Skip to main content

Retting Process as a Pretreatment of Natural Fibers for the Development of Polymer Composites

  • Chapter
  • First Online:
Lignocellulosic Composite Materials

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The development of high-performance materials made from natural resources is increasing worldwide. Within this framework, natural fiber reinforced polymeric composites now experience great expansion and applications in many fields, ranging from the automotive to the construction sector. The great challenge in producing composites containing natural fibers and with controlled features is connected to the great variation in properties and characteristics of fibers. The quality of the natural fibers is largely determined by the efficiency of the treatment process and can dramatically influence the properties of the final composites. The overall fiber extraction processes, applied to vegetable fibers, is called retting and consists in the separation of fiber bundles from the cuticularized epidermis and the woody core cells. Today, many efforts are being made to optimize the retting methods in terms of fiber quality production, reduction of environmental issues and production costs. This chapter aims to provide a classification and an overview of the retting procedures that have been developed during years and are applied to extract mainly bast fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Halima ES, El-Rafie MH, Kohler R (2008) Surface characterization of differently pretreated flax fibers and their application in fiber-reinforced composites. Polym Plast Technol Eng 47:58–65

    Article  CAS  Google Scholar 

  • Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofiber. Carbohydr Polym 92:1477–1483

    Article  CAS  Google Scholar 

  • Adamsen APS, Akin DE, Rigsy LL (2002) Chelating agents and enzyme retting of flax. Text Res J 72:296–302

    Article  CAS  Google Scholar 

  • Ahmed Z, Akhter F (2001) Jute retting: an overview. J Biol Sci 1(7):685–688

    Article  Google Scholar 

  • Ahmed Z, Nizam SA (2008) Jute—microbiological and biochemical research. Plant Tissue Cult Biotechnol 18:197–220

    Google Scholar 

  • Akin DE, Condon B, Sohn M, Foulk JA, Dodd RB, Rigsby LL (2007) Optimization for enzyme-retting of flax with pectate lyase. Ind Crops Prod 25:136–146

    Article  CAS  Google Scholar 

  • Akin DE, Henriksson G, Evans JD, Adamsen APS, Foulk JA, Dodd RB (2004) Progress in enzyme retting of flax. J Nat Fibers 1:21–47

    Article  CAS  Google Scholar 

  • Akin DE, Morrison WH III, Rigsby LL, Evans JD, Foulk JA (2003) Influence of water presoak on enzyme-retting of flax. Ind Crops Prod 17:149–159

    Article  CAS  Google Scholar 

  • Akin DE, Rigby LL, Perkins W (1999) Quality properties of flax fibers retted with enzymes. Text Res J 69:747–753

    Article  CAS  Google Scholar 

  • Akin DE, Rigsy LL, Henriksson G, Eriksson KL (1998) Structural effects on flax stems of three potential retting fungi. Text Res J 68:515–519

    Article  CAS  Google Scholar 

  • Ali MM (1958) Aerobic bacteria involved in the retting of jute. Appl Microbiol 6:87–89

    CAS  Google Scholar 

  • Amaducci S, Gusovious HJ (2010) Hemp cultivation, extraction and processing. In: Mussig J (ed) Industrial application of natural fibres: properties and technical application. Wiley, UK

    Google Scholar 

  • Amel BA, Paridah MT, Sudin R, Anwar UMK, Hussein AS (2013) Effect of fiber extraction methods on some properties of kenaf bast fiber. Ind Crops Prod 46:117–123

    Article  CAS  Google Scholar 

  • Antonov V, Marek J, Bjelkova M, Smirous P, Fisher H (2007) Easily available enzymes as natural retting agents. Biotechnol J 2:342–346

    Article  CAS  Google Scholar 

  • Aziz SH, Ansell MP (2004) Optimising the properties of green composites. In: Baillie CA (ed) green composites. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  • Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Heal B 24:421–433

    Article  Google Scholar 

  • Bacci L, Di Lonardo S, Albanese L, Mastromei G, Perito B (2010) Effect of different extraction methods on fiber quality of nettle (Urtica Dioica L.). Text Res J 81:827–837

    Article  CAS  Google Scholar 

  • Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A-Appl S 33:939–948

    Article  Google Scholar 

  • Baley C (2004) Influence of kink bands on the tensile strength of flax fibers. J Mater Sci 39:331–334

    Article  CAS  Google Scholar 

  • Baley C, Busnel F, Grohens Y, Sire O (2006) Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Compos Part A-Appl S 37:1626–1637

    Article  CAS  Google Scholar 

  • Basu G, Mishra L, Jose S, Samanta AK (2015) Accelerated retting cum softening of coconut fibre. Ind Crops Prod 77:66–73

    Article  CAS  Google Scholar 

  • Beg QK, Bushan B, Kappor M, Hoondal GS (2000) Production and characterization of thermostable xylanase and pectinase from Streptomycetes spp. QG-11-3. Res Bull Panjab Univ Sci 51:71–78

    Google Scholar 

  • Bismark A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton

    Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T, Ploger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577

    Article  CAS  Google Scholar 

  • Blanco P, Sieiro C, Villa TG (1999) Production of pectic enzymes in yeast. FEMS Microbiol Lett 175:1–9

    Article  CAS  Google Scholar 

  • Bledzki AK, Fink HP, Specht K (2004) Unidirectional hemp and flax EP- and PP-composites: influence of defined fiber treatments. J Appl Polym Sci 93:2150–2156

    Article  CAS  Google Scholar 

  • Bledzki AK, Franciszczak P, Osman Z, Elbadawi M (2015) Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers Ind Crops. Prod 70:91–99

    CAS  Google Scholar 

  • Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67:462–470

    Article  CAS  Google Scholar 

  • Booth I, Goodman AM, Grishanov SA, Harwood RJ (2004) A mechanical investigation of the retting process in dew-retting hemp (Cannabis sativa). Ann Appl Biol 145:51–58

    Article  Google Scholar 

  • Bozaci E, Sever K, Sarikanat M, Seki Y, Demir A, Ozdogan E, Tavman I (2013) Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos Part B-Eng 45:565–572

    Article  CAS  Google Scholar 

  • Brígida AIS, Calado VMA, Gonçalves LRB, Coelho MAZ (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohydr Polym 79:832–838

    Article  CAS  Google Scholar 

  • Bruhlmann F, Leupin M, Erismann KH, Fiechter A (2000) Enzymatic degumming of ramie bast fibers. J Biotechnol 76:43–50

    Article  CAS  Google Scholar 

  • Callister WD Jr (2007) Composites. In: Callister WD Jr (ed) Materials science and engineering: an introduction, 7th edn. Wiley, New York

    Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37

    Article  Google Scholar 

  • Chen Y, Sharma-Shivappa RR, Keshwani D, Chen C (2007) Potential of agricultural residues and hay for bioethanol production. Appl Biochem Biotechnol 142:276–290

    Article  CAS  Google Scholar 

  • Cong R, Dong W (2007) Structure and property of mulberry fiber. Mod Appl Sci 1:14–17

    Article  CAS  Google Scholar 

  • Dasgupta PC, Sardar D, Majumdar AK (1976) Chemical retting of jute. Food Farming Agric 8:7–9

    Google Scholar 

  • Davies DC, Bruce DM (1998) Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers. Text Res J 68:623–629

    Article  CAS  Google Scholar 

  • Deyholos MK, Potter S (2014) Engineering bast fiber feedstocks for use in composite materials. Biocatal Agric Biotechnol 3:53–57

    Google Scholar 

  • Di Candilo M, Ranalli P, Mastromei G, Polsinelli M, Bozzi C, Focher B (2000) Optimum conditions for microbial retting of hemp in tanks. In: Bioresource Hemp. Wolfsburg: www.nova-institut.de

  • Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A-Appl S 56:280–289

    Article  CAS  Google Scholar 

  • Donaphy JA, Levette PN, Haylock RW (1990) Changes in microbial populations during anaerobic flax retting. J Appl Bacteriol 69:634–641

    Article  Google Scholar 

  • Dosanjh NS, Hoondal G (1996) Production of constitutive, thermostable, hyper active exo-pectinase from Bacillus GK-8S. Biotechnol Lett 18:1435–1438

    Article  Google Scholar 

  • Durden D, Etters JN, Sarkar AK, Henderson LA, Hill JE (2001) Advances in commercial biopreparation of cotton with alkaline pectinase. AATCC Rev 1:28–31

    CAS  Google Scholar 

  • Du Y, Zhang J, Yu J, Lacy TE Jr, Xue Y, Toghiani H, Horstemeyer MF, Pittman CU Jr (2010) Kenaf bast fiber bundle-reinforced unsaturated polyester composites. IV: effects of fiber loadings and aspect ratios on composite tensile properties. Forest Prod J 60:582–591

    Article  CAS  Google Scholar 

  • Etters JN, Sarkar AK, Henderson LA, Liu J (2001) The influence of biopreparation of cotton with alkaline pectinase on dyeing properties. AATCC Rev 1:22–24

    CAS  Google Scholar 

  • Evans JD, Akin DE, Foulk JA (2002) Flax-retting by galacturonase-containing enzyme mixtures and effects on fiber properties. J Biotechnol 97:223–231

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  • Flax composites (2014) http://flaxcomposites.com

  • Fogarty M, Ward OP (1972) Pectic substances and pectolytic enzymes. Process Biochem 7:17–31

    Google Scholar 

  • Foulk JA, Akin DE, Dodd RB (2008) Influence of pectinolytic enzymes on retting effectiveness and resultant fiber properties. BioResources 3:155–169

    Google Scholar 

  • Foulk JA, Chao WY, Akin DE, Dodd RB, Layton PA (2004) Enzyme-retted flax fiber and recycled polyethylene composites. J Polym Environ 12:165–171

    Article  CAS  Google Scholar 

  • Foulk JA, Rho D, Alcock MM, Ulven CA, Huo S (2011) Modifications caused by enzyme-retting and their effect on composite performance. Adv Mater Sci Eng 9:121–129

    Google Scholar 

  • Frollini E, Bartolucci N, Sisti L, Celli A (2013) Poly(butylene succinate) reinforced with different lignocellulosic fibers. Ind Crops Prod 45:160–169

    Article  CAS  Google Scholar 

  • Frollini E, Bartolucci N, Sisti L, Celli A (2015) Biocomposites based on poly(butylene succinate) and curaua: mechanical and morphological properties. Polym Test 45:168–173

    Article  CAS  Google Scholar 

  • Frontier Culture Museum of Virginia (2012) http://frontierculturemuseum.blogspot.it/2012/08/retting-flax.html

  • Gañán P, Zuluaga R, Restrepo A, Labidi J, Mondragon I (2008) Plantain fibre bundles isolated from Colombian agro-industrial residues. Bioresource Technol 99:486–491

    Article  CAS  Google Scholar 

  • Garcia-Jaldon C, Dupeyre D, Vignon MR (1998) Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy 14:251–260

    Article  CAS  Google Scholar 

  • Goud G, Rao RN (2011) Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites. Bull Mater Sci 34:1575–1581

    Article  CAS  Google Scholar 

  • Gowda TM, Naidu ACB, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos Part A-Appl S 30:277–284

    Article  Google Scholar 

  • Graceraj PP, Venkatachalam G, Shankar AG, Kumar K (2016) Investigation on fatigue strength of the jute fiber reinforced hybrid polymer matrix composites. UPB Sci Bull Series D 78:185–196

    Google Scholar 

  • Gu H (2009) Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater Des 30:3931–3934

    Article  CAS  Google Scholar 

  • Gunti R, Prasad AVR, Gupta AVSSKS (2016) Mechanical and degradation properties of natural Fiber reinforced PLA composites: jute, sisal, and elephant grass. Polym Composite doi:10.1002/pc

    Google Scholar 

  • Gurunathan T, Mohanthy S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application prespectives. Compos Part A-Appl S 77:1–25

    Article  CAS  Google Scholar 

  • Hänninen T, Thygesen A, Mehmood S, Madsen B, Hughes M (2012) Mechanical processing of bast fibres: the occurrence of damage and its effect on fibre structure. Ind Crops Prod 39:7–11

    Article  CAS  Google Scholar 

  • Hassan ML (2003) Recycling of jute textile in phenol formaldehyde–jute composites. J Appl Polym Sci 90:3588–3593

    Article  CAS  Google Scholar 

  • Henriksson G, Akin DE, Hanlin RT, Rodriguez C, Archibald DD, Rigsby LL, Eriksson KL (1997) Identification and retting efficiencies of fungi isolated from dew-retted flax in in the United States and Europe. Appl Environ Microbiol 63:3950–3956

    CAS  Google Scholar 

  • Hobson RN, Hepworth DG, Bruce DM (2001) Quality of fibre separated from unretted hemp stems by decortication. J Agric Eng Res 78:153–158

    Article  Google Scholar 

  • Hossain MR, Islam MA, Vuurea AV, Verpoest I (2013) Effect of fiber orientation on the tensile properties of jute epoxy laminated composite. J Sci Res 5:43–54

    CAS  Google Scholar 

  • Hu RH, Lim JK, Kim CI, Yoon HC (2007) Biodegradable composites based on polylactic acid (PLA) and China jute fiber. Key Eng Mater 353–358:1302–1305

    Article  Google Scholar 

  • Hu RH, Ma ZG, Zheng S, Li YN, Yang GH, Kim HK, Lim JK (2012a) A fabrication process of high volume fraction of jute fiber/polylactide composites for truck liner. Int J Precis Eng Man 13:1243–1246

    Article  Google Scholar 

  • Hu W, Ton-That MT, Denault J, Rho D, Yang J, Lau PCK (2012b) Comparison between dew-retted and enzyme-retted flax fibers as reinforcing material for composites. Polym Eng Sci 52:165–171

    Article  CAS  Google Scholar 

  • Huda S, Yang Y (2008) Chemically extracted cornhusk fibers as reinforcement in light-weight poly(propylene) composites. Macromol Mater Eng 293:235–243

    Article  CAS  Google Scholar 

  • Huges M, Sèbe G, Hague J, Hill C, Spear M, Mott L (2000) An investigation into the effects of micro-compressive defects on interphase behaviour in hemp-epoxy composites using half-fringe photoelasticity. Compos Interface 7:13–29

    Article  Google Scholar 

  • Hughes M, Hill CAS, Hague JRB (2002) The fracture toughness of bast fibre reinforced polyester composites part 1 evaluation and analysis. J Mater Sci 37:4669–4676

    Article  CAS  Google Scholar 

  • Hurren CJ, Wang X, Dennis HGS, Clarke AFK (2002) Evaluation of bast fibre retting systems on hemp. In: Proceedings of the 82nd Textile Institute World Conference, Cairo, Egypt

    Google Scholar 

  • Iyer PV, Wu Z-W, Kim SB, Lee YY (1996) Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl Biochem Biotechnol 57–58:121–132

    Article  Google Scholar 

  • Jankauskiene Z, Butkute B, Gruzdeviene E, Ceseviciene J, Fernando AL (2015) Chemical composition and physical properties of dew- and water-retted hemp fibers. Ind Crops Prod 75:206–211

    Google Scholar 

  • Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944

    Article  CAS  Google Scholar 

  • Kafi AA, Magniez K, Fox BL (2011) A surface-property relationship of atmospheric plasma treated jute composites. Compos Sci Technol 71:1692–1698

    Article  CAS  Google Scholar 

  • Kapoor M, Beg QK, Bhushan B, Singh K, Dadich KS, Hoondal GS (2001) Application of alkaline and thermostable galacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotolaria juncia) bast fibers. Process Biochem 36:803–807

    Article  CAS  Google Scholar 

  • Kawahara Y, Tadokoro K, Endo R, Shioya M, Sugimura Y, Furusawa T (2005) Chemically retted kenaf fibers. Sen’I Gakkaishi 61:115–117

    Article  CAS  Google Scholar 

  • Keller A (2003) Compounding and mechanical properties of biodegradable hemp fibre composites. Compos Sci Technol 63:1307–1316

    Article  CAS  Google Scholar 

  • Kengkhetkit N, Amornsakchai T (2012) Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Ind Crops Prod 40:55–61

    Article  CAS  Google Scholar 

  • Kessler RW, Becker U, Kohler R, Goth B (1998) Steam explosion of flax—a superior technique for upgrading fibre value. Biomass Bioenergy 14:237–249

    Article  CAS  Google Scholar 

  • Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresource Technol 90:39–47

    Article  CAS  Google Scholar 

  • Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresource Technol 99:5694–5702

    Article  CAS  Google Scholar 

  • Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technol 82:15–26

    Article  CAS  Google Scholar 

  • Konczewicz W, Wojtysiak J (2015) The effect of physical factors on the process of physical-mechanical degumming of flax fibers. Text Res J 85:391–403

    Article  CAS  Google Scholar 

  • Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46:126–131

    Article  CAS  Google Scholar 

  • Kouhoundè SHS, Adeati K, Delvigne F, Savadogo A, Traore AS, Thonart P (2014) The use of Microrganisms of cassava retting for the production of pectinolytic enzymes. J Microbiol Biotech Food Sci 4:277–281

    Google Scholar 

  • Kozlowski R, Konczewicz W, Wojtysiak J, Podsiedlik W (2013) Device for processing fibrous raw materials and method of fibrous plants processing. European Patent EP 2 242 876 B1

    Google Scholar 

  • Leman Z, Sapuan SM, Ishak MR, Ahmad MMHM (2010) Pre-treatment by water retting to improve the interfacial bonding strength of sugar palm fiber reinforced epoxy composite. Polymers from Renewable Resources 1:35–45

    CAS  Google Scholar 

  • Li Y, Pickering KL, Farrell RL (2009) Analysis of green hemp fibre reinforced composites using bag retting and white rot fungal treatments. Ind Crops Prod 29:420–426

    Article  CAS  Google Scholar 

  • Liu M, Fernando D, Meyer AS, Madsen B, Daniel G, Thygesen A (2015a) Characterization and biological depectinization of hemp fibers originating from different stem sections. Ind Crops Prod 76:880–891

    Article  CAS  Google Scholar 

  • Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Tutor Ale M, Thygesen A (2015b) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crops Prod 69:29–39

    Article  CAS  Google Scholar 

  • Mahato DN, Mathur BK, Bhattacherjee S (1993) Effects of alkali treatment on electrical and spectral properties of coir fibre. J Mater Sci Lett 12:1350–1353

    Article  CAS  Google Scholar 

  • Mahato DN, Mathur BK, Bhattacherjee S (1995) Effects of alkali treatment on thermal stability and moisture retention of coir fibre. Indian J Fibre Text 20:202–205

    CAS  Google Scholar 

  • Martin N, Mouret N, Davies P, Baley C (2013) Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind Crops Prod 49:755–767

    Article  CAS  Google Scholar 

  • Mehta G, Drzal LT, Mohanty AK, Misra M (2006) Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J Appl Polym Sci 99:1055–1068

    Article  CAS  Google Scholar 

  • Miller SA (2013) Sustainable polymers: opportunities for the next decade. ACS Macro Lett 2:551–554

    Article  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  Google Scholar 

  • Molina SMG, Pelissari FA, Vitorello CBM (2001) Screening and genetic improvement of pectinolytic fungi for degumming of textile fibers. Braz J Microbiol 32:320–326

    Article  Google Scholar 

  • Mounika M, Ramaniah K, Prasad AVR, Rao KM, Reddy KHC (2012) Thermal conductivity characterization of bamboo fiber reinforced polyester composite. J Mater Environ Sci 3(6):1109–1116

    CAS  Google Scholar 

  • Munshii TK, Cathoo B (2008) Bacterial population structure of the jute retting environment. Microbial Ecol 56:270–282

    Article  Google Scholar 

  • Mwaikambo LY, Ansell MP (2003) Hemp fibre reinforced cashew nut shell liquid composites. Compos Sci Technol 63:1297–1305

    Article  CAS  Google Scholar 

  • Nuplex (2014) www.nuplex.com/composites/processes

  • Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  • Oladele IO, Agbabiaka OG (2015) Investigating the influence of mercerization treatment of sisal fiber on the mechanical properties of reinforced polypropylene composites and modeling of the properties. Fiber Polym 16:650–656

    Article  CAS  Google Scholar 

  • Oladele IO, Daramola OO, Fasooto S (2014) Effect of chemical treatment on the mechanical properties of sisal fibre reinforced polyester composites. Leonardo Electron J Pract Technol 24:1–12

    Google Scholar 

  • Ouajai S, Shanks RA (2005) Morphology and structure of fiber after bioscouring. Macromol Biosci 5:124–134

    Article  CAS  Google Scholar 

  • Pallesen BE (1996) The quality of combine-harvested fibre flax for industrials purpuses depends on the degree of retting. Ind Crops Prod 5:65–78

    Article  Google Scholar 

  • Parikh DV, Calamari TA, Sawhney APS, Blanchard EJ, Screen FJ, Warnock M, Muller DH, Stryjewski DD (2002a) Improved chemical retting of kenaf fibers. Text Res J 72:618–624

    Article  CAS  Google Scholar 

  • Parikh DV, Calamari TA, Swahney APS, Blanchard EJ, Screen FJ (2002b) Thermoformable automotive composites containing kenaf and other cellulosic fibers. Text Res J 72:668–672

    Article  CAS  Google Scholar 

  • Pickering KL, Farrell RL, Lay MC (2007a) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mater Bio 1:109–117

    Google Scholar 

  • Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007b) Optimising industrial hemp fibre for composites. Compos Part A-Appl S 38:461–468

    Article  CAS  Google Scholar 

  • Pillin I, Kervoelen A, Bourmaud A, Goimard J, Montrelay N, Baley C (2011) Could oleaginous flax fibers be used as reinforcement for polymers? Ind Crops Prod 34:1556–1563

    Article  CAS  Google Scholar 

  • Prasad AVR, Rao KM (2011) Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater Design 32:4658–4663

    Article  CAS  Google Scholar 

  • Prasad AVR, Rao KM, Gupta AVSSKS, Reddy BV (2011) A Study on flexural properties of wildcane grass fiber-reinforced polyester composites. J Mater Sci 46:2627–2634

    Article  CAS  Google Scholar 

  • Prasad GLSR, Kumar MVHS, Rajesh G (2014) Effect of fibre loading and successive alkali treatments on tensile properties of short jute fibre reinforced polypropylene composites. Int J Eng Sci 3:30–34

    Google Scholar 

  • Praveen KM, Thomas S, Grohens Y, Mozetič M, Junkar I, Primc G, Gorjanc M (2016) Investigations of plasma induced effects on the surface properties of lignocellulosic natural coir fibres. Appl Surf Sci 368:146–156

    Article  CAS  Google Scholar 

  • Ramesh D, Ayre BG, Webber CL, D’Souza NA (2015) Dynamic mechanical analysis, surface chemistry and morphology of alkali and enzymatic retted kenaf fibers. Text Res J 85:2059–2070

    Article  CAS  Google Scholar 

  • Ramnath BV, Kokan SJ, Raja RN, Sathyanarayanan R, Elanchezhian C, Prasad AR, Manickavasagam VM (2013) Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater Design 51:357–366

    Article  CAS  Google Scholar 

  • Rao KMM, Prasad AVR, Babu MNVR, Rao KM, Gupta AVSSKS (2007) Tensile properties of elephant grass fiber reinforced polyester composites. J Mater Sci 42:3266–3272

    Article  CAS  Google Scholar 

  • Rao KMM, Rao KM, Prasad AVR (2010) Fabrication and testing of natural fibre composites: Vakka, sisal, bamboo and banana. Mater Design 31:508–513

    Article  CAS  Google Scholar 

  • Retting the flax (2014) https://blumenkinderheirlooms.wordpress.com/2014/08/30/retting-the-flax/

  • Ribeiro A, Pochart P, Day A, Mennuni S, Bono P, Baret JL, Spadoni JL, Mangin I (2015) Microbial diversity observed during hemp retting. Appl Microbiol Biothechnol 99:4471–4484

    Article  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  Google Scholar 

  • Roe PJ, Ansell MP (1985) Jute-reinforced polyester composites. J Mater Sci 20:4015–4020

    Article  CAS  Google Scholar 

  • Sakai T, Sakamoto T, Hallaert J, Vandamme EJ (1993) Pectin, pectinaseand protopectinase: production, properties and applications. Adv Appl Microbiol 39:231–294

    Google Scholar 

  • Salentijn EMJ, Zhang Q, Amaducci S, Yang M, Trindad LM (2015) New developments in fiber hemp (Cannabis sativa L.) breeding. Ind Crops Prod 68:32–41

    Article  Google Scholar 

  • Sature P, Mache A (2015) Mechanical characterization and water absorption studies on jute/hemp reinforced hybrid composites. Am J Mater Sci 5:133–139

    Google Scholar 

  • Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers-an overview. Progr Polym Sci 34:982–1021

    Article  CAS  Google Scholar 

  • Scalici T, Fiore V, Valenza A (2016) Effect of plasma treatment on the properties of Arundo donax L. leaf fibres and its bio-based epoxy composites: a preliminary study. Composites Part B-Eng 94:167–175

    Article  CAS  Google Scholar 

  • Sharma HSS (1986) An alternative method of flax retting during dry weather. Ann Appl Biol 109:605–611

    Article  Google Scholar 

  • Sharma HSS, Faughey G, Lyons G (1999) Comparison of physical, chemical, and thermal characteristics of water-, dew-, and enzyme-retted flax fibers. J Appl Polym Sci 74:139–143

    Article  CAS  Google Scholar 

  • Sheng W, Gao J, Jin Z, Dai H, Zheng L, Wang B (2014) Effect of steam explosion on degumming efficiency and physicochemical characteristics of banana fiber. J Appl Polym Sci 131:40598–44606

    Google Scholar 

  • Shi J, Shi SQ, Barnes HM, Pittman CU Jr (2011a) A chemical process for preparing cellulosic fibers hierarchically from kenaf bast. BioRes 6:879–890

    Google Scholar 

  • Shi J, Shi SQ, Barnes HM, Horstemeyer MF, Wang G (2011b) Kenaf bast fibers—part II: inorganic nanoparticle impregnation for polymer composites. Int J Polym Sci 2011:1–7

    Google Scholar 

  • Silva GG, De Souza DA, Machado JC, Hourston DJ (2000) Mechanical and thermal characterization of native Brazilian coir fiber. J Appl Polym Sci 76:1197–1206

    Article  CAS  Google Scholar 

  • Singh SA, Ramakrishna M, Rao AGA (1999) Optimization of downstream processing parameters for the recovery of pectinase from the fermented broth of Aspergillus Carbonarious. Process Biochem 35:411–417

    Article  CAS  Google Scholar 

  • Sisti L, Totaro G, Vannini M, Fabbri P, Kalia S, Zatta A, Celli A (2016) Evaluation of the retting process as a pre-treatment of vegetable fibers for the preparation of high-performance polymer biocomposites. Ind Crops Prod 81:56–65

    Article  CAS  Google Scholar 

  • Song KH, Kim IS (2013) Effects of plasticizer on the mechanical properties of kenaf/starch bio-composites. Fiber Polym 14:2135–2140

    Article  CAS  Google Scholar 

  • Stamboulis A, Baillie CA, Garkhail SK, Van Melick HGH, Peijs T (2000) Environmental durability of flax fibres and their composites based on polypropylene matrix. Appl Compos Mater 7:273–294

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83:1–11

    Article  CAS  Google Scholar 

  • Tahir P, Ahmed AB, Saifulazry SOA, Ahmed Z (2011) Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources 6:5260–5281

    CAS  Google Scholar 

  • Tamburini E, Gordillo León A, Perito B, Di Candilo M, Mastromei G (2004) Exploitation of bacterial pectinolytic strains for improvement of hemp water retting. Euphytica 140:47–54

    Article  Google Scholar 

  • Tamburini E, Leon AG, Perito B, Mastromei G (2003) Characterization of pectinolytic strains involved in the water retting process. Environ Microbiol 5:730–736

    Article  CAS  Google Scholar 

  • Thomas S, Paul SA, Pothan LA, Deepa B (2011) Natural fibres: structure, properties and applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin

    Google Scholar 

  • Thomsen AB, Thygesen A, Bohn V, Vad Nielsen K, Pallesen B, Jørgensen MS (2006) Effect of chemical-physical pretreatment processes on hemp fibres for reinforcement of composites and for textiles. Ind Crops Prod 24:113–118

    Article  CAS  Google Scholar 

  • Umoru PE, Boryo DEA, Aliyu AO, Adeyemi OO (2014) Processing and evaluation of chemically treated kenaf bast (Hibiscus cannabinus). Int J Sci Technol Res 3:1–6

    Google Scholar 

  • Van Dam JEG, Bos HL (2004) The environmental impact of fibre crops in industrial applications. Hintergrundpapier zu

    Google Scholar 

  • Van de Velde K, Baetens E (2001) Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol Mater Eng 286:342–349

    Article  Google Scholar 

  • Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I (2003) Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol 63:1241–1246

    Article  CAS  Google Scholar 

  • Van de Weyenberg I, Truong TC, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Composi Part A-Appl S 37:1368–1376

    Article  CAS  Google Scholar 

  • Van der Werf HMG, Turunen L (2008) The environmental impacts of the production of hemp and flax textile yarns. Ind Crops Prod 27:1–10

    Article  Google Scholar 

  • Van Sumere CF (1992) Retting of flax with special reference to enzyme retting. In: Sharma HSS, Van Sumere CF (eds) The biology and processing of flax. M. Publications, Belfast

    Google Scholar 

  • Vignon MR, Dupeyre D, Garcia-Jaldon C (1996) Morphological characterization of steam exploded hemp fibers and their utilization in polypropylene-based composites. Bioresource Technol 58:203–215

    Article  CAS  Google Scholar 

  • Wang YP, Wang G, Cheng HT (2010) Structure of bamboo fiber for textiles. Text Res J 80:334–343

    Article  CAS  Google Scholar 

  • Weald & Downland Open Air Museum (2016) www.wealddown.co.uk

  • Xia C, Zhang S, Shi SQ, Cai L, Huang J (2016) Property enhancement of kenaf fiber reinforced composites by in situ aluminum hydroxide impregnation. Ind Crops Prod 79:131–136

    Article  CAS  Google Scholar 

  • Xiao Z, Wang S, Bergeron H, Zhang J, Lau PCK (2008) A flax retting endopolygalacturolase-encoding gene from Rhizopus oryzae. Antonie Van Leeuwenhoek 94:563–571

    Article  CAS  Google Scholar 

  • Xu X, Wang Y, Zhang X, Jing G, Yu D, Wang S (2006) Effects on surface properties of natural bamboo fibers treated with atmospheric pressure argon plasma. Surf Interface Anal 38:1211–1217

    Article  CAS  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—a review. Compos Part B-Eng 56:296–317

    Google Scholar 

  • Yang B, Nar M, Visi DK, Allen M, Ayre B, Webb er CL III, Lu H, D’Souza NA (2014) Effects of chemical versus enzymatic processing of kenaf fibers on poly(hydroxybutyrate-co-valerate)/poly(butylene adipate-co-terephthalate) composite properties. Compos Part B-Eng 56:926–933

    Google Scholar 

  • Zhang J, Henriksson G, Johanssson G (2000) Polygalacturonase is the key component in enzymatic retting of flax. J Biotechnol 81:85–89

    Article  CAS  Google Scholar 

  • Zhang L, Li D, Wang L, Wang T, Zhang L, Chen KD, Mao Z (2008a) Effect of steam explosion on biodegradation of lignin in wheat straw. Bioresource Technol 99:8512–8515

    Article  CAS  Google Scholar 

  • Zhang LL, Zhu RY, Chen JM, Feng XX (2008b) Seawater-retting treatment of hemp and characterization of bacterial strains involved in the retting process. Process Biochem 43:1195–1201

    Article  CAS  Google Scholar 

  • Zheng L, Du Y, Zhang J (2001) Degumming of Ramie fibers by alkalophilic bacteria and their polysaccharide-degrading enzymes. Bioresource Technol 78:89–94

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sisti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sisti, L., Totaro, G., Vannini, M., Celli, A. (2018). Retting Process as a Pretreatment of Natural Fibers for the Development of Polymer Composites. In: Kalia, S. (eds) Lignocellulosic Composite Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-68696-7_2

Download citation

Publish with us

Policies and ethics