Scholar 

  • Maxwell, D. E. 1955. The comparative internal larval anatomy of sawflies (Hymenoptera: Symphyta). Mem. Entomol. Soc. Can. 87:1–132.

    Article  Google Scholar 

  • McCutcheon, J. P., McDonald, B. R., and Moran, N. A. 2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. U. S. A. 106:15394–15399.

    Article  PubMed  CAS  Google Scholar 

  • Moran, N. A., Tran, P., and Gerardo, N. M. 2005. Symbiosis and insect diversification: An ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl. Environ. Microbiol. 71:8802–8810.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, U. G. and Gerardo, N. 2002. Fungus-farming insects: Multiple origins and diverse evolutionary histories. Proc. Natl. Acad. Sci. U. S. A. 99:15247–15249.

    Article  PubMed  CAS  Google Scholar 

  • Nairn, C. J., Lennon, D. M., Wood-Jones, A., Nairn, A. V., and Dean, J. F. D. 2008. Carbohydrate-related genes and cell wall biosynthesis in vascular tissues of loblolly pine (Pinus taeda). Tree Physiol. 28:1099–1110.

    Article  PubMed  CAS  Google Scholar 

  • Nasir, H. and Noda, H. 2003. Yeast-like symbiotes as a sterol source in anobiid beetles (Coleoptera, Anobiidae): Possible metabolic pathways from fungal sterols to 7–dehydrocholesterol. Arch. Insect Biochem. Physiol. 52:175–182.

    Article  PubMed  CAS  Google Scholar 

  • Niku-Paavola, M. L., Raaska, L., and Itävaara, M. 1990. Detection of white-rot fungi by a non-toxic stain. Mycol. Res. 94:27–31.

    Article  Google Scholar 

  • Nobre, T. and Aanen, D. K. 2012. Fungiculture or termite husbandry? The Ruminant Hypothesis. Insects 3:307–323.

    Article  Google Scholar 

  • Pasanen, A.-L., Yli-Pietilä, K., Pasanen, P., Kalliokoski, P., and Tarhanen, J. 1999. Ergosterol content in various fungal species and biocontaminated building materials. Appl. Environ. Microbiol. 65:138–142.

    PubMed  CAS  Google Scholar 

  • R Development Core Team 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rahier, A., and Benveniste, P. 1989. Mass spectral identification of phytosterols. Analysis of Sterols and Other Biologically Significant Steroids. Academic Press, New York. 223–250 pp.

  • Schiff, N. and Feldlaufer, M. 1996. Neutral sterols of sawflies (symphyta): Their relationship to other hymenoptera. Lipids 31:441–443.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, T. R. and Brady, S. G. 2008. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. U. S. A. 105:5435–5440.

    Article  PubMed  CAS  Google Scholar 

  • Scully, E. D., Hoover, K., Carlson, J., Tien, M., and Geib, S. M. 2012. Proteomic analysis of Fusarium solani isolated from the Asian longhorned beetle, Anoplophora glabripennis. PLoS One 7:e32990.

    Article  PubMed  CAS  Google Scholar 

  • Singer, M. S. 2001. Determinants of polyphagy by a woolly bear caterpillar: A test of the physiological efficiency hypothesis. Oikos 93:194–204.

    Article  Google Scholar 

  • Srinivasan, C., Dsouza, T. M., Boominathan, K., and Reddy, C. A. 1995. Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 61:4274–4277.

    PubMed  CAS  Google Scholar 

  • Suen, G., Teiling, C., Li, L., Holt, C., Abouheif, E., Bornberg-Bauer, E., Bouffard, P., Caldera, E. J., Cash, E., Cavanaugh, A., Denas, O., Elhaik, E., Favé, M.-J., Gadau, J., Gibson, J. D., Graur, D., Grubbs, K. J., Hagen, D. E., Harkins, T. T., Helmkampf, M., Hu, H., Johnson, B. R., Kim, J., Marsh, S. E., Moeller, J. A., Muñoz-Torres, M. C., Murphy, M. C., Naughton, M. C., Nigam, S., Overson, R., Rajakumar, R., Reese, J. T., Scott, J. J., Smith, C. R., Tao, S., Tsutsui, N. D., Viljakainen, L., Wissler, L., Yandell, M. D., Zimmer, F., Taylor, J., Slater, S. C., Clifton, S. W., Warren, W. C., Elsik, C. G., Smith, C. D., Weinstock, G. M., Gerardo, N. M., and Currie, C. R. 2011. The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into Its obligate symbiotic lifestyle. PLoS Genet. 7:e1002007.

    Article  PubMed  Google Scholar 

  • Swift, M. J., Heal, O. W., and Anderson, J. M. 1979. Decomposition in terrestrial ecosystems. University of California Press, Berkeley, California. 388 p.

    Google Scholar 

  • Talbot, P. H. B. 1977. The Sirex-Amylostereum-Pinus association. Annu. Rev. Phytopathol. 15:41–54.

    Article  Google Scholar 

  • Thomsen, I. M. and Harding, S. 2011. Fungal symbionts of siricid woodwasps: Isolation techniques and identification. For. Pathol. 41:325–333.

    Article  Google Scholar 

  • Weiss, M. R. 2006. Defacation behavior and ecology of insects. Annu. Rev. Entomol. 51:635–661.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, Q. and Blackwell, M. 1984. Fungus-insect relationships: Perspectives in ecology and evolution. Columbia University Press, New York. 540 p.

    Google Scholar 

Download references

Acknowledgments

Members of the Gruner and Barbosa labs, the Washington Plant Insect Group, P. Chaverri, R. St. Leger, M. Raupp, I. Forseth for constructive comments; Jake Bodart, Pat Tauber, Miriam and Jim Dunham, Abby Thompson, Pennsylvania DCNR Dept. of State Parks, and USDA-APHIS for permitting and sample collection; Dr. A. Adams for type fungal specimens and the United States Forest Service, Sigma Xi, The University of Maryland Gahan Fellowship and The National Explorers Club (Washington) for financial support. Special thanks to two helpful reviewers who significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, B.M., Grebenok, R.J., Behmer, S.T. et al. Microbial Symbionts Shape the Sterol Profile of the Xylem-Feeding Woodwasp, Sirex noctilio . J Chem Ecol 39, 129–139 (2013). https://doi.org/10.1007/s10886-012-0222-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0222-7

Keywords

Navigation