Skip to main content

Assessment of the Contribution of Geo-environmental Factors to Flood Inundation in a Semi-arid Region of SW Iran: Comparison of Different Advanced Modeling Approaches

  • Chapter
  • First Online:
Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques

Abstract

Floods are a hazard for artificial structures and humans. From natural hazard management point of view, present the new techniques to assess the flood susceptibility is considerably important. The aim of this research is on one hand to evaluate applicability of different machine learning and advanced techniques (MLTs) for flood susceptibility analysis and on the other hand to investigate of the contribution of geo-environmental factors to flood inundation in a semi-arid part of SW Iran. Here, we compare the performance of six modeling techniques namely random forest (RF), maximum entropy (ME), multivariate adaptive regression splines (MARS), general linear model (GLM), generalized additive model (GAM), and classification and regression tree (CART)for first time to spatial predict the flood prone-area at Tashan Watershed, southwestern Iran. In the first step of study, a flood inventory map with 169 flood events was constructed through field surveys. These flood locations were then spatially randomly split into train, and validation sets with two different proportions of ratio 70 and 30%. Ten flood conditioning factors such as landuse, lithology, drainage density, distance from roads, topographic wetness index (TWI), slope aspect, distance from rivers, slope angle, plan curvature and altitude were considered in the analysis. In addition, learning vector quantization (LVQ) was used as a new supervised neural network algorithm to analyse thevariable importance. The applied models were evaluated for performance appliyng the area under the receiver operating characteristic curve (AUC). The result demonstrated that CART had the AUC value of 93.96%. It was followed by ME (88.58%), RF (86.81%), GAM (81.35%), MARS (75.62%), and GLM (73.66%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agresti A (1996) An introduction to categorical data analysis. Wiley, New York

    Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture. Japan. Landslides 1(1):73–81

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrolog Sci Bull 24(1):43–69

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, Belmont, CA

    Google Scholar 

  • Brenning A (2008) Statistical geocomputing combining R and SAGA: the example of landslide susceptibility analysis with generalized additive models. In: Böhner J, Blaschke T, Montanarella L (eds) SAGA—seconds out (=Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, 19), pp 23–32

    Google Scholar 

  • Brenning A (2009) Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection. Remote Sens Environ 113(1):239–247

    Article  Google Scholar 

  • Cherqui F, Belmeziti A, Granger D, Sourdril A, Gauffre PL (2015) Assessing urban potential flooding risk and identifying effective risk-reduction measures. Sci Total Environ 514:418–425

    Article  Google Scholar 

  • Crawley MJ (1993) GLIM for ecologists. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88(11):2783–2792

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65:135–165

    Article  Google Scholar 

  • Felicísimo Á, Cuartero A, Remondo J, Quirós E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10:175–189

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

    Article  Google Scholar 

  • Geology Survey of Iran (GSI) (1997) http://www.gsi.ir/Main/Lang_en/index.html

  • Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 129:376–386

    Article  Google Scholar 

  • Graham CH, Elith J, Hijmans RJ, Guisan A, Peterson AT, Loiselle BA The NCEAS predicting Species Distributions Working Group (2008) The influence of spatial errors in species occurrence data used in distribution models. J Appl Ecol 45:239–247

    Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Book  Google Scholar 

  • Iranian meteorological organization (IMO) (2014) http://www.irimo.ir/eng/index.php

  • Jebur MN, Pradhan B, Tehrany MS (2013) Using ALOS PALSAR derived high- resolution DInSAR to detect slow-moving landslides in tropical forest: Cameron Highlands, Malaysia. Geomatics Nat Hazards Risk 6(8):1–19

    Google Scholar 

  • Kazakis N, Kougias I, Patsialis T (2015) Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in Rhodope-Evros region, Greece. Sci Total Environ 538:555–563

    Article  Google Scholar 

  • Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A (2012) An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci 67:251–264

    Article  Google Scholar 

  • Kohonen T (1995) Learning vector quantization; self-organizing maps. Springer, Berlin, pp 175–189

    Google Scholar 

  • Kurt I, Ture M, Kurum AT (2008) Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst Appl 34(1):366–374

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41

    Article  Google Scholar 

  • Lee MJ, Kang JE, Jeon S (2012) Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In: 2012 IEEE international geoscience and remote sensing symposium, pp 895–898

    Google Scholar 

  • Liu C, White M, Newell G, Griffioen P (2013) Species distribution modelling for conservation planning in Victoria, Australia. Ecol Model 249:68–74

    Article  Google Scholar 

  • Liu X, Li N, Yuan S, Xu N, Shi W, Chen W (2015) The joint return period analysis of natural disasters based on monitoring and statistical modeling of multidimensional hazard factors. Sci Total Environ 538:724–732

    Article  Google Scholar 

  • Lohani A, Kumar R, Singh R (2012) Hydrological time series modeling: a comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. J Hydrol 442:23–35

    Article  Google Scholar 

  • Lumbroso D, Stone K, Vinet F (2011) An assessment of flood emergency plans in England and Wales, France, and the Netherlands. Nat Hazards 58:341–363

    Article  Google Scholar 

  • Mustafa D, Gioli G, Qazi S, Waraich R, Rehman A, Zahoor R (2015) Gendering flood early warning systems: the case of Pakistan. Environ Hazards 14(4):312–328

    Article  Google Scholar 

  • Naghibi A, Pourghasemi HR (2015) A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods for groundwater potential mapping in Iran. Water Resour Manag 29:5217–5236

    Article  Google Scholar 

  • Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37:1264–1276

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci 64:180–197

    Article  Google Scholar 

  • Peters J, Baets BD, Verhoest NEC, Samson R, Degroeve S, Becker PD, Huybrechts WH (2007) Random forests as a tool for ecohydrological distribution modelling. Ecol Model 207:304–318

    Article  Google Scholar 

  • Phillips S, Dudík M, Schapire R (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21th International conference on machine learning. Association for Computing Machinery (ACM), Banff, Canada

    Google Scholar 

  • Phillips S, Anderson R, Schapire R (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63:965–996

    Article  Google Scholar 

  • Pourghasemi HR, Goli Jirandeh A, Pradhan B, Xu C, Gokceoglu C (2013) Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Sys Sci 122(2):349–369

    Article  Google Scholar 

  • Pradhan B (2009) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spatial Hydrol 9(2):1–18

    Google Scholar 

  • Pradhan B, Youssef AM (2011) A100-year maximum floood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor, Malaysia. J Flood Risk Manage 4(3):189–202

    Article  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rahmati O, Pourghasemi HR, Zeinivand H (2015a) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int. https://doi.org/10.1080/10106049.2015.1041559

    Article  Google Scholar 

  • Rahmati O, Zeinivand H, Besharat M (2015b) Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis, Geomatics. Nat Hazards & Risk. https://doi.org/10.1080/19475705.2015.1045043

    Article  Google Scholar 

  • Rahmati O, Pourghasemi HR, Melesse AM (2016) Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena 137:360–372

    Article  Google Scholar 

  • Suzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Tehrany M, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79

    Article  Google Scholar 

  • Tehrany M, Lee MJ, Pradhan B, Jebur MN, Lee S (2014a) Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environ Earth Sci 72:4001–4015

    Article  Google Scholar 

  • Tehrany M, Pradhan B, Jebur MN (2014b) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512:332–343

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2015a) Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-015-1021-9

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Mansor S, Ahmad N (2015b) Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA 125:91–101

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. CATENA 96:28–40

    Article  Google Scholar 

  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2015) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. https://doi.org/10.1007/s10346-015-0557-6

    Article  Google Scholar 

  • Trigila A, Iadanza C, Esposito C, Scarascia-Mugnozza G (2015) Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 249:119–136

    Article  Google Scholar 

  • Vorpahl P, Elsenbeer H, Marker M, Schroder B (2012) How can statistical models help to determine driving factors of landslides? Ecol Model 239:27–39

    Article  Google Scholar 

  • Witten IH, Frank E, Mark AH (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, Burlington, USA

    Google Scholar 

  • Yesilnacar EK (2005) The application of computational intelligence to landslide susceptibility mapping in Turkey [PhD thesis]. Department of Geomatics the University of Melbourne, Melbourne, p 423

    Google Scholar 

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2015) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Landslides, Asir Region, Saudi Arabia. Springer, Berlin. https://doi.org/10.1007/s10346-015-0614-1

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Pourghasemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davoudi Moghaddam, D., Pourghasemi, H.R., Rahmati, O. (2019). Assessment of the Contribution of Geo-environmental Factors to Flood Inundation in a Semi-arid Region of SW Iran: Comparison of Different Advanced Modeling Approaches. In: Pourghasemi, H., Rossi, M. (eds) Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques. Advances in Natural and Technological Hazards Research, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-73383-8_3

Download citation

Publish with us

Policies and ethics