Skip to main content
Log in

Potential of Agricultural Residues and Hay for Bioethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Production of bioethanol from agricultural residues and hays (wheat, barley, and triticale straws, and barley, triticale, pearl millet, and sweet sorghum hays) through a series of chemical pretreatment, enzymatic hydrolysis, and fermentation processes was investigated in this study. Composition analysis suggested that the agricultural straws and hays studied contained approximately 28.62–38.58% glucan, 11.19–20.78% xylan, and 22.01–27.57% lignin, making them good candidates for bioethanol production. Chemical pretreatment with sulfuric acid or sodium hydroxide at concentrations of 0.5, 1.0, and 2.0% indicated that concentration and treatment agent play a significant role during pretreatment. After 2.0% sulfuric acid pretreatment at 121°C/15 psi for 60 min, 78.10–81.27% of the xylan in untreated feedstocks was solubilized, while 75.09–84.52% of the lignin was reduced after 2.0% sodium hydroxide pretreatment under similar conditions. Enzymatic hydrolysis of chemically pretreated (2.0% NaOH or H2SO4) solids with Celluclast 1.5 L–Novozym 188 (cellobiase) enzyme combination resulted in equal or higher glucan and xylan conversion than with Spezyme® CP- xylanase combination. The glucan and xylan conversions during hydrolysis with Celluclast 1.5 L–cellobiase at 40 FPU/g glucan were 78.09 to 100.36% and 74.03 to 84.89%, respectively. Increasing the enzyme loading from 40 to 60 FPU/g glucan did not significantly increase sugar yield. The ethanol yield after fermentation of the hydrolyzate from different feedstocks with Saccharomyces cerevisiae ranged from 0.27 to 0.34 g/g glucose or 52.00–65.82% of the theoretical maximum ethanol yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albukh, T. (2000) http://hypertextbook.com/facts/2000/TanyaAlbukh.shtml, accessed June 20, 2006.

  2. Um, B. H., Karim, M. N., & Henk, L. L. (2003). Applied Biochemistry and Biotechnology, 105–108, 115–125.

    Article  Google Scholar 

  3. Ingram, L. O., & Doran, J. B. (1995). FEMS Microbiology Reviews, 16, 235–241.

    Article  CAS  Google Scholar 

  4. McKendry, P. (2002). Bioresource Technology, 83, 47–54.

    Article  CAS  Google Scholar 

  5. USDA (2005) http://usda.mannlib.cornell.edu/reports/nassr/field/pcp-bban/cropan05.pdf, accessed June 22, 2006.

  6. US EPA (2006) http://www.epa.gov/oecaagct/ag101/cropmajor.html, accessed July 1, 2006.

  7. Chen, C., Johnson, D., & Wichman, D. (2005). The Western Society of Crop Science. Bozeman, MT, June 19–22, 2005.

  8. Milne, T. A., Chum, H. L., Agblevor, F. A., & Johnson, D. K. (1992). Biomass & Bioenergy, 2, 341–366.

    Article  Google Scholar 

  9. Delgenes, J. P., Moletta, R., & Navarro, J. M. (1990). Process Biochemistry, 25, 132–135.

    Google Scholar 

  10. Detroy, R. W., Cunningham, R. L., & Herman, A. I. (1982). Biotechnology and Bioengineering Symposium, 12, 81–89.

    CAS  Google Scholar 

  11. Nigam, J. N. (2001). Journal of Biotechnology, 87(1), 17–27.

    Article  CAS  Google Scholar 

  12. Saha, B. C., & Cotta, M. A. (2006). Biotechnology Progress, 22(2), 449–453.

    Article  CAS  Google Scholar 

  13. Amartey, S., & Jeffries, T. W. (1996). World Journal of Microbiology & Biotechnology, 21, 281–283.

    Article  Google Scholar 

  14. Chang, V. S., Kaar, W. E., Burr, B., & Holtzapple, M. T. (2001). Biotechnology Letters, 23(16), 1327–1333.

    Article  CAS  Google Scholar 

  15. Kim, T. H., & Lee, Y. Y. (2005). Applied Biochemistry and Biotechnology, 121–124, 1119–1131.

    Article  Google Scholar 

  16. Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., & Ladisch, M. R. (2005). Bioresource Technology, 96(18), 1986–1993.

    Article  CAS  Google Scholar 

  17. Parekh, S. R., Parekh, R. S., & Wayman, M. (1988). Enzyme and Microbial Technology, 10, 660–668.

    Article  CAS  Google Scholar 

  18. Varga, E., Schmidt, A. S., Reczey, K., & Thomsen, A. B. (2003). Applied Biochemistry and Biotechnology, 104(1), 37–50.

    Article  CAS  Google Scholar 

  19. Yang, B., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94(4), 611–617.

    Article  CAS  Google Scholar 

  20. Palmarola-Adrados, B., Choteborska, P., Galbe, M., & Zacchi, G. (2005). Bioresource Technology, 96, 843–850.

    Article  CAS  Google Scholar 

  21. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004a). Determination of total solids in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.

    Google Scholar 

  22. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004b). Determination of ash in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.

    Google Scholar 

  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004c). Determination of structural carbohydrates and lignin in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.

    Google Scholar 

  24. Han, J., & Rowell, J. (1997). In R. Rowell, R. Young, & J. Rowell (Eds.), Paper composites from agro-based resources (pp. 83–134). New York: CRC Lewis Publisher.

  25. Chinn, M. S., Nokes, S. E., & Strobel, H. J. (2006). Biotechnology Progress, 22(1), 53–59.

    Article  CAS  Google Scholar 

  26. McMillan, J. D. (1994). In M. E. Himmel, J. O. Baker, & R. P. Overend (Eds.), Enzymatic conversion of biomass for fuels production (pp. 292–324). Washington, DC: American Chemical Society.

  27. Agblevor, F. A., Evans, R. J., & Johnson, K. D. (1994). Journal of Analytical and Applied Pyrolysis, 30, 125–144.

    Article  CAS  Google Scholar 

  28. Agblevor, F. A., Batz, S., & Trumbo, J. (2003). Applied Biochemistry and Biotechnology, 105–108, 219–230.

    Article  Google Scholar 

  29. McDonald, P., Edwards, R. A., Greenhalgh, J. F. D., & Morgan, C. A. (1995). In 5th (Ed.), Animal nutrition (pp. 465–480). England: Longman Scientific & Technical.

  30. Arroquy, J. I., Cochran, R. C., Nagaraja, T. G., Titgemeyer, E. C., & Johnson, D. E. (2005). Animal Feed Science and Technology, 120(1–2), 93–106.

    Article  CAS  Google Scholar 

  31. Thompson, D. N., Barnes, J. M., & Houghton, T. P. (2005). Applied Biochemistry and Biotechnology, 121–124, 21–46.

    Article  Google Scholar 

  32. Belkacemi, K., Turcotte, G., de Halleux, D., & Savoie, P. (1998). Applied Biochemistry and Biotechnology, 70–72, 441–462.

    Article  Google Scholar 

  33. Sun, Y., & Cheng, J. J. (2002). Bioresource Technology, 83(1), 1–11.

    Article  CAS  Google Scholar 

  34. Wiselogel, A., Tyson, S., & Johnson, D. (1996). In C. E. Wyman (Ed.), Handbook on bioethanol: Production and utilization (pp. 105–119). Washington, DC: Taylor & Francis.

  35. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Process Biochemistry, 40(12), 3693–3700.

    Article  CAS  Google Scholar 

  36. Sun, J. X., Xu, F., Sun, X. F., Xiao, B., & Sun, R. C. (2005). Polymer Degradation Stability, 88, 521–531.

    Article  CAS  Google Scholar 

  37. Schell, D. J., Farmer, J., Newman, M., & Mcmillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105, 69–86.

    Article  Google Scholar 

  38. Grohmann, K., Torget, R., & Himmel, M. (1985). Biotechnology and Bioengineering Symposium, 15, 59–80.

    Google Scholar 

  39. Akin, D. E., Hartley, R. D., Rigsby, L. L., & Morrison, W. H. (1992). Journal of the Science of Food and Agriculture, 58, 207–214.

    Article  CAS  Google Scholar 

  40. Simpson, A. J., Kingery, W. L., & Hatcher, P. G. (2003). Environmental Science & Technology, 37, 337–342.

    Article  CAS  Google Scholar 

  41. Jackson, M. G. (1977). Animal Feed Science and Technology, 2, 105–130.

    Article  Google Scholar 

  42. Scalbert, A., & Monties, B. (1986). Holzforschung, 40, 249–254.

    Article  CAS  Google Scholar 

  43. Gáspár, M., Juhász, T., Szengyel, Z., & Recaéy, K. (2005). Process Biochemistry, 40, 1183–1188.

    Article  CAS  Google Scholar 

  44. Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M., Hahn-Hagerdal, B., & Zacchi, G. (2006). Journal of Biotechnology, 126(4), 488–498.

    Article  CAS  Google Scholar 

  45. Amartey, S. A., Leung, P. C. J., Baghaei-Yazdi, N., Leak, D. J., & Hartley, B. S. (1999). Proceedings of Biochemistry, 34(3), 289–294.

    Article  CAS  Google Scholar 

  46. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., & Ingram, L. O. (2001). Biotechnology Progress, 17, 287–293.

    Article  CAS  Google Scholar 

  47. Mussatto, S. I., Santos, J. C., & Roberto, I. C. (2004). Journal of Chemical Technology and Biotechnology, 79(6), 590–596.

    Article  CAS  Google Scholar 

  48. Chung,Y.-C., Bakalinsky, A., & Penner, M. H. (2005). Applied Biochemistry and Biotechnology, 121–124, 947–961.

    Article  Google Scholar 

  49. Béguin, P., & Aubert, J.-P. (1994). FEMS Microbiology Reviews, 13, 25–58.

    Article  Google Scholar 

  50. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Biotechnology Progress, 17, 110–117.

    Article  CAS  Google Scholar 

  51. Bhat, M. K., & Bhat, S. (1997). Biotechnology Advances, 15(3/4), 583–620.

    Article  CAS  Google Scholar 

  52. Nieves, R. A., Ehrman, C. I., Adney, W. S., Elander, R. T., & Himmel, M. E. (1998). World Journal of Microbiology & Biotechnology, 14, 301–304.

    CAS  Google Scholar 

  53. Zhou, S., Davis, F. C., & Ingram, L. O. (2001). Applied and Environmental Microbiology, 67(1), 6–14.

    Article  CAS  Google Scholar 

  54. Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96, 1967–1977.

    Article  CAS  Google Scholar 

  55. Spindler, D. D., Wyman, C. E., Grohmann, K., & Mohagheghi, A. (1989). Applied Biochemistry and Biotechnology, 20/21, 529–540.

    Article  Google Scholar 

  56. Spindler, D., Wyman, C., & Grohmann, K. (1990). Applied Biochemistry and Biotechnology, 24/25, 275–286.

    Article  Google Scholar 

  57. Kellett, L. E., Poole, D. M., Ferreira, L. M. A., Durrant, A. J., Hazlewood, G. P., & Gilbert, H. J. (1990). Biochemical Journal, 272(2), 369–376.

    CAS  Google Scholar 

  58. Wong, K. K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Microbiology Reviews, 52, 305–317.

    CAS  Google Scholar 

  59. Thomson, J. A. (1993). FEMS Microbiology Reviews, 104, 65–82.

    Article  CAS  Google Scholar 

  60. Biely, P. (1985). Trends in Biotechnology, 3(11), 286–290.

    Article  CAS  Google Scholar 

  61. Duarte, L. C., Carvalheiro, F., Lopes, S., Marques, S., Parajo, J. C., & Girio, F. M. (2004). Applied Biochemistry and Biotechnology, 113–116, 1041–1058.

    Article  Google Scholar 

  62. Saddler, J. N., Yu, E. K. C., Mes-Hartree, M., Levitin, N., & Brownell, H. H. (1983). Applied and Environmental Microbiology, 45(1), 153–160.

    CAS  Google Scholar 

  63. Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., & Cantarella, M. (2000). Journal of Industrial Microbiology & Biotechnology, 25(4), 184–192.

    Article  CAS  Google Scholar 

  64. Ballesteros, M., Oliva, J. M., Negro, M. M., Manzanares, P., & Ballesteros, I. (2004). Process Biochemistry, 39, 1843–1848.

    Article  CAS  Google Scholar 

  65. Zhu, S. D., Wu, Y. X., Yu, Z. N., Zhang, X., Wang, C. W., Yu, F. Q., et al. (2006). Process Biochemistry, 41(4), 869–873.

    Article  CAS  Google Scholar 

  66. Boyle, M., Barron, N., & McHale, A. P. (1997). Biotechnology Letters, 19(1), 49–51.

    Article  CAS  Google Scholar 

  67. Bjerre, A. B., Olessen, A. B., Fernqvist, T., Ploger, A., & Schmidt, A. S. (1996). Biotechnology and Bioengineering, 49, 568–577.

    Article  CAS  Google Scholar 

  68. D’Haese, D. E., Nelis, H. J., & Reybroeck, W. (1997). Applied Environmental and Microbiology, 63(10), 4116–4119.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna R. Sharma-Shivappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Sharma-Shivappa, R.R., Keshwani, D. et al. Potential of Agricultural Residues and Hay for Bioethanol Production. Appl Biochem Biotechnol 142, 276–290 (2007). https://doi.org/10.1007/s12010-007-0026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0026-3

Keywords

Navigation