Skip to main content

Advertisement

Log in

Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have great therapeutic potential for the repair of nonhealing bone defects, because of their proliferative capacity, multilineage potential, trophic factor secretion and lack of immunogenicity. However, a major challenge to the translation of cell-based therapies into clinical practice is ensuring their survival and function upon implantation into the defect site. We hypothesize that forming MSCs into more physiologic three-dimensional spheroids, rather than employing dissociated cells from two-dimensional monolayer culture, will enhance their survival when exposed to a harsh microenvironment but maintain their osteogenic potential. MSC spheroids were formed by using the hanging drop method with increasing cell numbers. Compared with larger spheroids, the smallest spheroids, which contained 15,000 cells, exhibited increased metabolic activity, reduced apoptosis and the most uniform distribution of proliferating cells. Spheroids were then entrapped in fibrin gels and cultured in serum-free medium and 1 % oxygen. Compared with identical numbers of dissociated MSCs in fibrin gels, spheroids exhibited significantly reduced apoptosis and secreted up to 100-fold more vascular endothelial growth factor. Moreover, fibrin gels containing spheroids and those containing an equivalent number of dissociated cells exhibited similar expression levels of early and late markers of osteogenic differentiation. Thus, MSC spheroids exhibit greater resistance to apoptosis and enhanced proangiogenic potential while maintaining similar osteogenic potential to dissociated MSCs entrapped in a clinically relevant biomaterial, supporting the use of MSC spheroids in cell-based approaches to bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baraniak PR, McDevitt TC (2012) Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res 347:701–711

    Article  CAS  PubMed  Google Scholar 

  • Barsotti MC, Magera A, Armani C, Chiellini F, Felice F, Dinucci D, Piras AM, Minnocci A, Solaro R, Soldani G, Balbarini A, Di Stefano R (2011) Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells. Cell Prolif 44:33–48

    Article  CAS  PubMed  Google Scholar 

  • Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A 107:13724–13729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhang SH, Cho SW, La WG, Lee TJ, Yang HS, Sun AY, Baek SH, Rhie JW, Kim BS (2011) Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials 32:2734–2747

    Article  CAS  PubMed  Google Scholar 

  • Bhang SH, Lee S, Lee TJ, La WG, Yang HS, Cho SW, Kim BS (2012a) Three-dimensional cell grafting enhances the angiogenic efficacy of human umbilical vein endothelial cells. Tissue Eng Part A 18:310–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhang SH, Lee S, Shin JY, Lee TJ, Kim BS (2012b) Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Eng A 18:2138–2147

    Article  CAS  Google Scholar 

  • Binder BY, Genetos DC, Leach JK (2014) Lysophosphatidic acid protects human mesenchymal stromal cells from differentiation-dependent vulnerability to apoptosis. Tissue Eng Part A (in press)

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Correa de Sampaio P, Auslaender D, Krubasik D, Failla AV, Skepper JN, Murphy G, English WR (2012) A heterogeneous in vitro three dimensional model of tumour-stroma interactions regulating sprouting angiogenesis. PLoS One 7:e30753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curcio E, Salerno S, Barbieri G, De Bartolo L, Drioli E, Bader A (2007) Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials 28:5487–5497

    Article  CAS  PubMed  Google Scholar 

  • Davis HE, Miller SL, Case EM, Leach JK (2011) Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response. Acta Biomater 7:691–699

    Article  CAS  PubMed  Google Scholar 

  • Davis HE, Binder BY, Schaecher P, Yakoobinsky DD, Bhat A, Leach JK (2013) Enhancing osteoconductivity of fibrin gels with apatite-coated polymer microspheres. Tissue Eng A 19:1773–1782

    Article  CAS  Google Scholar 

  • Decaris ML, Binder BY, Soicher MA, Bhat A, Leach JK (2012) Cell-derived matrix coatings for polymeric scaffolds. Tissue Eng A 18:2148–2157

    Article  CAS  Google Scholar 

  • Del Duca D, Werbowetski T, Del Maestro RF (2004) Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol 67:295–303

    Article  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Fey SJ, Wrzesinski K (2012) Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol Sci 127:403–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:309–324

    Article  CAS  PubMed  Google Scholar 

  • Frith JE, Thomson B, Genever PG (2010) Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng C Methods 16:735–749

    Article  CAS  Google Scholar 

  • He J, Genetos DC, Leach JK (2010) Osteogenesis and trophic factor secretion are influenced by the composition of hydroxyapatite/poly(lactide-co-glycolide) composite scaffolds. Tissue Eng A 16:127–137

    Article  CAS  Google Scholar 

  • He J, Decaris ML, Leach JK (2012) Bioceramic-mediated trophic factor secretion by mesenchymal stem cells enhances in vitro endothelial cell persistence and in vivo angiogenesis. Tissue Eng A 18:1520–1528

    Article  CAS  Google Scholar 

  • Herrmann JL, Wang Y, Abarbanell AM, Weil BR, Tan J, Meldrum DR (2010) Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection. Shock 33:24–30

    Article  CAS  PubMed  Google Scholar 

  • Hoch AI, Binder BY, Genetos DC, Leach JK (2012) Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS One 7:e35579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Muller I (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6:1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH (2006) VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 21:735–744

    Article  CAS  PubMed  Google Scholar 

  • Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10:7–19

    Article  CAS  PubMed  Google Scholar 

  • Korff T, Augustin HG (1998) Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol 143:1341–1352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kunz-Schughart LA, Kreutz M, Knuechel R (1998) Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol 79:1–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lai Y, Kisaalita WS (2012) Performance evaluation of 3D polystyrene 96-well plates with human neural stem cells in a calcium assay. J Lab Autom 17:284–292

    CAS  PubMed  Google Scholar 

  • Laschke MW, Schank TE, Scheuer C, Kleer S, Schuler S, Metzger W, Eglin D, Alini M, Menger MD (2013) Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Acta Biomater 9:6876–6884

    Article  CAS  PubMed  Google Scholar 

  • Laurencin C, Khan Y, El-Amin SF (2006) Bone graft substitutes. Expert Rev Med Devices 3:49–57

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Park SJ, Kang SK, Kim GH, Kang HJ, Lee SW, Jeon HB, Kim HS (2012) Spherical bullet formation via E-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Mol Ther 20:1424–1433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leu A, Stieger SM, Dayton P, Ferrara KW, Leach JK (2009) Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng A 15:877–885

    Article  CAS  Google Scholar 

  • Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ (2012) Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev 64:1257–1276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller-Klieser W (1997) Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol 273:C1109–C1123

    CAS  PubMed  Google Scholar 

  • Murphy KC, Leach JK (2012) A reproducible, high throughput method for fabricating fibrin gels. BMC Res Notes 5:423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Keefe RJ, Mao J (2011) Bone tissue engineering and regeneration: from discovery to the clinic—an overview. Tissue Eng B Rev 17:389–392

    Article  Google Scholar 

  • Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77:134–142

    Article  CAS  PubMed  Google Scholar 

  • Potier E, Ferreira E, Meunier A, Sedel L, Logeart-Avramoglou D, Petite H (2007) Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng 13:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Shaikh FM, Callanan A, Kavanagh EG, Burke PE, Grace PA, McGloughlin TM (2008) Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 188:333–346

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:e40

    Article  CAS  PubMed  Google Scholar 

  • Shweiki D, Neeman M, Itin A, Keshet E (1995) Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci U S A 92:768–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siddappa R, Licht R, van Blitterswijk C, de Boer J (2007) Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res 25:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Titushkin I, Cho M (2007) Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys J 93:3693–3702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang CC, Chen CH, Hwang SM, Lin WW, Huang CH, Lee WY, Chang Y, Sung HW (2009) Spherically symmetric mesenchymal stromal cell bodies inherent with endogenous extracellular matrices for cellular cardiomyoplasty. Stem Cells 27:724–732

    Article  CAS  PubMed  Google Scholar 

  • Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin HG, Stark GB, Kneser U (2004) Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng 10:1536–1547

    Article  CAS  PubMed  Google Scholar 

  • Winer JP, Janmey PA, McCormick ME, Funaki M (2009) Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng A 15:147–154

    Article  CAS  Google Scholar 

  • Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T (2005) Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26:6415–6422

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33:907–921

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by NIH Grant 1R03DE021704-01 to J.K.L.; S.F. was supported by the Clinical and Translational Science Center (CTSC) T32 Pre-Doctoral Clinical Research Training Program.

Conflict of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kent Leach.

Additional information

K. C. Murphy and S. Y. Fang made equal contributions to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 414 kb)

High resolution Image (EPS 110 kb)

ESM 2

(JPEG 324 kb)

High resolution Image (EPS 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, K.C., Fang, S.Y. & Leach, J.K. Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 357, 91–99 (2014). https://doi.org/10.1007/s00441-014-1830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1830-z

Keywords

Navigation