Skip to main content

Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin

  • Chapter
  • First Online:
Cellular and Molecular Toxicology of Nanoparticles

Abstract

Nanotechnology has allowed great changes in chemical, biological and physical properties of metals when compared to their bulk counterparts. Within this context, silver nanoparticles (AgNPs) play a major role due to their unique properties, being widely used in daily products such as fabrics, washing machines, water filters, food and medicine. However, AgNPs can enter cells inducing a “Trojan-horse” type mechanism which potentially leads to cellular autophagy, apoptosis or necrosis. On the other hand, this cytotoxicity mechanism can be optimized to develop drug nanocarriers and anticancer therapies. The increasing use of these NPs entails their release into the environment, damaging ecosystems balance and representing a threat to human health. In this context, the possible deleterious effects that these NPs may represent for the biotic and abiotic ecosystems components represent an obstacle that must be overcome in order to guarantee the safety use of their unique properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emam HE, Saleh NH, Nagy KS et al (2015) Functionalization of medical cotton by direct incorporation of silver nanoparticles. Int J Biol Macromol 7:249–256

    Article  CAS  Google Scholar 

  2. Hebeish A, El-Bisi MK, El-Shafei A (2015) Green synthesis of silver nanoparticles and their application to cotton fabrics. Int J Biol Macromol 72:1384–1390

    Article  CAS  PubMed  Google Scholar 

  3. Ghavaminejad A, Park CH, Kim CS (2016) In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules 17(3):1213–1223

    Article  CAS  PubMed  Google Scholar 

  4. Fabrega J, Luoma SN, Tyler CR et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531

    Article  CAS  PubMed  Google Scholar 

  5. Lok CN, Ho CM, Chen R et al (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534

    Article  CAS  PubMed  Google Scholar 

  6. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588

    Article  CAS  PubMed  Google Scholar 

  7. Alexander JW (2009) History of the medical use of silver. Surg Infect 10:289–292

    Article  Google Scholar 

  8. He W, Liu X, Kienzle A et al (2016) In vitro uptake of silver nanoparticles and their toxicity in human mesenchymal stem cells derived from bone marrow. J Nanosci Nanotechnol 6:219–228

    Article  CAS  Google Scholar 

  9. Souza TA, Franchi LP, Rosa LR et al (2016) Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res 795:70–83

    Article  CAS  Google Scholar 

  10. Stenberg MC, Wei Q, McLamore ES et al (2011) Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine 6:879–898

    Article  CAS  Google Scholar 

  11. Zappavigna S, Misso G, Falanga AR et al (2016) Nanocarriers conjugated with cell penetrating peptides: new Trojan horses by modern ulysses. Curr Pharm Biotechnol 17:700–722

    Article  CAS  PubMed  Google Scholar 

  12. Hillie T, Hlophe M (2007) Nanotechnology and the challenge of clean water. Nat Nanotechnol 2:663–664

    Article  CAS  PubMed  Google Scholar 

  13. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  PubMed  Google Scholar 

  14. Rosa LR, Rosa RD, Da Veiga MAMS (2016) Colloidal silver and silver nanoparticles bioaccessibility in drinking water filters. J Environ Chem Eng 4:3451–3458

    Article  CAS  Google Scholar 

  15. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63

    Article  CAS  PubMed  Google Scholar 

  16. Ahamed T, Imdad S, Yaldram K et al (2014) Emerging nanotechnology-based methods for water purification: a review. Desalin Water Treat 52:4089–4101

    Article  CAS  Google Scholar 

  17. Lv Y, Liu H, Wang Z et al (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331:50–56

    Article  CAS  Google Scholar 

  18. Mecha CA, Pillay VL (2014) Development and evaluation of woven fabric microfiltration membranes impregnated with silver nanoparticles for potable water treatment. J Membr Sci 458:149–156

    Article  CAS  Google Scholar 

  19. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998

    Article  CAS  PubMed  Google Scholar 

  20. Haider MS, Shao GN, Imran SM et al (2016) Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater Sci Eng C 62:732–745

    Article  CAS  Google Scholar 

  21. Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Article  CAS  Google Scholar 

  22. Li X, Schirmer K, Bernard L et al (2015) Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environ Sci Nano 2:594–602

    Article  CAS  Google Scholar 

  23. McGillicuddy E, Murray I, Kavanagh S et al (2017) Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ 575:231–246

    Article  CAS  PubMed  Google Scholar 

  24. Oukarroum A, Bras S, Perreault F et al (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85

    Article  CAS  PubMed  Google Scholar 

  25. Asghari S, Johari SA, Lee JH et al (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:14

    Article  CAS  Google Scholar 

  26. Ribeiro F, Gallego-Urrea JA, Jurkschat K et al (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466–467:232–241

    Article  PubMed  CAS  Google Scholar 

  27. Huang J, Cheng J, Yi J (2016) Impact of silver nanoparticles on marine diatom Skeletonema costatum. J Appl Toxicol 36:1343–1354

    Article  CAS  PubMed  Google Scholar 

  28. Valerio-Garcia RC, Carbajal-Hernandez AL, Martinez-Ruiz EB et al (2017) Exposure to silver nanoparticles produces oxidative stress and affects macromolecular and metabolic biomarkers in the goodeid fish Chapalichthys pardalis. Sci Total Environ 583:308–318

    Article  CAS  PubMed  Google Scholar 

  29. Gonçalves FS, Pavlaki DM, Lopes R et al (2017) Effects of silver nanoparticles on the freshwater snail Physa acuta: the role of test media and snails’ life cycle stage. Environ Toxicol Chem 36:243–253

    Article  CAS  Google Scholar 

  30. Gorka DE, Liu J (2016) Effect of direct contact on the phytotoxicity of silver nanomaterials. Environ Sci Technol 50:10370–10376

    Article  CAS  PubMed  Google Scholar 

  31. Jiang HS, Yin L, Ren NN et al (2017) The effect of chronic silver nanoparticles on aquatic system in microcosms. Environ Pollut 223:395–402

    Article  CAS  PubMed  Google Scholar 

  32. De Paolis F, Kukkonen J (1997) Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material. Chemosphere 34:1693–1704

    Article  Google Scholar 

  33. Delay M, Dolt T, Woellhaf A et al (2011) Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength. J Chromatogr A 1218:4206–4212

    Article  CAS  PubMed  Google Scholar 

  34. Gao J, Powers K, Wang Y et al (2012) Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. Chemosphere 89:96–101

    Article  CAS  PubMed  Google Scholar 

  35. Gunsolus IL, Mousavi MP, Hussein K et al (2015) Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. Environ Sci Technol 49:8078–8086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stankus DP, Lohse SE, Hutchison JE et al (2011) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45:3238–3244

    Article  CAS  PubMed  Google Scholar 

  37. Wirth SM, Lowry GV, Tilton RD (2012) Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46:12687–12696

    Article  CAS  PubMed  Google Scholar 

  38. Oukarroum A, Gaudreault MH, Pirastru L et al (2013) Alleviation of silver toxicity by calcium chloride (CaCl2) in Lemna gibba L. Plant Physiol Biochem 71:235–239

    Article  CAS  PubMed  Google Scholar 

  39. Liu JY, Hurt RH (2010) Ion release kinetics and particle persistance in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  PubMed  Google Scholar 

  40. Kim JY, Kim KT, Lee BG et al (2013) Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid. Ecotoxicol Environ Safe 92:57–63

    Article  CAS  Google Scholar 

  41. Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  42. Lee SW, Park SY, Kim Y et al (2016) Effect of sulfidation and dissolved organic matters on toxicity of silver nanoparticles in sediment dwelling organism, Chironomus riparius. Sci Total Environ 553:565–573

    Article  CAS  PubMed  Google Scholar 

  43. Asare N, Instanes C, Sandberg WJ et al (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291:65–72

    Article  CAS  PubMed  Google Scholar 

  44. Franchi LP, Manshian BB, De Souza TA et al (2015) Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast. Toxicol In Vitro 29:1319–1331

    Article  CAS  PubMed  Google Scholar 

  45. Samberg M, Monteiro-Riviere N, Oldenburg S (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407–413

    Article  CAS  PubMed  Google Scholar 

  46. Hsiao IL, Hsieh YK, Wang CF et al (2015) Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ Sci Technol 49:3813–3821

    Article  CAS  PubMed  Google Scholar 

  47. Wang Z, Liu S, Ma J et al (2013) Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells. ACS Nano 7:4171–4186

    Article  CAS  PubMed  Google Scholar 

  48. Herzog F, Clift MJ, Piccapietra F et al (2013) Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Part Fibre Toxicol 4:10–11

    Google Scholar 

  49. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  CAS  PubMed  Google Scholar 

  50. Gondrikas AP, Morris A, Reinsch BC et al (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46:7037–7045

    Article  CAS  Google Scholar 

  51. Liu J, Wang Z, Liu FD et al (2012) Chemical transformations of nanosilver in biological environments. ACS Nano 6:9887–9899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu SJ, Chao JB, Sun J et al (2013) Quantification of the uptake of silver nanoparticles and ions to HepG2 cells. Environ Sci Technol 47:3268–3274

    Article  CAS  PubMed  Google Scholar 

  53. Hee-Jin P, Jee Yeon K, Jaeeun K et al (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032

    Article  CAS  Google Scholar 

  54. Liu J, Sonshine DA, Shervani S et al (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu M, Hu LF, Hu G et al (2008) Hydrogen sulfide protectsastrocytes against H2O2 -induced neural injury via enhancing glutamateuptake. Free Radic Biol Med 45:1705–1713

    Article  CAS  PubMed  Google Scholar 

  56. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S

    Article  CAS  PubMed  Google Scholar 

  57. Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  PubMed  Google Scholar 

  58. Park EJ, Yi J, Kim Y et al (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol in Vitro 24:872–878

    Article  CAS  PubMed  Google Scholar 

  59. Kim YL (2006) Folate: a magic bullet or a double edged sword for colorectal cancer prevention? Gut 55:1387–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Firdhouse JM, Lalitha P (2015) Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog Biomater 4:113–121

    Article  CAS  Google Scholar 

  61. Wang J, Liu L, Zhu W et al (2014) Cancer cell uptake of polymer hydrogel nanotubes. J Biomed Nanotechnol 10:3329–3336

    Article  CAS  PubMed  Google Scholar 

  62. Raghunandan D, Ravishankar B, Sharanbasava G et al (2011) Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol 2:57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kathiravan V, Ravi S, Ashokkumar S (2014) Synthesis of silver nanoparticles from melia dubia leaf extract and their in vitro anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 130:116–121

    Article  CAS  PubMed  Google Scholar 

  64. Lokina S, Stephen A, Kaviyarasan V et al (2014) Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur J Med Chem 76:256–263

    Article  CAS  PubMed  Google Scholar 

  65. Chung IM, Inmyoung P, Kim S et al (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Pang L, Qin J, Han L et al (2016) Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget 7:37081–37091

    PubMed  PubMed Central  Google Scholar 

  67. Lubick N (2008) Nanosilver toxicity: ions, nanoparticles or both? Environ Sci Technol 42:8617

    Article  CAS  PubMed  Google Scholar 

  68. Singh RP, Ramarao P (2012) Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213:249–259

    Article  CAS  PubMed  Google Scholar 

  69. Haase A, Rott S, Mantion A et al (2012) Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 126:457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu P, Huang Z, Gu N (2013) Exposure to silver nanoparticles does not affect cognitive outcome or hippocampal neurogenesis in adult mice. Ecotoxicol Environ Saf 87:124–130

    Article  CAS  PubMed  Google Scholar 

  71. Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15

    Article  CAS  PubMed  Google Scholar 

  72. Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  73. Yen HJ, Hsu SH, Tsal CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561

    Article  CAS  PubMed  Google Scholar 

  74. Zanette C, Pelin M, Crosera M et al (2011) Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line. Toxicol in Vitro 25:1053–1060

    Article  CAS  PubMed  Google Scholar 

  75. Asharrani PV, Low KMG, Hande MP et al (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 24:279–290

    Article  CAS  Google Scholar 

  76. Toyokuni S (1999) Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int 49:91–102

    Google Scholar 

  77. Zimmerman JJ (1998) Redox/radical repertoire rapport: pathophysiology and therapeutics. Acta Aaesthesiol Scand 42:1–3

    Google Scholar 

  78. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metalinduced oxidative damage. Curr Top Med Che 1:529–539

    Google Scholar 

  79. Ahamed M, Posgai R, Gorey TJ et al (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–269

    Google Scholar 

  80. Foldbjerg R, Olesen P, Hougaard M et al (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–162

    Article  CAS  PubMed  Google Scholar 

  81. Piao MJ, Kang KA, Lee IK et al (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201:92–100

    Article  CAS  PubMed  Google Scholar 

  82. Xia T, Kovochich M, Nel A (2006) The role of reactive oxygen species and oxidative stress in mediating particulate matter injury. Clin Occup Environ Med 5:817–836

    PubMed  Google Scholar 

  83. King BA, Oh DH (2004) Spatial control of reactive oxygen species formation in fibroblasts using two-photon excitation. Photochem Photobiol 80:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sanges D, Marigo V (2006) Cross-talk between two apoptotic pathways activated by endoplasmic reticulum stress: differential contribution of caspase-12 and AIF. Apoptosis 11:1629–1641

    Article  CAS  PubMed  Google Scholar 

  85. Walter L, Hajnóczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37:191–206

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Dong L, Yang X et al (2011) α-Linolenic acid prevents endoplasmic reticulum stress-mediated apoptosis of stearic acid lipotoxicity on primary rat hepatocytes. Lipids Health Dis 10:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    Article  CAS  PubMed  Google Scholar 

  89. Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7:335–345

    Article  CAS  PubMed  Google Scholar 

  90. Kim CS, Park WH, Park JY et al (2004) Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J Med Food 7:267–273

    Article  CAS  PubMed  Google Scholar 

  91. Gliga AR, Skoglund S, Wallinder IO et al (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Liu HL, Daí SA, Fu KY et al (2010) Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. Int J Nanomedicine 19:1017–1028

    CAS  Google Scholar 

  93. Park K, Park EJ, Chun IK et al (2011) Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rat. Arch Pharm Res 34(1):153–158

    Article  CAS  PubMed  Google Scholar 

  94. Kim TH, Kim M, Park HS et al (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100:1033–1043

    Article  PubMed  CAS  Google Scholar 

  95. Asare N, Duale N, Slagsvold HH et al (2016) Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology 10:312–321

    Article  CAS  PubMed  Google Scholar 

  96. Li Y, Guo M, Lin Z et al (2016) Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int J Nanomedicine 11:6693–6702

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kumar G, Degheidy H, Casey BJ et al (2015) Flow cytometry evaluation of in vitro cellular necrosis and apoptosis induced by silver nanoparticles. Food Chem Toxicol 85:45–51

    Article  CAS  PubMed  Google Scholar 

  98. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:102–109

    Article  CAS  Google Scholar 

  99. Mao BH, Tsai JC, Chen CW et al (2016) Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 10:1021–1040

    Article  CAS  PubMed  Google Scholar 

  100. Adiseshaiah PP, Clogston JD, McLeland CB et al (2013) Synergistic combination therapy with nanoliposomal C6-ceramide and vinblastine is associated with autophagy dysfunction in hepatocarcinoma and colorectal cancer models. Cancer Lett 337:254–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stern JM, Cadeddu JA (2008) Emerging use of nanoparticles for the therapeutic ablation of urologic malignancies. Urol Oncol 26:93–96

    Article  CAS  PubMed  Google Scholar 

  102. Mishra AR, Zheng J, Tang X et al (2016) Silver nanoparticle-induced autophagic-lysosomal disruption and NLRP3-inflammasome activation in HepG2 cells is size-dependent. Toxicological Sciences 150:473–487

    Article  CAS  PubMed  Google Scholar 

  103. Johnson-Lyles DN, Peifley K, Lockett S et al (2010) Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole ccumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Roy R, Singh SK, Chauhan LK et al (2014) Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol Lett 227:29–40

    Article  CAS  PubMed  Google Scholar 

  105. Capaldo A, Gay F, Scudiero R et al (2016) Histological changes, apoptosis and metallothionein levels in Triturus carnifex (Amphibia, Urodela) exposed to environmental cadmium concentrations. Aquat Toxicol 173:63–73

    Article  CAS  PubMed  Google Scholar 

  106. Syversen T, Kaur P (2012) The toxicology of mercury and its compounds. J Trace Elem Med Biol 26:215–226

    Article  CAS  PubMed  Google Scholar 

  107. Miranda RR, Bezerra AGJR, Oliveira RCA et al (2017) Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line. Toxicol in Vitro 5:134–143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Alves Jorge de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Souza, L.R.R., da Silva, V.S., Franchi, L.P., de Souza, T.A.J. (2018). Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_15

Download citation

Publish with us

Policies and ethics