Skip to main content

High-Throughput Screening, Microfluidics, Biosensors, and Real-Time Phenotyping

  • Chapter
  • First Online:
Stem Cell Engineering

Part of the book series: Science Policy Reports ((SCIPOLICY))

  • 1090 Accesses

Abstract

Key opportunities for the field of stem cell engineering involve identification of cues that regulate stem cell fate, constructing a systems level understanding of how cells sense and process information provided by the microenvironment, and designing environments to elicit the desired cell fate. Meeting these opportunities will be facilitated by collaborative, interdisciplinary interactions among engineers, scientists, and clinicians. Chapters “Physical and Engineering Principles in Stem Cell Research” and “Computational Modeling and Stem Cell Engineering” in this report address the principles by which physical cues can affect stem cells and how mathematical modeling can provide insight into mechanisms of stem cell regulation. For these efforts to be successful, spatial and dynamic control over the microenvironment is needed. This chapter will focus on how recent advances in cell culture platform design and manufacture permit systematic application of regulatory cues to stem cells, and the insight these systems have provided in stem cell biology and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves, H., K. Dechering, C. Van Blitterswijk, and J. De Boer. 2011. High-throughput assay for the identification of compounds regulating osteogenic differentiation of human mesenchymal stromal cells. PLoS One 6:e26678.

    Article  Google Scholar 

  • Andrews, P.D., M. Becroft, A. Aspegren, J. Gilmour, M J. James, S. McRae, R. Kime, R.W. Allcock, A. Abraham, Z. Jiang, R. Strehl, J.C. Mountford, G. Milligan, M.D. Houslay, D.R. Adams, and J.A. Frearson. 2010. High-content screening of feeder-free human embryonic stem cells to identify pro-survival small molecules. Biochem. J. 432:21–33.

    Article  Google Scholar 

  • Ashton, R.S., J. Peltier, C.A. Fasano, A. O’Neill, J. Leonard, S. Temple, D.V. Schaffer, and R.S. Kane. 2007. High-throughput screening of gene function in stem cells using clonal microarrays. Stem Cells 25:2928–2935.

    Article  Google Scholar 

  • Barbaric, I., P.J. Gokhale, M. Jones, A. Glen, D. Baker, and P.W. Andrews. 2010. Novel regulators of stem cell fates identified by a multivariate phenotype screen of small compounds on human embryonic stem cell colonies. Stem Cell Res. 5:104–19.

    Article  Google Scholar 

  • Bennett, M.R. and J. Hasty. 2009. Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10:628–638.

    Article  Google Scholar 

  • Bichsel, C.A., S. Gobaa, S. Kobel, C. Secondini, G.N. Thalmann, M.G. Cecchini, and M.P. Lutolf. 2012. Diagnostic microchip to assay 3D colony-growth potential of captured circulating tumor cells. Lab Chip 12:2313–6.

    Article  Google Scholar 

  • Cheong, R., C.J. Wang, and A. Levchenko. 2009. High content cell screening in a microfluidic device. Mol. Cell. Proteomics 8:433–442.

    Article  Google Scholar 

  • Choi, N.W., M. Cabodi, B. Held, J.P. Gleghorn, L. J. Bonassar, and A.D. Stroock. 2007. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6:908–915.

    Article  Google Scholar 

  • Davidson, K.C., A.M. Adams, J.M. Goodson, C.E. McDonald, J.C. Potter, J.D. Berndt, T.L. Biechele, R.J. Taylor, and R.T. Moon. 2012. Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. Proc. Natl. Acad. Sci. USA 109:4485–4490.

    Article  Google Scholar 

  • Derda, R., S. Musah, B.P. Orner, J.R. Klim, L. Li, and L.L. Kiessling. 2010. High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J. Am. Chem. Soc. 132:1289–1295.

    Article  Google Scholar 

  • Desbordes, S.C., D.G. Placantonakis, A. Ciro, N.D. Socci, G. Lee, H. Djaballah, and L. Studer. 2008. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2:602–612.

    Article  Google Scholar 

  • Du, Y., M. Ghodousi, H. Qi, N. Haas, W. Xiao, and A. Khademhosseini. 2011. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol. Bioeng. 108:1693–1703.

    Article  Google Scholar 

  • Dykes, J., A. Lenshof, I.B. Astrand-Grundstrom, T. Laurell, and S. Scheding. 2011. Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform. PLoS One 6:e23074.

    Article  Google Scholar 

  • Elliott, D.A., S.R. Braam, K. Koutsis, E.S. Ng, R. Jenny, E.L. Lagerqvist, C. Biben, T. Hatzistavrou, C.E. Hirst, Q.C. Yu, R.J. Skelton, D. Ward-van Oostwaard, S.M. Lim, O. Khammy, X. Li, S.M. Hawes, R.P. Davis, A.L. Goulburn, R. Passier, O.W. Prall, J.M. Haynes, C.W. Pouton, D.M. Kaye, C.L. Mummery, A.G. Elefanty, and E.G. Stanley. 2011. NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat. Methods 8:1037–1040.

    Article  Google Scholar 

  • Ellison, D., A. Munden, and A. Levchenko. 2009. Computational model and microfluidic platform for the investigation of paracrine and autocrine signaling in mouse embryonic stem cells. Mol. Biosyst. 5:1004–1012.

    Article  Google Scholar 

  • Fidkowski, C., M.R. Kaazempur-Mofrad, J. Borenstein, J.P. Vacanti, R. Langer, and Y. Wang. 2005. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng. 11:302–309.

    Article  Google Scholar 

  • Flaim, C.J., D. Teng, S. Chien, and S.N. Bhatia. 2008. Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev. 17:29–39.

    Article  Google Scholar 

  • Fre, S., E. Hannezo, S. Sale, M. Huyghe, D. Lafkas, H. Kissel, A. Louvi, J. Greve, D. Louvard, and S. Artavanis-Tsakonas. 2011. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PLoS One 6:e25785.

    Article  Google Scholar 

  • Gauvin, R., and A. Khademhosseini. 2011. Microscale technologies and modular approaches for tissue engineering: moving toward the fabrication of complex functional structures. ACS Nano 5:4258–4264.

    Article  Google Scholar 

  • Gerrard, L., D. Zhao, A.J. Clark, and W. Cui. 2005. Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23:124–133.

    Article  Google Scholar 

  • Gobaa, S., S. Hoehnel, M. Roccio, A. Negro, S. Kobel, and M.P. Lutolf. 2011. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Methods 8:949–955.

    Article  Google Scholar 

  • Gomez-Sjoberg, R., A.A. Leyrat, D.M. Pirone, C.S. Chen, and S.R. Quake. 2007. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79:8557–8563.

    Article  Google Scholar 

  • Hazeltine, L.B., C.S. Simmons, M.R. Salick, X. Lian, M.G. Badur, W. Han, S.M. Delgado, T. Wakatsuki, W.C. Crone, B.L. Pruitt, and S.P. Palecek. 2012. Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int. J. Cell Biol. 2012:508294.

    Article  Google Scholar 

  • Huangfu, D., R. Maehr, W. Guo, A. Eijkelenboom, M. Snitow, A. E. Chen, and D. A. Melton. 2008. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26:795–797.

    Article  Google Scholar 

  • Kamei, K., S. Guo, Z.T. Yu, H. Takahashi, E. Gschweng, C. Suh, X. Wang, J. Tang, J. McLaughlin, O.N. Witte, K.B. Lee, and H.R. Tseng. 2009. An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells. Lab Chip 9:555–563.

    Article  Google Scholar 

  • Kamei, K., M. Ohashi, E. Gschweng, Q. Ho, J. Suh, J. Tang, Z.T. For Yu, A.T. Clark, A.D. Pyle, M.A. Teitell, K.B. Lee, O.N. Witte, and H.R. Tseng. 2010. Microfluidic image cytometry for quantitative single-cell profiling of human pluripotent stem cells in chemically defined conditions. Lab Chip 10:1113–1119.

    Article  Google Scholar 

  • Kim, S.B., H. Bae, J.M. Cha, S.J. Moon, M.R. Dokmeci, D.M. Cropek, and A. Khademhosseini. 2011. A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging. Lab Chip 11:1801–1807.

    Article  Google Scholar 

  • Kunze, A., A. Valero, D. Zosso, and P. Renaud. 2011. Synergistic NGF/B27 gradients position synapses heterogeneously in 3D micropatterned neural cultures. PLoS One 6:e26187.

    Article  Google Scholar 

  • Kuo, Y.C., J.H. Ho, T.J. Yen, H.F. Chen, and O.K. Lee. 2011. Development of a surface plasmon resonance biosensor for real-time detection of osteogenic differentiation in live mesenchymal stem cells. PLoS One 6:e22382.

    Article  Google Scholar 

  • Lecault, V., M. Vaninsberghe, S. Sekulovic, D.J. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A.K. White, D.G. Kent, M.R. Copley, F. Taghipour, C.J. Eaves, R.K. Humphries, J.M. Piret, and C.L. Hansen. 2011. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat. Methods 8:581–586.

    Article  Google Scholar 

  • Lee, E.J., E. Kim do, E.U. Azeloglu, and K.D. Costa. 2008. Engineered cardiac organoid chambers: toward a functional biological model ventricle. Tissue Eng Part A 14:215–25.

    Article  Google Scholar 

  • Lee, W.C., A.A. Bhagat, S. Huang, K.J. Van Vliet, J. Han, and C.T. Lim. 2011. High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11:1359–1367.

    Article  Google Scholar 

  • Lii, J., W.J. Hsu, H. Parsa, A. Das, R. Rouse, and S.K. Sia. 2008. Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Anal. Chem. 80:3640–3647.

    Article  Google Scholar 

  • Luna, J.I., J. Ciriza, M.E. Garcia-Ojeda, M. Kong, A. Herren, D.K. Lieu, R.A. Li, C.C. Fowlkes, M. Khine, and K.E. McCloskey. 2011. Multiscale biomimetic topography for the alignment of neonatal and embryonic stem cell-derived heart cells. Tissue Eng Part C Methods 17:579–588.

    Article  Google Scholar 

  • Mei, Y., K. Saha, S.R. Bogatyrev, J. Yang, A.L. Hook, Z.I. Kalcioglu, S.W. Cho, M. Mitalipova, N. Pyzocha, F. Rojas, K.J. Van Vliet, M.C. Davies, M.R. Alexander, R. Langer, R. Jaenisch, and D.G. Anderson. 2010. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 9:768–78.

    Article  Google Scholar 

  • Metallo, C.M., J.C. Mohr, C.J. Detzel, J.J. de Pablo, B.J. Van Wie, and S.P. Palecek. 2007. Engineering the stem cell microenvironment. Biotechnol. Prog. 23:18–23.

    Article  Google Scholar 

  • Moledina, F., G. Clarke, A. Oskooei, K. Onishi, A. Gunther, and P.W. Zandstra. 2012. Predictive microfluidic control of regulatory ligand trajectories in individual pluripotent cells. Proc. Natl. Acad. Sci. USA 109:3264–3269.

    Article  Google Scholar 

  • Mummery, C.L., J. Zhang, E.S. Ng, D.A. Elliott, A.G. Elefanty, and T.J. Kamp. 2012. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111:344–358.

    Article  Google Scholar 

  • Nagrath, S., L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, and M. Toner. 2007. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239.

    Article  Google Scholar 

  • Noisa, P., A. Urrutikoetxea-Uriguen, M. Li, and W. Cui. 2010. Generation of human embryonic stem cell reporter lines expressing GFP specifically in neural progenitors. Stem Cell Rev. 6:438–449.

    Article  Google Scholar 

  • Outten, J.T., X. Cheng, P. Gadue, D.L. French, and S.L. Diamond. 2011. A high-throughput multiplexed screening assay for optimizing serum-free differentiation protocols of human embryonic stem cells. Stem Cell Res. 6:129–42.

    Article  Google Scholar 

  • Pauli, A., J.L. Rinn, and A.F. Schier. 2011. Non-coding RNAs as regulators of embryogenesis. Nat. Rev. Genet. 12:136–149.

    Article  Google Scholar 

  • Plouffe, B.D., T. Kniazeva, J.E. Mayer, Jr., S.K. Murthy, and V.L. Sales. 2009. Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine. FASEB J. 23:3309–14.

    Article  Google Scholar 

  • Poon, E., C. W. Kong, and R. A. Li. 2011. Human pluripotent stem cell-based approaches for myocardial repair: from the electrophysiological perspective. Mol. Pharm. 8:1495–504.

    Article  Google Scholar 

  • Roccio, M., S. Gobaa, and M.P. Lutolf. 2012. High-throughput clonal analysis of neural stem cells in microarrayed artificial niches. Integr. Biol. (Camb.) 4:391–400.

    Article  Google Scholar 

  • Rosenthal, A., A. Macdonald, and J. Voldman. 2007. Cell patterning chip for controlling the stem cell microenvironment. Biomaterials 28:3208–3216.

    Article  Google Scholar 

  • Ruiz, S.A., and C.S. Chen. 2008. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26:2921–2927.

    Article  Google Scholar 

  • Scadden, D.T. 2006. The stem-cell niche as an entity of action. Nature 441:1075–9.

    Article  Google Scholar 

  • Soen, Y., A. Mori, T.D. Palmer, and P.O. Brown. 2006. Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol. Syst. Biol. 2:37.

    Article  Google Scholar 

  • Stott, S.L., C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, Jr., A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, and M. Toner. 2010. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA 107:18392–18397.

    Article  Google Scholar 

  • Tiscornia, G., and J.C. Izpisua Belmonte. 2010. MicroRNAs in embryonic stem cell function and fate. Genes Dev. 24:2732–2741.

    Article  Google Scholar 

  • Titmarsh, D., A. Hidalgo, J. Turner, E. Wolvetang, and J. Cooper-White. 2011. Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors. Biotechnol. Bioeng. 108:2894–2904.

    Article  Google Scholar 

  • Toh, Y.C., and J. Voldman. 2011. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. FASEB J. 25:1208–1217.

    Article  Google Scholar 

  • Tulloch, N.L., V. Muskheli, M.V. Razumova, F.S. Korte, M. Regnier, K.D. Hauch, L. Pabon, H. Reinecke, and C.E. Murry. 2011. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109:47–59.

    Article  Google Scholar 

  • Unadkat, H.V., M. Hulsman, K. Cornelissen, B.J. Papenburg, R.K. Truckenmuller, A.E. Carpenter, M. Wessling, G.F. Post, M. Uetz, M.J. Reinders, D. Stamatialis, C.A. van Blitterswijk, and J. de Boer. 2011. An algorithm-based topographical biomaterials library to instruct cell fate. Proc. Natl. Acad. Sci. USA 108:16565–16570.

    Article  Google Scholar 

  • Villa-Diaz, L.G., Y.S. Torisawa, T. Uchida, J. Ding, N.C. Nogueira-de-Souza, K.S. O’Shea, S. Takayama, and G.D. Smith. 2009. Microfluidic culture of single human embryonic stem cell colonies. Lab Chip 9:1749–1755.

    Article  Google Scholar 

  • Wu, W., A. DeConinck, and J.A. Lewis. 2011. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23:H178-H183.

    Article  Google Scholar 

  • Xu, Y., X. Zhu, H.S. Hahm, W. Wei, E. Hao, A. Hayek, and S. Ding. 2010. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc. Natl. Acad. Sci. USA 107:8129–8134.

    Article  Google Scholar 

  • Yi, R. and E. Fuchs. 2011. MicroRNAs and their roles in mammalian stem cells. J. Cell Sci. 124:1775–1783.

    Article  Google Scholar 

  • Yin, Z., S.C. Tao, R. Cheong, H. Zhu, and A. Levchenko. 2010. An integrated micro-electro-fluidic and protein arraying system for parallel analysis of cell responses to controlled microenvironments. Integr. Biol. (Camb.) 2:416–423.

    Article  Google Scholar 

  • Young, E.W. and D.J. Beebe. 2010. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39:1036–1048.

    Article  Google Scholar 

  • Zhang, Y., Z. Gazit, G. Pelled, D. Gazit, and G. Vunjak-Novakovic. 2011. Patterning osteogenesis by inducible gene expression in microfluidic culture systems. Integr. Biol. (Camb.) 3:39–47.

    Article  Google Scholar 

  • Zhao, W., S. Schafer, J. Choi, Y.J. Yamanaka, M.L. Lombardi, S. Bose, A.L. Carlson, J.A. Phillips, W. Teo, I.A. Droujinine, C.H. Cui, R.K. Jain, J. Lammerding, J.C. Love, C.P. Lin, D. Sarkar, R. Karnik, and J.M. Karp. 2011. Cell-surface sensors for real-time probing of cellular environments. Nat. Nanotechnol. 6:524–531.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Palecek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palecek, S.P. (2014). High-Throughput Screening, Microfluidics, Biosensors, and Real-Time Phenotyping. In: Nerem, R., Loring, J., McDevitt, T., Palecek, S., Schaffer, D., Zandstra, P. (eds) Stem Cell Engineering. Science Policy Reports. Springer, Cham. https://doi.org/10.1007/978-3-319-05074-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05074-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05073-7

  • Online ISBN: 978-3-319-05074-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics