Skip to main content

Molecular Adaptations to Concurrent Strength and Endurance Training

  • Chapter
  • First Online:
Concurrent Aerobic and Strength Training

Abstract

Often, athletes and exercise practitioners who want to maximize sports performance and body composition incorporate both strength and endurance regimens into one periodization cycle. This practice is referred to as concurrent training (CT). While some studies suggest that both training-induced adaptations can be developed simultaneously during CT. It has been suggested that when performed in conjunction at high frequency, volume, and intensity, CT may reduce strength training adaptations, which has been defined as the interference effect. Still, the interface of this multifaceted effect is not completely understood. However, advancements in technology have allowed us to increase our understanding of the molecular mechanisms behind the exercise-induced adaptations to both strength and endurance stimuli. Accordingly, a molecular hypothesis has emerged to explain the interference effect from a mechanistic standpoint. Further, when analyzing the current literature in molecular responses to CT, the reader needs to consider multiple factors, as there is an important disparity in the experimental study designs, which may confound interpretations. Therefore, this chapter will critically review the current literature on CT. After reading this chapter, the readers will be able to summarize the current knowledge in acute and chronic molecular responses induced by CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity–from gene to form and function. Rev Physiol Biochem Pharmacol. 2003;146:159–216. PubMed PMID: 12605307. Epub 2003/02/28

    Article  CAS  Google Scholar 

  2. Stefanetti RJ, Lamon S, Wallace M, Vendelbo MH, Russell AP, Vissing K. Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Arch. 2015;467(7):1523–37. PubMed PMID: 25104573. Epub 2014/08/12

    Article  CAS  Google Scholar 

  3. Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol (1985). 1995;78(3):976–89. PubMed PMID: 7775344. Epub 1995/03/01

    Article  CAS  Google Scholar 

  4. Putman CT, Xu X, Gillies E, MacLean IM, Bell GJ. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol. 2004;92(4–5):376–84. PubMed PMID: 15241691. Epub 2004/07/09

    CAS  Google Scholar 

  5. Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol. 1980;45(2–3):255–63. PubMed PMID: 7193134. Epub 1980/01/01

    Article  CAS  Google Scholar 

  6. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737–63. PubMed PMID: 17722947. Epub 2007/08/29

    Article  Google Scholar 

  7. Coffey VG, Hawley JA. Concurrent exercise training: do opposites distract? J Physiol. 2017;595(9):2883–96. PubMed PMID: 27506998. Pubmed Central PMCID: PMC5407958. Epub 2016/08/11

    Article  CAS  Google Scholar 

  8. Egan B, Hawley JA, Zierath JR. SnapShot: exercise metabolism. Cell Metab. 2016;24(2):342-e1. PubMed PMID: 27508878. Epub 2016/08/11

    Article  Google Scholar 

  9. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84. PubMed PMID: 23395166. Epub 2013/02/12

    Article  CAS  Google Scholar 

  10. Phillips SM, Parise G, Roy BD, Tipton KD, Wolfe RR, Tamopolsky MA. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol. 2002;80(11):1045–53. PubMed PMID: 12489923. Epub 2002/12/20

    Article  CAS  Google Scholar 

  11. Nader GA. Molecular determinants of skeletal muscle mass: getting the “AKT” together. Int J Biochem Cell Biol. 2005;37(10):1985–96. PubMed PMID: 16125108. Epub 2005/08/30

    Article  CAS  Google Scholar 

  12. Bodine SC. mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc. 2006;38(11):1950–7. PubMed PMID: 17095929. Epub 2006/11/11

    Article  CAS  Google Scholar 

  13. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–9. PubMed PMID: 11715023. Epub 2001/11/21

    Article  CAS  Google Scholar 

  14. Holloszy JO. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol. 2008;59 Suppl 7:5–18. PubMed PMID: 19258654. Epub 2009/03/11

    CAS  PubMed  Google Scholar 

  15. Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab. 2009;34(3):465–72. PubMed PMID: 19448716. Epub 2009/05/19

    Article  CAS  Google Scholar 

  16. Hood DA, Uguccioni G, Vainshtein A, D’Souza D. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease. Compr Physiol. 2011;1(3):1119–34. PubMed PMID: 23733637. Epub 2011/07/01

    Google Scholar 

  17. Baar K. Using molecular biology to maximize concurrent training. Sports Med. 2014;44 Suppl 2:S117–25. PubMed PMID: 25355186. Pubmed Central PMCID: PMC4213370. Epub 2014/10/31

    Article  Google Scholar 

  18. Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69–84. PubMed PMID: 20533901. Pubmed Central PMCID: PMC3883043. Epub 2010/06/11

    Article  CAS  Google Scholar 

  19. Irrcher I, Adhihetty PJ, Joseph AM, Ljubicic V, Hood DA. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med. 2003;33(11):783–93. PubMed PMID: 12959619. Epub 2003/09/10

    Article  Google Scholar 

  20. Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009;34(3):355–61. PubMed PMID: 19448698. Epub 2009/05/19

    Article  CAS  Google Scholar 

  21. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002;16(14):1879–86. PubMed PMID: 12468452. Epub 2002/12/07

    Article  CAS  Google Scholar 

  22. Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104(29):12017–22. PubMed PMID: 17609368. Pubmed Central PMCID: PMC1924552. Epub 2007/07/05

    Article  Google Scholar 

  23. Jorgensen SB, Richter EA, Wojtaszewski JF. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol. 2006;574(Pt 1):17–31. PubMed PMID: 16690705. Pubmed Central PMCID: PMC1817795. Epub 2006/05/13

    Article  Google Scholar 

  24. Dasgupta B, Ju JS, Sasaki Y, Liu X, Jung SR, Higashida K, et al. The AMPK beta2 subunit is required for energy homeostasis during metabolic stress. Mol Cell Biol. 2012;32(14):2837–48. PubMed PMID: 22586267. Pubmed Central PMCID: PMC3416196. Epub 2012/05/16

    Article  CAS  Google Scholar 

  25. Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002;277(27):23977–80. PubMed PMID: 11997383. Epub 2002/05/09

    Article  CAS  Google Scholar 

  26. Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J. 2005;19(7):786–8. PubMed PMID: 15716393. Epub 2005/02/18

    Article  CAS  Google Scholar 

  27. Thomson DM, Gordon SE. Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation. J Appl Physiol (1985). 2005;98(2):557–64. PubMed PMID: 15465886. Epub 2004/10/07

    Article  CAS  Google Scholar 

  28. Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20(1):190–2. PubMed PMID: 16267123. Epub 2005/11/04

    Article  CAS  Google Scholar 

  29. Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol. 2006;576(Pt 2):613–24. PubMed PMID: 16873412. Pubmed Central PMCID: PMC1890364. Epub 2006/07/29

    Article  CAS  Google Scholar 

  30. Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW, Hawley JA. Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1441–51. PubMed PMID: 19692661. Epub 2009/08/21

    Article  CAS  Google Scholar 

  31. Coffey VG, Pilegaard H, Garnham AP, O’Brien BJ, Hawley JA. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J Appl Physiol (1985). 2009;106(4):1187–97. PubMed PMID: 19164772. Epub 2009/01/24

    Article  CAS  Google Scholar 

  32. Babcock L, Escano M, D’Lugos A, Todd K, Murach K, Luden N. Concurrent aerobic exercise interferes with the satellite cell response to acute resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2012;302(12):R1458–65. PubMed PMID: 22492813. Epub 2012/04/12

    Article  CAS  Google Scholar 

  33. Wang L, Mascher H, Psilander N, Blomstrand E, Sahlin K. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol (1985). 2011;111(5):1335–44. PubMed PMID: 21836044. Epub 2011/08/13

    Article  CAS  Google Scholar 

  34. Fernandez-Gonzalo R, Lundberg TR, Tesch PA. Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone. Acta Physiol (Oxf). 2013;209(4):283–94. PubMed PMID: 24112827. Epub 2013/10/12

    Article  CAS  Google Scholar 

  35. Pugh JK, Faulkner SH, Jackson AP, King JA, Nimmo MA. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle. Physiol Rep. 2015;3(4). PubMed PMID: 25902785. Pubmed Central PMCID: PMC4425969. Epub 2015/04/24

    Article  Google Scholar 

  36. Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. Med Sci Sports Exerc. 2012;44(9):1680–8. PubMed PMID: 22460475. Epub 2012/03/31

    Article  CAS  Google Scholar 

  37. Lambert BS, Shimkus KL, Fluckey JD, Riechman SE, Greene NP, Cardin JM, et al. Anabolic responses to acute and chronic resistance exercise are enhanced when combined with aquatic treadmill exercise. Am J Physiol Endocrinol Metab. 2015;308(3):E192–200. PubMed PMID: 25425002. Epub 2014/11/27

    Article  CAS  Google Scholar 

  38. Carrithers JA, Carroll CC, Coker RH, Sullivan DH, Trappe TA. Concurrent exercise and muscle protein synthesis: implications for exercise countermeasures in space. Aviat Space Environ Med. 2007;78(5):457–62. PubMed PMID: 17539438. Epub 2007/06/02

    CAS  PubMed  Google Scholar 

  39. Donges CE, Burd NA, Duffield R, Smith GC, West DW, Short MJ, et al. Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. J Appl Physiol (1985). 2012;112(12):1992–2001. PubMed PMID: 22492939. Epub 2012/04/12

    Article  CAS  Google Scholar 

  40. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161–8. PubMed PMID: 19056590. Epub 2008/12/06

    Article  CAS  Google Scholar 

  41. Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99(1):86–95. PubMed PMID: 24257722. Epub 2013/11/22

    Article  CAS  Google Scholar 

  42. Camera DM, West DW, Phillips SM, Rerecich T, Stellingwerff T, Hawley JA, et al. Protein ingestion increases myofibrillar protein synthesis after concurrent exercise. Med Sci Sports Exerc. 2015;47(1):82–91. PubMed PMID: 24870574. Epub 2014/05/30

    Article  CAS  Google Scholar 

  43. Apro W, Moberg M, Hamilton DL, Ekblom B, van Hall G, Holmberg HC, et al. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am J Physiol Endocrinol Metab. 2015;308(6):E470–81. PubMed PMID: 25605643. Epub 2015/01/22

    Article  CAS  Google Scholar 

  44. Apro W, Wang L, Ponten M, Blomstrand E, Sahlin K. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. Am J Physiol Endocrinol Metab. 2013;305(1):E22–32. PubMed PMID: 23632629. Epub 2013/05/02

    Article  CAS  Google Scholar 

  45. Blaauw B, Reggiani C. The role of satellite cells in muscle hypertrophy. J Muscle Res Cell Motil. 2014;35(1):3–10. PubMed PMID: 24505026. Epub 2014/02/08

    Article  CAS  Google Scholar 

  46. Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol (1985). 2008;104(6):1736–42. PubMed PMID: 18436694. Epub 2008/04/26

    Article  Google Scholar 

  47. McCarthy JP, Pozniak MA, Agre JC. Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc. 2002;34(3):511–9. PubMed PMID: 11880817. Epub 2002/03/07

    Article  Google Scholar 

  48. Abreu P, Mendes SV, Ceccatto VM, Hirabara SM. Satellite cell activation induced by aerobic muscle adaptation in response to endurance exercise in humans and rodents. Life Sci. 2017;170:33–40. PubMed PMID: 27888112. Epub 2016/11/27

    Article  CAS  Google Scholar 

  49. Joanisse S, Gillen JB, Bellamy LM, McKay BR, Tarnopolsky MA, Gibala MJ, et al. Evidence for the contribution of muscle stem cells to nonhypertrophic skeletal muscle remodeling in humans. FASEB J. 2013;27(11):4596–605. PubMed PMID: 23928822. Pubmed Central PMCID: PMC3804745. Epub 2013/08/10

    Article  CAS  Google Scholar 

  50. Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol. 2013;3(4):1645–87. PubMed PMID: 24265241. Epub 2013/11/23

    Article  Google Scholar 

  51. Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44(6):743–62. PubMed PMID: 24728927. Epub 2014/04/15

    Article  Google Scholar 

  52. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(15):3701–17. PubMed PMID: 18556367. Pubmed Central PMCID: PMC2538832. Epub 2008/06/17

    Article  CAS  Google Scholar 

  53. Hakkinen K, Alen M, Kraemer WJ, Gorostiaga E, Izquierdo M, Rusko H, et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 2003;89(1):42–52. PubMed PMID: 12627304. Epub 2003/03/11

    Article  CAS  Google Scholar 

  54. Docherty D, Sporer B. A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Med. 2000;30(6):385–94. PubMed PMID: 11132121. Epub 2000/12/29

    Article  CAS  Google Scholar 

  55. Dudley GA, Djamil R. Incompatibility of endurance- and strength-training modes of exercise. J Appl Physiol (1985). 1985;59(5):1446–51. PubMed PMID: 4066574. Epub 1985/11/01

    Article  CAS  Google Scholar 

  56. De Souza EO, Tricoli V, Aoki MS, Roschel H, Brum PC, Bacurau AV, et al. Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses. J Strength Cond Res. 2014;28(11):3215–23. PubMed PMID: 24832980. Epub 2014/05/17

    Article  Google Scholar 

  57. Nader GA. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc. 2006;38(11):1965–70. PubMed PMID: 17095931. Epub 2006/11/11

    Article  Google Scholar 

  58. Baar K. Training for endurance and strength: lessons from cell signaling. Med Sci Sports Exerc. 2006;38(11):1939–44. PubMed PMID: 17095927. Epub 2006/11/11

    Article  Google Scholar 

  59. De Souza EO, Tricoli V, Roschel H, Brum PC, Bacurau AV, Ferreira JC, et al. Molecular adaptations to concurrent training. Int J Sports Med. 2013;34(3):207–13. PubMed PMID: 23044732. Epub 2012/10/10

    Google Scholar 

  60. Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, et al. A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell. 2012;151(6):1319–31. PubMed PMID: 23217713. Pubmed Central PMCID: PMC3520615. Epub 2012/12/12

    Article  CAS  Google Scholar 

  61. Fyfe JJ, Bishop DJ, Bartlett JD, Hanson ED, Anderson MJ, Garnham AP, et al. Enhanced skeletal muscle ribosome biogenesis, yet attenuated mTORC1 and ribosome biogenesis-related signalling, following short-term concurrent versus single-mode resistance training. Sci Rep. 2018;8(1):560. PubMed PMID: 29330460. Pubmed Central PMCID: 5766515. Epub 2018/01/14. eng

    Article  Google Scholar 

  62. Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol (1985). 2013;114(1):81–9. PubMed PMID: 23104700. Epub 2012/10/30

    Article  Google Scholar 

  63. Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, et al. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol (1985). 2012;112(11):1839–46. PubMed PMID: 22461440. Epub 2012/03/31

    Article  CAS  Google Scholar 

  64. Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev. 2014;42(2):53–61. PubMed PMID: 24508740. Pubmed Central PMCID: PMC4523889. Epub 2014/02/11

    Article  Google Scholar 

  65. Vissing K, McGee S, Farup J, Kjolhede T, Vendelbo M, Jessen N. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports. 2013;23(3):355–66. PubMed PMID: 23802289. Epub 2013/06/27

    Article  CAS  Google Scholar 

  66. Lundberg TR, Fernandez-Gonzalo R, Tesch PA. Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men. J Appl Physiol (1985). 2014;116(6):611–20. PubMed PMID: 24408998. Epub 2014/01/11

    Article  Google Scholar 

  67. Kim JS, Petrella JK, Cross JM, Bamman MM. Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis. J Appl Physiol (1985). 2007;103(5):1488–95. PubMed PMID: 17673556. Epub 2007/08/04

    Article  CAS  Google Scholar 

  68. Mascher H, Ekblom B, Rooyackers O, Blomstrand E. Enhanced rates of muscle protein synthesis and elevated mTOR signalling following endurance exercise in human subjects. Acta Physiol (Oxf). 2011;202(2):175–84. PubMed PMID: 21385328. Epub 2011/03/10

    Article  CAS  Google Scholar 

  69. Mascher H, Andersson H, Nilsson PA, Ekblom B, Blomstrand E. Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise. Acta Physiol (Oxf). 2007;191(1):67–75. PubMed PMID: 17488244. Epub 2007/05/10

    Article  CAS  Google Scholar 

  70. Benziane B, Burton TJ, Scanlan B, Galuska D, Canny BJ, Chibalin AV, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295(6):E1427–38. PubMed PMID: 18827172. Epub 2008/10/02

    Article  CAS  Google Scholar 

  71. Di Donato DM, West DW, Churchward-Venne TA, Breen L, Baker SK, Phillips SM. Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. Am J Physiol Endocrinol Metab. 2014;306(9):E1025–32. PubMed PMID: 24595306. Pubmed Central PMCID: PMC4010655. Epub 2014/03/07

    Article  Google Scholar 

  72. Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):2293–307. PubMed PMID: 22002517. Epub 2011/10/18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo O. De Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Souza, E.O. (2019). Molecular Adaptations to Concurrent Strength and Endurance Training. In: Schumann, M., Rønnestad, B. (eds) Concurrent Aerobic and Strength Training. Springer, Cham. https://doi.org/10.1007/978-3-319-75547-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75547-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75546-5

  • Online ISBN: 978-3-319-75547-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics