Skip to main content

Current Technologies Based on the Knowledge of the Stem Cells Microenvironments

  • Chapter
  • First Online:
Stem Cell Microenvironments and Beyond

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1041))

Abstract

The stem cell microenvironment or niche plays a critical role in the regulation of survival, differentiation and behavior of stem cells and their progenies. Recapitulating each aspect of the stem cell niche is therefore essential for their optimal use in in vitro studies and in vivo as future therapeutics in humans. Engineering of optimal conditions for three-dimensional stem cell culture includes multiple transient and dynamic physiological stimuli, such as blood flow and tissue stiffness. Bioprinting and microfluidics technologies, including organs-on-a-chip, are among the most recent approaches utilized to replicate the three-dimensional stem cell niche for human tissue fabrication that allow the integration of multiple levels of tissue complexity, including blood flow. This chapter focuses on the physico-chemical and genetic cues utilized to engineer the stem cell niche and provides an overview on how both bioprinting and microfluidics technologies are improving our knowledge in this field for both disease modeling and tissue regeneration, including drug discovery and toxicity high-throughput assays and stem cell-based therapies in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adriani G, Ma D, Pavesi A, Kamm RD, Goh EL (2016) A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Lab Chip 17(3):448–459

    Article  CAS  Google Scholar 

  • Alperin C, Zandstra PW, Woodhouse KA (2005) Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials 26:7377–7386

    Article  CAS  PubMed  Google Scholar 

  • Arshi A, Nakashima Y, Nakano H, Eaimkhong S, Evseenko D, Reed J, Stieg AZ, Gimzewski JK, Nakano A (2013) Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells. Sci Technol Adv Mater 14(2):025003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baraniak PR, Cooke MT, Saeed R, Kinney MA, Fridley KM, Mcdevitt TC (2012) Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. J Mech Behav Biomed Mater 11:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, Gerbasio D, Keene DR, Ambrosio L, Netti PA (2005) The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 26:6194–6207

    Article  CAS  PubMed  Google Scholar 

  • Benam KH, Novak R, Nawroth J, Hirano-Kobayashi M, Ferrante TC, Choe Y, Prantil-Baun R, Weaver JC, Bahinski A, Parker KK, Ingber DE (2016) Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst 3:456–466 e4

    Article  CAS  PubMed  Google Scholar 

  • Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    Article  CAS  PubMed  Google Scholar 

  • Bini T, Gao S, Wang S, Ramakrishna S (2006) Poly(l-lactide-co-glycolide) biodegrad-able microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41:6453

    Article  CAS  Google Scholar 

  • Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS (2012) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 18:910–919

    Article  CAS  PubMed  Google Scholar 

  • Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S (2010) Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 31:9135–9144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bratt-Leal AM, Carpenedo RL, Mcdevitt TC (2009) Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog 25:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredenoord AL, Clevers H, Knoblich JA (2017) Human tissues in a dish: the research and ethical implications of organoid technology. Science 355:6322. pii: eaaf9414

    Google Scholar 

  • Burgel SC, Diener L, Frey O, Kim JY, Hierlemann A (2016) Automated, multiplexed electrical impedance spectroscopy platform for continuous monitoring of microtissue spheroids. Anal Chem 88:10876–10883

    Article  CAS  PubMed  Google Scholar 

  • Carpenedo RL, Bratt-Leal AM, Marklein RA, Seaman SA, Bowen NJ, Mcdonald JF, Mcdevitt TC (2009) Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules. Biomaterials 30:2507–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wang J, Shen B, Chan CW, Wang C, Zhao Y, Chan HN, Tian Q, Chen Y, Yao C, Hsing IM, Li RA, Wu H (2015) Engineering a freestanding biomimetic cardiac patch using biodegradable poly(lactic-co-glycolic acid) (PLGA) and human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs). Macromol Biosci 15:426–436

    Article  CAS  PubMed  Google Scholar 

  • Cheng AA, Lu TK (2012) Synthetic biology: an emerging engineering discipline. Annu Rev Biomed Eng 14:155–178

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS (2010) Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS One 5:e15655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoffersson J, Bergstrom G, Schwanke K, Kempf H, Zweigerdt R, Mandenius CF (2016) A microfluidic bioreactor for toxicity testing of stem cell derived 3D cardiac bodies. Methods Mol Biol 1502:159–168

    Article  CAS  PubMed  Google Scholar 

  • Cosson S, Otte EA, Hezaveh H, Cooper-White JJ (2015) Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem Cells Transl Med 4:156–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cozzolino AM, Noce V, Battistelli C, Marchetti A, Grassi G, Cicchini C, Tripodi M, Amicone L (2016) Modulating the substrate stiffness to manipulate differentiation of resident liver stem cells and to improve the differentiation state of hepatocytes. Stem Cells Int 2016:5481493

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalby MJ, Gadegaard N, Oreffo RO (2014) Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater 13:558–569

    Article  CAS  PubMed  Google Scholar 

  • Dee KC, Puleo DA, Bixios R (2003) Protein–surface interactions. An introduction to tissue-biomaterial interactions. Wiley, New York

    Google Scholar 

  • Dennis SG, Trusk T, Richards D, Jia J, Tan Y, Mei Y, Fann S, Markwald R, Yost M (2015) Viability of bioprinted cellular constructs using a three dispenser cartesian printer. J Vis Exp 103:53156.

    Google Scholar 

  • Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK (2007) Muscular thin films for building actuators and powering devices. Science 317:1366–1370

    Article  CAS  PubMed  Google Scholar 

  • Figtree GA, Bubb KJ, Tang O, Kizana E, Gentile C Vascularized cardiac spheroids as novel 3D in vitro models to study cardiac fibrosis. Cells Tissues Organs 204:3

    Google Scholar 

  • Fleming PA, Argraves WS, Gentile C, Neagu A, Forgacs G, Drake CJ (2010) Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Dev Dyn 239:398–406

    Article  PubMed  PubMed Central  Google Scholar 

  • Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 5:4250

    Article  CAS  PubMed  Google Scholar 

  • Gentile C (2016) Filling the gaps between the in vivo and in vitro microenvironment: engineering of spheroids for stem cell technology. Curr Stem Cell Res Ther 11:652–665

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez F (2016) CRISPR/Cas9 genome editing in human pluripotent stem cells: harnessing human genetics in a dish. Dev Dyn 245:788–806

    Article  PubMed  Google Scholar 

  • Guidi N, Geiger H (2017) Rejuvenation of aged hematopoietic stem cells. Semin Hematol 54:51–55

    Article  PubMed  Google Scholar 

  • Gunter J, Wolint P, Bopp A, Steiger J, Cambria E, Hoerstrup SP, Emmert MY (2016) Microtissues in cardiovascular medicine: regenerative potential based on a 3D microenvironment. Stem Cells Int 2016:9098523

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y, Lu F (2016) Development of synthetic and natural materials for tissue engineering applications using adipose stem cells. Stem Cells Int 2016:5786257

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh FY, Lin HH, Hsu SH (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Shen Q, Zhao J (2013) Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold. Neural Regen Res 8:313–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  PubMed  Google Scholar 

  • Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, Hamilton GA, Ingber DE (2013) Microfabrication of human organs-on-chips. Nat Protoc 8:2135–2157

    Article  CAS  PubMed  Google Scholar 

  • Hui EE, Bhatia SN (2007) Micromechanical control of cell-cell interactions. Proc Natl Acad Sci U S A 104:5722–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunsberger J, Harrysson O, Shirwaiker R, Starly B, Wysk R, Cohen P, Allickson J, Yoo J, Atala A (2015) Manufacturing road map for tissue engineering and regenerative medicine technologies. Stem Cells Transl Med 4:130–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaggy M, Zhang P, Greiner AM, Autenrieth TJ, Nedashkivska V, Efremov AN, Blattner C, Bastmeyer M, Levkin PA (2015) Hierarchical micro-nano surface topography promotes long-term maintenance of undifferentiated mouse embryonic stem cells. Nano Lett 15:7146–7154

    Article  PubMed  CAS  Google Scholar 

  • Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jakobsson A, Ottosson M, Zalis MC, O’carroll D, Johansson UE, Johansson F (2017) Three-dimensional functional human neuronal networks in uncompressed low-density electrospun fiber scaffolds. Nanomedicine 13(4):1563–1573

    Article  CAS  PubMed  Google Scholar 

  • Jin G, Li K (2014) The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine. Mater Sci Eng C Mater Biol Appl 45:671–681

    Article  CAS  PubMed  Google Scholar 

  • Kamble H, Barton MJ, Jun M, Park S, Nguyen NT (2016) Cell stretching devices as research tools: engineering and biological considerations. Lab Chip 16:3193–3203

    Article  CAS  PubMed  Google Scholar 

  • Kim JD, Choi JS, Kim BS, Choi YC, Cho YW (2010) Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer 51:2147–2154

    Article  CAS  Google Scholar 

  • Kohen NT, Little LE, Healy KE (2009) Characterization of Matrigel interfaces during defined human embryonic stem cell culture. Biointerphases 4:69–79

    Article  PubMed  CAS  Google Scholar 

  • Kramer M, Chaudhuri JB, Ellis MJ (2011) Promotion of neurite outgrowth in corporation poly-l-lysine into aligned PLGA nanofiber scaffolds. Eur Cell Mater 22:53

    Google Scholar 

  • Kumar D, Dale TP, Yang Y, Forsyth NR (2015) Self-renewal of human embryonic stem cells on defined synthetic electrospun nanofibers. Biomed Mater 10:065017

    Article  PubMed  CAS  Google Scholar 

  • Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J (2015) Don’t edit the human germ line. Nature 519:410–411

    Article  CAS  PubMed  Google Scholar 

  • Lee ST, Yun JI, Jo YS, Mochizuki M, Van der Vlies AJ, Kontos S, Ihm JE, Lim JM, Hubbell JA (2010) Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 31:1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE (2006) Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J Biomed Mater Res A 79:1–5

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Walczak P, Bulte JW (2013) The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials 34:5521–5529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, Park SJ, Kotikian A, Nesmith AP, Campbell PH, Vlassak JJ, Lewis JA, Parker KK (2016) Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 16(3):303–308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30:783–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmueller JJ, Armel TZ, Silver PA (2012) A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Nucleic Acids Res 40:5180–5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marban E, Cingolani E (2012) Heart to heart: cardiospheres for myocardial regeneration. Heart Rhythm 9:1727–1731

    Article  PubMed  Google Scholar 

  • Marsano A, Maidhof R, Wan LQ, Wang Y, Gao J, Tandon N, Vunjak-Novakovic G (2010) Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs. Biotechnol Prog 26:1382–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S, Shimizu T, Ikeda T, Okano T, Sakata R, Yamashita JK (2014) Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep 4:6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21:256–262

    CAS  PubMed  Google Scholar 

  • Mawad D, Martens PJ, Odell RA, Poole-Warren LA (2007) The effect of redox polymerisation on degradation and cell responses to poly (vinyl alcohol) hydrogels. Biomaterials 28:947–955

    Article  CAS  PubMed  Google Scholar 

  • Mawad D, Boughton EA, Boughton P, Lauto A (2012) Advances in hydrogels applied to degenerative diseases. Curr Pharm Des 18:2558–2575

    Article  CAS  PubMed  Google Scholar 

  • Mckinnon DD, Kloxin AM, Anseth KS (2013) Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons. Biomater Sci 1:460–469

    Article  CAS  Google Scholar 

  • Mcmurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, Mcnamara LE, Tare R, Murawski K, Kingham E, Oreffo RO, Dalby MJ (2011) Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 10:637–644

    Article  CAS  PubMed  Google Scholar 

  • Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    Article  CAS  PubMed  Google Scholar 

  • Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161

    Article  CAS  PubMed  Google Scholar 

  • Moshayedi P, Carmichael ST (2013) Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke. Biomatter 3(1):e23863

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  • Murphy KC, Fang SY, Leach JK (2014a) Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 357:91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy WL, Mcdevitt TC, Engler AJ (2014b) Materials as stem cell regulators. Nat Mater 13:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Z, Kumacheva E (2008) Patterning surfaces with functional polymers. Nat Mater 7:277–290

    Article  CAS  PubMed  Google Scholar 

  • Nieponice A, Soletti L, Guan J, Hong Y, Gharaibeh B, Maul TM, Huard J, Wagner WR, Vorp DA (2010) In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A 16:1215–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oleaga C, Bernabini C, Smith AS, Srinivasan B, Jackson M, Mclamb W, Platt V, Bridges R, Cai Y, Santhanam N, Berry B, Najjar S, Akanda N, Guo X, Martin C, Ekman G, Esch MB, Langer J, Ouedraogo G, Cotovio J, Breton L, Shuler ML, Hickman JJ (2016) Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 6:20030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passier R, Orlova V, Mummery C (2016) Complex tissue and disease modeling using hiPSCs. Cell Stem Cell 18:309–321

    Article  CAS  PubMed  Google Scholar 

  • Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS, Doronin SV (2007) Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 25:1761–1768

    Article  CAS  PubMed  Google Scholar 

  • Polonchuk L, Chabria M, Badi L, Hoflack J-C, Figtree G, Davies MJ, Gentile C (2017) Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep 7(1):7005

    Article  PubMed  PubMed Central  Google Scholar 

  • Preston M, Sherman LS (2011) Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Front Biosci (Schol Ed) 3:1165–1179

    Article  Google Scholar 

  • Purcell O, Lu TK (2014) Synthetic analog and digital circuits for cellular computation and memory. Curr Opin Biotechnol 29:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravenscroft SM, Pointon A, Williams AW, Cross MJ, Sidaway JE (2016) Cardiac non-myocyte cells show enhanced pharmacological function suggestive of contractile maturity in stem cell derived cardiomyocyte microtissues. Toxicol Sci 152:99–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2013) Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J Cardiol 5:28–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres—re-evaluating the relationship. Nat Methods 2:333–336

    Article  CAS  PubMed  Google Scholar 

  • Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95:4426–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, Van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658

    Article  CAS  PubMed  Google Scholar 

  • Shim J, Grosberg A, Nawroth JC, Parker KK, Bertoldi K (2012) Modeling of cardiac muscle thin films: pre-stretch, passive and active behavior. J Biomech 45:832–841

    Article  PubMed  PubMed Central  Google Scholar 

  • Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 31:448–452

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Nadri S, Shabani I (2010) Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold. Int J Dev Biol 54:1295–1300

    Article  CAS  PubMed  Google Scholar 

  • Sperling LE, Reis KP, Pozzobon LG, Girardi CS, Pranke P (2017) Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A 105(5):1333–1345

    Article  CAS  PubMed  Google Scholar 

  • Stewart E, Kobayashi NR, Higgins MJ, Quigley AF, Jamali S, Moulton SE, Kapsa RM, Wallace GG, Crook JM (2015) Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng Part C Methods 21:385–393

    Article  CAS  PubMed  Google Scholar 

  • Sardo VL, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A (2016) Influence of donor age on induced pluripotent stem cells. Nat Biotechnol 35(1):69–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Y, Ding Q (2017) Genome engineering of stem cell organoids for disease modeling. Protein Cell 8(5):315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Richards D, Coyle RC, Yao J, Xu R, Gou W, Wang H, Menick DR, Tian B, Mei Y (2017) Cell number per spheroid and electrical conductivity of nanowires influence the function of silicon nanowired human cardiac spheroids. Acta Biomater 51:495–504

    Article  CAS  PubMed  Google Scholar 

  • Thavandiran N, Dubois N, Mikryukov A, Masse S, Beca B, Simmons CA, Deshpande VS, Mcgarry JP, Chen CS, Nanthakumar K, Keller GM, Radisic M, Zandstra PW (2013) Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci U S A 110:E4698–E4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torisawa YS, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, Collins JJ, Ingber DE (2014) Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 11:663–669

    Article  CAS  PubMed  Google Scholar 

  • Tsou YH, Khoneisser J, Huang PC, Xu X (2016) Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Mater 1:39–55

    Article  Google Scholar 

  • Vallier L, Pedersen RA (2005) Human embryonic stem cells: an in vitro model to study mechanisms controlling pluripotency in early mammalian development. Stem Cell Rev 1:119–130

    Article  CAS  PubMed  Google Scholar 

  • Van der Helm MW, Van der Meer AD, Eijkel JC, Van den Berg A, Segerink LI (2016) Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 4:e1142493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Meer AD, Van den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol (Camb) 4:461–470

    Article  CAS  Google Scholar 

  • Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V (2010) Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10:409–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Willerth SM, Sakiyama-Elbert SE (2008) Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. StemBook, Cambridge, MA

    Google Scholar 

  • Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O (2016) Engineering stem cell organoids. Cell Stem Cell 18:25–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan N, Tian W, Sun L, Yuan R, Tao J, Chen D (2014) Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair. Neural Regen Res 9:1014–1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 18:618–623

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhao Z, Abdul Rahim NA, Van Noort D, Yu H (2009) Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9:3185–3192

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Stauffer WR, Jane EP, Sammak PJ, Cui XT (2010) Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole. Macromol Biosci 10:1456–1464

    Article  PubMed  CAS  Google Scholar 

  • Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Gentile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mawad, D., Figtree, G., Gentile, C. (2017). Current Technologies Based on the Knowledge of the Stem Cells Microenvironments. In: Birbrair, A. (eds) Stem Cell Microenvironments and Beyond. Advances in Experimental Medicine and Biology, vol 1041. Springer, Cham. https://doi.org/10.1007/978-3-319-69194-7_13

Download citation

Publish with us

Policies and ethics